51
|
Del Toro D, Carrasquero-Ordaz MA, Chu A, Ruff T, Shahin M, Jackson VA, Chavent M, Berbeira-Santana M, Seyit-Bremer G, Brignani S, Kaufmann R, Lowe E, Klein R, Seiradake E. Structural Basis of Teneurin-Latrophilin Interaction in Repulsive Guidance of Migrating Neurons. Cell 2020; 180:323-339.e19. [PMID: 31928845 PMCID: PMC6978801 DOI: 10.1016/j.cell.2019.12.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/15/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Teneurins are ancient metazoan cell adhesion receptors that control brain development and neuronal wiring in higher animals. The extracellular C terminus binds the adhesion GPCR Latrophilin, forming a trans-cellular complex with synaptogenic functions. However, Teneurins, Latrophilins, and FLRT proteins are also expressed during murine cortical cell migration at earlier developmental stages. Here, we present crystal structures of Teneurin-Latrophilin complexes that reveal how the lectin and olfactomedin domains of Latrophilin bind across a spiraling beta-barrel domain of Teneurin, the YD shell. We couple structure-based protein engineering to biophysical analysis, cell migration assays, and in utero electroporation experiments to probe the importance of the interaction in cortical neuron migration. We show that binding of Latrophilins to Teneurins and FLRTs directs the migration of neurons using a contact repulsion-dependent mechanism. The effect is observed with cell bodies and small neurites rather than their processes. The results exemplify how a structure-encoded synaptogenic protein complex is also used for repulsive cell guidance. Crystal structures reveal binding site for Latrophilin on the Teneurin YD shell A ternary Latrophilin-Teneurin-FLRT complex forms in vitro and in vivo Latrophilin controls cortical migration by binding to Teneurins and FLRTs Latrophilin elicits repulsion of cortical cell bodies/small neurites but not axons
Collapse
Affiliation(s)
- Daniel Del Toro
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried 82152, Germany; Department of Biological Sciences, Institute of Neurosciences, IDIBAPS, CIBERNED, University of Barcelona, Barcelona, Spain
| | | | - Amy Chu
- Department of Biochemistry, Oxford University, Oxford OX1 3QU, UK
| | - Tobias Ruff
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried 82152, Germany
| | - Meriam Shahin
- Department of Biochemistry, Oxford University, Oxford OX1 3QU, UK
| | - Verity A Jackson
- Department of Biochemistry, Oxford University, Oxford OX1 3QU, UK
| | | | | | - Goenuel Seyit-Bremer
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried 82152, Germany
| | - Sara Brignani
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried 82152, Germany
| | - Rainer Kaufmann
- Center for Structural Systems Biology, University of Hamburg, Hamburg 22607, Germany; Department of Physics, University of Hamburg, Hamburg 20355, Germany
| | - Edward Lowe
- Department of Biochemistry, Oxford University, Oxford OX1 3QU, UK
| | - Rüdiger Klein
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried 82152, Germany.
| | - Elena Seiradake
- Department of Biochemistry, Oxford University, Oxford OX1 3QU, UK.
| |
Collapse
|
52
|
Towards the application of Tc toxins as a universal protein translocation system. Nat Commun 2019; 10:5263. [PMID: 31748551 PMCID: PMC6868009 DOI: 10.1038/s41467-019-13253-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/28/2019] [Indexed: 11/25/2022] Open
Abstract
Tc toxins are bacterial protein complexes that inject cytotoxic enzymes into target cells using a syringe-like mechanism. Tc toxins are composed of a membrane translocator and a cocoon that encapsulates a toxic enzyme. The toxic enzyme varies between Tc toxins from different species and is not conserved. Here, we investigate whether the toxic enzyme can be replaced by other small proteins of different origin and properties, namely Cdc42, herpes simplex virus ICP47, Arabidopsis thaliana iLOV, Escherichia coli DHFR, Ras-binding domain of CRAF kinase, and TEV protease. Using a combination of electron microscopy, X-ray crystallography and in vitro translocation assays, we demonstrate that it is possible to turn Tc toxins into customizable molecular syringes for delivering proteins of interest across membranes. We also infer the guidelines that protein cargos must obey in terms of size, charge, and fold in order to apply Tc toxins as a universal protein translocation system. Tc toxins are a major class of bacterial toxin translocation systems that inject toxic enzymes into target cells. Here the authors present functional and structural data showing that the toxic enzyme can be replaced by other small proteins and identify prerequisites required for successful translocation, which could facilitate the development of functional Tc-based protein injection devices.
Collapse
|
53
|
Roderer D, Hofnagel O, Benz R, Raunser S. Structure of a Tc holotoxin pore provides insights into the translocation mechanism. Proc Natl Acad Sci U S A 2019; 116:23083-23090. [PMID: 31666324 PMCID: PMC6859359 DOI: 10.1073/pnas.1909821116] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tc toxins are modular toxin systems of insect and human pathogenic bacteria. They are composed of a 1.4-MDa pentameric membrane translocator (TcA) and a 250-kDa cocoon (TcB and TcC) encapsulating the 30-kDa toxic enzyme (C terminus of TcC). Binding of Tc toxins to target cells and a pH shift trigger the conformational transition from the soluble prepore state to the membrane-embedded pore. Subsequently, the toxic enzyme is translocated and released into the cytoplasm. A high-resolution structure of a holotoxin embedded in membranes is missing, leaving open the question of whether TcB-TcC has an influence on the conformational transition of TcA. Here we show in atomic detail a fully assembled 1.7-MDa Tc holotoxin complex from Photorhabdus luminescens in the membrane. We find that the 5 TcA protomers conformationally adapt to fit around the cocoon during the prepore-to-pore transition. The architecture of the Tc toxin complex allows TcB-TcC to bind to an already membrane-embedded TcA pore to form a holotoxin. Importantly, assembly of the holotoxin at the membrane results in spontaneous translocation of the toxic enzyme, indicating that this process is not driven by a proton gradient or other energy source. Mammalian lipids with zwitterionic head groups are preferred over other lipids for the integration of Tc toxins. In a nontoxic Tc toxin variant, we can visualize part of the translocating toxic enzyme, which transiently interacts with alternating negative charges and hydrophobic stretches of the translocation channel, providing insights into the mechanism of action of Tc toxins.
Collapse
Affiliation(s)
- Daniel Roderer
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Oliver Hofnagel
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Roland Benz
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759 Bremen, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany;
| |
Collapse
|
54
|
Leidreiter F, Roderer D, Meusch D, Gatsogiannis C, Benz R, Raunser S. Common architecture of Tc toxins from human and insect pathogenic bacteria. SCIENCE ADVANCES 2019; 5:eaax6497. [PMID: 31663026 PMCID: PMC6795518 DOI: 10.1126/sciadv.aax6497] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Tc toxins use a syringe-like mechanism to penetrate the membrane and translocate toxic enzymes into the host cytosol. They are composed of three components: TcA, TcB, and TcC. Low-resolution structures of TcAs from different bacteria suggest a considerable difference in their architecture and possibly in their mechanism of action. Here, we present high-resolution structures of five TcAs from insect and human pathogens, which show a similar overall composition and domain organization. Essential structural features, including a trefoil protein knot, are present in all TcAs, suggesting a common mechanism of action. All TcAs form functional pores and can be combined with TcB-TcC subunits from other species to form active chimeric holotoxins. We identified a conserved ionic pair that stabilizes the shell, likely operating as a strong latch that only springs open after destabilization of other regions. Our results provide new insights into the architecture and mechanism of the Tc toxin family.
Collapse
Affiliation(s)
- F. Leidreiter
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - D. Roderer
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - D. Meusch
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - C. Gatsogiannis
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - R. Benz
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campusring 1, 28759 Bremen, Germany
| | - S. Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| |
Collapse
|
55
|
Ng Ang A PN, Ebner JK, Plessner M, Aktories K, Schmidt G. Engineering Photorhabdus luminescens toxin complex (PTC) into a recombinant injection nanomachine. Life Sci Alliance 2019; 2:e201900485. [PMID: 31540947 PMCID: PMC6756610 DOI: 10.26508/lsa.201900485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022] Open
Abstract
Engineering delivery systems for proteins and peptides into mammalian cells is an ongoing challenge for cell biological studies as well as for therapeutic approaches. Photorhabdus luminescens toxin complex (PTC) is a heterotrimeric protein complex able to deliver diverse protein toxins into mammalian cells. We engineered the syringe-like nanomachine for delivery of protein toxins from different species. In addition, we loaded the highly active copepod luciferase Metridia longa M-Luc7 for accurate quantification of injected molecules. We suggest that besides the probable size limitation, the charge of the cargo also influences the efficiency of packing and transport into mammalian cells. Our data show that the PTC constitutes a powerful system to inject recombinant proteins, peptides, and potentially, other molecules into mammalian cells. In addition, in contrast to other protein transporters based on pore formation, the closed, compact structure of the PTC may protect cargo from degradation.
Collapse
Affiliation(s)
- Peter Njenga Ng Ang A
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School for Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Julia K Ebner
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School for Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Matthias Plessner
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus Aktories
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Gudula Schmidt
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
56
|
Vlisidou I, Hapeshi A, Healey JR, Smart K, Yang G, Waterfield NR. The Photorhabdus asymbiotica virulence cassettes deliver protein effectors directly into target eukaryotic cells. eLife 2019; 8:46259. [PMID: 31526474 PMCID: PMC6748792 DOI: 10.7554/elife.46259] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/12/2019] [Indexed: 01/19/2023] Open
Abstract
Photorhabdus is a highly effective insect pathogen and symbiont of insecticidal nematodes. To exert its potent insecticidal effects, it elaborates a myriad of toxins and small molecule effectors. Among these, the Photorhabdus Virulence Cassettes (PVCs) represent an elegant self-contained delivery mechanism for diverse protein toxins. Importantly, these self-contained nanosyringes overcome host cell membrane barriers, and act independently, at a distance from the bacteria itself. In this study, we demonstrate that Pnf, a PVC needle complex associated toxin, is a Rho-GTPase, which acts via deamidation and transglutamination to disrupt the cytoskeleton. TEM and Western blots have shown a physical association between Pnf and its cognate PVC delivery mechanism. We demonstrate that for Pnf to exert its effect, translocation across the cell membrane is absolutely essential.
Collapse
Affiliation(s)
- Isabella Vlisidou
- All Wales Genetics Laboratory, Institute of Medical Genetics, University Hospital of Wales, Cardiff, United Kingdom
| | - Alexia Hapeshi
- Warwick Medical School, Warwick University, Coventry, United Kingdom
| | - Joseph Rj Healey
- Warwick Medical School, Warwick University, Coventry, United Kingdom
| | - Katie Smart
- Warwick Medical School, Warwick University, Coventry, United Kingdom
| | - Guowei Yang
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | | |
Collapse
|
57
|
Roderer D, Raunser S. Tc Toxin Complexes: Assembly, Membrane Permeation, and Protein Translocation. Annu Rev Microbiol 2019; 73:247-265. [DOI: 10.1146/annurev-micro-102215-095531] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tc toxin complexes are virulence factors of many bacteria, including insect and human pathogens. Tc toxins are composed of three subunits that act together to perforate the host membrane, similar to a syringe, and translocate toxic enzymes into the host cell. The reactions of the toxic enzymes lead to deterioration and ultimately death of the cell. We review recent high-resolution structural and functional data that explain the mechanism of action of this type of bacterial toxin at an unprecedented level of molecular detail. We focus on the steps that are necessary for toxin activation and membrane permeation. This is where the largest conformational transitions appear. Furthermore, we compare the architecture and function of Tc toxins with those of anthrax toxin and vertebrate teneurin.
Collapse
Affiliation(s)
- Daniel Roderer
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany;,
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany;,
| |
Collapse
|
58
|
Araç D, Li J. Teneurin Structure: Splice Variants of a Bacterial Toxin Homolog Specifies Synaptic Connections. Front Neurosci 2019; 13:838. [PMID: 31440135 PMCID: PMC6693077 DOI: 10.3389/fnins.2019.00838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/26/2019] [Indexed: 11/20/2022] Open
Abstract
Teneurins are a conserved family of cell-surface adhesion molecules that mediate cellular communication, and play key roles in embryonic and neural development. Their mechanisms of action remained unclear due in part to their unknown structures. In recent years, the structures of teneurins have been reported at atomic resolutions and revealed a clear homology to bacterial Tc toxins with no similarity to other eukaryotic proteins. Another surprising observation was that alternatively spliced variants of teneurins interact with distinct ligands, and thus specify excitatory vs. inhibitory synapses. In this review, we discuss teneurin structures that together with structure-guided biochemical and functional analyses, provide insights for the mechanisms of trans-cellular communication at the synapse and other cell-cell contact sites.
Collapse
Affiliation(s)
- Demet Araç
- Department of Biochemistry & Molecular Biology, The University of Chicago, Chicago, IL, United States.,Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, United States
| | - Jingxian Li
- Department of Biochemistry & Molecular Biology, The University of Chicago, Chicago, IL, United States.,Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
59
|
Mathur C, Phani V, Kushwah J, Somvanshi VS, Dutta TK. TcaB, an insecticidal protein from Photorhabdus akhurstii causes cytotoxicity in the greater wax moth, Galleria mellonella. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 157:219-229. [PMID: 31153472 DOI: 10.1016/j.pestbp.2019.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/22/2019] [Accepted: 03/31/2019] [Indexed: 06/09/2023]
Abstract
Photorhabdus akhurstii can produce a variety of proteins that aid this bacterium and its mutualistic nematode vector, Heterorhabditis indica to kill the insect host. Herein, we characterized (by heterologously expressing in E. coli) an open reading frame (1713 bp) of the toxin complex protein, TcaB from P. akhurstii strains IARI-SGHR2 and IARI-SGMS1 and assessed its toxic effect on G. mellonella larvae. The intra-hemocoel injection of purified TcaB (molecular weight-63 kDa) caused fourth instar larval bodies to blacken and die with LD50 values of 67.25 (IARI-SGHR2) and 52.08 (IARI-SGMS1) ng per larva at 12 h. Additionally, oral administration of the toxin caused larval mortality with LD50 values of 709.55 (IARI-SGHR2) and 598.44 (IARI-SGMS1) ng per g diet per larva at 7 days post feeding. Injection of purified TcaB caused loss of viability of fourth instar G. mellonella hemocytes at 6 h post incubation; cells displayed morphological changes typical of apoptosis, including cell shrinkage, membrane blebbing, nuclear condensation and disintegration. Injection of TcaB also elevated the phenoloxidase activity in insect hemolymph which triggers an extensive immune response that potentially leads to larval death. Similar to other bacterial toxins TcaB possesses potent biological activity which may enable it to be used as an efficient agent for pest management.
Collapse
Affiliation(s)
- Chetna Mathur
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Victor Phani
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Jyoti Kushwah
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Vishal S Somvanshi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Tushar K Dutta
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
60
|
Tanaka Y, Kato S, Stabrin M, Raunser S, Matsui T, Gatsogiannis C. Cryo-EM reveals the asymmetric assembly of squid hemocyanin. IUCRJ 2019; 6:426-437. [PMID: 31098023 PMCID: PMC6503924 DOI: 10.1107/s205225251900321x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
The oxygen transporter of molluscs, hemocyanin, consists of long pearl-necklace-like subunits of several globular domains. The subunits assemble in a complex manner to form cylindrical decamers. Typically, the first six domains of each subunit assemble together to form the cylinder wall, while the C-terminal domains form a collar that fills or caps the cylinder. During evolution, various molluscs have been able to fine-tune their oxygen binding by deleting or adding C-terminal domains and adjusting their inner-collar architecture. However, squids have duplicated one of the wall domains of their subunits instead. Here, using cryo-EM and an optimized refinement protocol implemented in SPHIRE, this work tackled the symmetry-mismatched structure of squid hemocyanin, revealing the precise effect of this duplication on its quaternary structure and providing a potential model for its structural evolution.
Collapse
Affiliation(s)
- Yoshikazu Tanaka
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Japan Science and Technology Agency, PRESTO, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Sanae Kato
- Faculty of Fisheries, Kagoshima University, Kagoshima 890-0056, Japan
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0056, Japan
| | - Markus Stabrin
- Max Planck Institute of Molecular Physiology, Department of Structural Biochemistry, Otto Hahn Strasse 11, Dortmund 44227, Germany
| | - Stefan Raunser
- Max Planck Institute of Molecular Physiology, Department of Structural Biochemistry, Otto Hahn Strasse 11, Dortmund 44227, Germany
| | - Takashi Matsui
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Christos Gatsogiannis
- Max Planck Institute of Molecular Physiology, Department of Structural Biochemistry, Otto Hahn Strasse 11, Dortmund 44227, Germany
| |
Collapse
|
61
|
Piper SJ, Brillault L, Rothnagel R, Croll TI, Box JK, Chassagnon I, Scherer S, Goldie KN, Jones SA, Schepers F, Hartley-Tassell L, Ve T, Busby JN, Dalziel JE, Lott JS, Hankamer B, Stahlberg H, Hurst MRH, Landsberg MJ. Cryo-EM structures of the pore-forming A subunit from the Yersinia entomophaga ABC toxin. Nat Commun 2019; 10:1952. [PMID: 31028251 PMCID: PMC6486591 DOI: 10.1038/s41467-019-09890-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 04/05/2019] [Indexed: 11/15/2022] Open
Abstract
ABC toxins are pore-forming virulence factors produced by pathogenic bacteria. YenTcA is the pore-forming and membrane binding A subunit of the ABC toxin YenTc, produced by the insect pathogen Yersinia entomophaga. Here we present cryo-EM structures of YenTcA, purified from the native source. The soluble pre-pore structure, determined at an average resolution of 4.4 Å, reveals a pentameric assembly that in contrast to other characterised ABC toxins is formed by two TcA-like proteins (YenA1 and YenA2) and decorated by two endochitinases (Chi1 and Chi2). We also identify conformational changes that accompany membrane pore formation by visualising YenTcA inserted into liposomes. A clear outward rotation of the Chi1 subunits allows for access of the protruding translocation pore to the membrane. Our results highlight structural and functional diversity within the ABC toxin subfamily, explaining how different ABC toxins are capable of recognising diverse hosts.
Collapse
Affiliation(s)
- Sarah J Piper
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Queensland, 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, St Lucia Queensland, 4072, Australia
| | - Lou Brillault
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Queensland, 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, St Lucia Queensland, 4072, Australia
| | - Rosalba Rothnagel
- Institute for Molecular Bioscience, The University of Queensland, St Lucia Queensland, 4072, Australia
| | - Tristan I Croll
- Cambridge Institute of Medical Research, University of Cambridge, Cambridge Cambridgeshire, CB2 0XY, United Kingdom
| | - Joseph K Box
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Queensland, 4072, Australia
| | - Irene Chassagnon
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Queensland, 4072, Australia
| | - Sebastian Scherer
- Centre for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, 4058, Basel, Switzerland
| | - Kenneth N Goldie
- Centre for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, 4058, Basel, Switzerland
| | - Sandra A Jones
- Forage Science Group, AgResearch, Christchurch, 8140, New Zealand
| | - Femke Schepers
- Faculty of Science, Leiden University, 2300 RA, Leiden, The Netherlands
- Food & Bio-based Products Group, AgResearch, Palmerston North, 4442, New Zealand
| | | | - Thomas Ve
- Institute for Glycomics, Griffith University, Gold Coast Queensland, 4222, Australia
| | - Jason N Busby
- School of Biological Sciences, University of Auckland, Auckland, 1142, New Zealand
| | - Julie E Dalziel
- Food & Bio-based Products Group, AgResearch, Palmerston North, 4442, New Zealand
| | - J Shaun Lott
- School of Biological Sciences, University of Auckland, Auckland, 1142, New Zealand
| | - Ben Hankamer
- Institute for Molecular Bioscience, The University of Queensland, St Lucia Queensland, 4072, Australia
| | - Henning Stahlberg
- Centre for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, 4058, Basel, Switzerland
| | - Mark R H Hurst
- Forage Science Group, AgResearch, Christchurch, 8140, New Zealand
| | - Michael J Landsberg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Queensland, 4072, Australia.
- Institute for Molecular Bioscience, The University of Queensland, St Lucia Queensland, 4072, Australia.
| |
Collapse
|
62
|
Deprey K, Becker L, Kritzer J, Plückthun A. Trapped! A Critical Evaluation of Methods for Measuring Total Cellular Uptake versus Cytosolic Localization. Bioconjug Chem 2019; 30:1006-1027. [PMID: 30882208 PMCID: PMC6527423 DOI: 10.1021/acs.bioconjchem.9b00112] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biomolecules have many properties that make them promising for intracellular therapeutic applications, but delivery remains a key challenge because large biomolecules cannot easily enter the cytosol. Furthermore, quantification of total intracellular versus cytosolic concentrations remains demanding, and the determination of delivery efficiency is thus not straightforward. In this review, we discuss strategies for delivering biomolecules into the cytosol and briefly summarize the mechanisms of uptake for these systems. We then describe commonly used methods to measure total cellular uptake and, more selectively, cytosolic localization, and discuss the major advantages and drawbacks of each method. We critically evaluate methods of measuring "cell penetration" that do not adequately distinguish total cellular uptake and cytosolic localization, which often lead to inaccurate interpretations of a molecule's cytosolic localization. Finally, we summarize the properties and components of each method, including the main caveats of each, to allow for informed decisions about method selection for specific applications. When applied correctly and interpreted carefully, methods for quantifying cytosolic localization offer valuable insight into the bioactivity of biomolecules and potentially the prospects for their eventual development into therapeutics.
Collapse
Affiliation(s)
- Kirsten Deprey
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Lukas Becker
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Joshua Kritzer
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
63
|
Araç D, Li J. Teneurins and latrophilins: two giants meet at the synapse. Curr Opin Struct Biol 2019; 54:141-151. [PMID: 30952063 DOI: 10.1016/j.sbi.2019.01.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/10/2019] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
Abstract
Teneurins and latrophilins are both conserved families of cell adhesion proteins that mediate cellular communication and play critical roles in embryonic and neural development. However, their mechanisms of action remain poorly understood. In the past several years, three-dimensional structures of teneurins and latrophilins have been reported at atomic resolutions and revealed distinct protein folds and unique structural features. In this review, we discuss these structures which, together with structure-guided biochemical and functional analyses, provide hints for the mechanisms of trans-cellular communication at the synapse and other cell-cell contact sites.
Collapse
Affiliation(s)
- Demet Araç
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, IL 60637, USA.
| | - Jingxian Li
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, IL 60637, USA
| |
Collapse
|
64
|
Jiang F, Li N, Wang X, Cheng J, Huang Y, Yang Y, Yang J, Cai B, Wang YP, Jin Q, Gao N. Cryo-EM Structure and Assembly of an Extracellular Contractile Injection System. Cell 2019; 177:370-383.e15. [PMID: 30905475 DOI: 10.1016/j.cell.2019.02.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/11/2019] [Accepted: 02/13/2019] [Indexed: 02/06/2023]
Abstract
Contractile injection systems (CISs) are cell-puncturing nanodevices that share ancestry with contractile tail bacteriophages. Photorhabdus virulence cassette (PVC) represents one group of extracellular CISs that are present in both bacteria and archaea. Here, we report the cryo-EM structure of an intact PVC from P. asymbiotica. This over 10-MDa device resembles a simplified T4 phage tail, containing a hexagonal baseplate complex with six fibers and a capped 117-nanometer sheath-tube trunk. One distinct feature of the PVC is the presence of three variants for both tube and sheath proteins, indicating a functional specialization of them during evolution. The terminal hexameric cap docks onto the topmost layer of the inner tube and locks the outer sheath in pre-contraction state with six stretching arms. Our results on the PVC provide a framework for understanding the general mechanism of widespread CISs and pave the way for using them as delivery tools in biological or therapeutic applications.
Collapse
Affiliation(s)
- Feng Jiang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PRC
| | - Ningning Li
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, PRC
| | - Xia Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PRC
| | - Jiaxuan Cheng
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, PRC; Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, PRC
| | - Yaoguang Huang
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, PRC
| | - Yun Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, PRC
| | - Jianguo Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, PRC
| | - Bin Cai
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, PRC
| | - Yi-Ping Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, PRC
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PRC.
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, PRC.
| |
Collapse
|
65
|
Jackson VA, Busby JN, Janssen BJC, Lott JS, Seiradake E. Teneurin Structures Are Composed of Ancient Bacterial Protein Domains. Front Neurosci 2019; 13:183. [PMID: 30930731 PMCID: PMC6425310 DOI: 10.3389/fnins.2019.00183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 02/15/2019] [Indexed: 11/16/2022] Open
Abstract
Pioneering bioinformatic analysis using sequence data revealed that teneurins evolved from bacterial tyrosine-aspartate (YD)-repeat protein precursors. Here, we discuss how structures of the C-terminal domain of teneurins, determined using X-ray crystallography and electron microscopy, support the earlier findings on the proteins’ ancestry. This chapter describes the structure of the teneurin scaffold with reference to a large family of teneurin-like proteins that are widespread in modern prokaryotes. The central scaffold of modern eukaryotic teneurins is decorated by additional domains typically found in bacteria, which are re-purposed in eukaryotes to generate highly multifunctional receptors. We discuss how alternative splicing contributed to further diversifying teneurin structure and thereby function. This chapter traces the evolution of teneurins from a structural point of view and presents the state-of-the-art of how teneurin function is encoded by its specific structural features.
Collapse
Affiliation(s)
| | - Jason N Busby
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Bert J C Janssen
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - J Shaun Lott
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Elena Seiradake
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
66
|
Li J, Shalev-Benami M, Sando R, Jiang X, Kibrom A, Wang J, Leon K, Katanski C, Nazarko O, Lu YC, Südhof TC, Skiniotis G, Araç D. Structural Basis for Teneurin Function in Circuit-Wiring: A Toxin Motif at the Synapse. Cell 2019; 173:735-748.e15. [PMID: 29677516 DOI: 10.1016/j.cell.2018.03.036] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/14/2018] [Accepted: 03/15/2018] [Indexed: 11/28/2022]
Abstract
Teneurins (TENs) are cell-surface adhesion proteins with critical roles in tissue development and axon guidance. Here, we report the 3.1-Å cryoelectron microscopy structure of the human TEN2 extracellular region (ECR), revealing a striking similarity to bacterial Tc-toxins. The ECR includes a large β barrel that partially encapsulates a C-terminal domain, which emerges to the solvent through an opening in the mid-barrel region. An immunoglobulin (Ig)-like domain seals the bottom of the barrel while a β propeller is attached in a perpendicular orientation. We further show that an alternatively spliced region within the β propeller acts as a switch to regulate trans-cellular adhesion of TEN2 to latrophilin (LPHN), a transmembrane receptor known to mediate critical functions in the central nervous system. One splice variant activates trans-cellular signaling in a LPHN-dependent manner, whereas the other induces inhibitory postsynaptic differentiation. These results highlight the unusual structural organization of TENs giving rise to their multifarious functions.
Collapse
Affiliation(s)
- Jingxian Li
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| | - Moran Shalev-Benami
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Richard Sando
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Xian Jiang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Amanuel Kibrom
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| | - Jie Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Katherine Leon
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| | - Christopher Katanski
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| | - Olha Nazarko
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| | - Yue C Lu
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University, Stanford, CA 94305, USA.
| | - Demet Araç
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
67
|
Brander S, Jank T, Hugel T. AFM Imaging Suggests Receptor-Free Penetration of Lipid Bilayers by Toxins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:365-371. [PMID: 30565941 DOI: 10.1021/acs.langmuir.8b03146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A crucial step of exotoxin action is the attack on the membrane. Many exotoxins show an architecture following the AB model, where a binding subunit translocates an "action" subunit across a cell membrane. Atomic force microscopy is an ideal technique to study these systems because of its ability to provide structural as well as dynamic information at the same time. We report first images of toxins Photorhabdus luminescens TcdA1 and Clostridium difficile TcdB on a supported lipid bilayer. A significant amount of toxin binds to the bilayer at neutral pH in the absence of receptors. Lack of diffusion indicates that toxin particles penetrate the membrane. This observation is supported by fluorescence recovery after photobleaching measurements. We mimic endocytosis by acidification while imaging the particles over time; however, we see no large conformational change. We therefore conclude that the toxin particles we imaged in neutral conditions had already formed a pore and speculate that there is no "pre-pore" state in our imaging conditions (i.e., in the absence of receptor).
Collapse
|
68
|
Ost GS, Ng'ang'a PN, Lang AE, Aktories K. Photorhabdus luminescens
Tc toxin is inhibited by the protease inhibitor MG132 and activated by protease cleavage resulting in increased binding to target cells. Cell Microbiol 2018; 21:e12978. [DOI: 10.1111/cmi.12978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/19/2018] [Accepted: 11/04/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Gerhard Stefan Ost
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine; University of Freiburg; Freiburg Germany
- Faculty of Biology; University of Freiburg; Freiburg Germany
| | - Peter Njenga Ng'ang'a
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine; University of Freiburg; Freiburg Germany
- Faculty of Biology; University of Freiburg; Freiburg Germany
- Spemann Graduate School of Biology and Medicine (SGBM); University of Freiburg; Freiburg Germany
| | - Alexander E. Lang
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine; University of Freiburg; Freiburg Germany
| | - Klaus Aktories
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine; University of Freiburg; Freiburg Germany
- Centre for Biological Signalling Studies (BIOSS); University of Freiburg; Freiburg Germany
| |
Collapse
|
69
|
Vibrio parahaemolyticus RhsP represents a widespread group of pro-effectors for type VI secretion systems. Nat Commun 2018; 9:3899. [PMID: 30254227 PMCID: PMC6156420 DOI: 10.1038/s41467-018-06201-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 08/20/2018] [Indexed: 12/31/2022] Open
Abstract
Type VI secretion systems (T6SSs) translocate effector proteins, such as Rhs toxins, to eukaryotic cells or prokaryotic competitors. All T6SS Rhs-type effectors characterized thus far contain a PAAR motif or a similar structure. Here, we describe a T6SS-dependent delivery mechanism for a subset of Rhs proteins that lack a PAAR motif. We show that the N-terminal Rhs domain of protein RhsP (or VP1517) from Vibrio parahaemolyticus inhibits the activity of the C-terminal DNase domain. Upon auto-proteolysis, the Rhs fragment remains inside the cells, and the C-terminal region interacts with PAAR2 and is secreted by T6SS2; therefore, RhsP acts as a pro-effector. Furthermore, we show that RhsP contributes to the control of certain “social cheaters” (opaR mutants). Genes encoding proteins with similar Rhs and PAAR-interacting domains, but diverse C-terminal regions, are widely distributed among Vibrio species. It is unclear how Rhs toxins lacking a PAAR motif are secreted by Type VI secretion systems. Here, the authors show for one of these proteins that the mechanism requires removal of an N-terminal fragment by auto-proteolysis, followed by interaction with a PAAR protein and then secretion.
Collapse
|
70
|
Gatsogiannis C, Merino F, Roderer D, Balchin D, Schubert E, Kuhlee A, Hayer-Hartl M, Raunser S. Tc toxin activation requires unfolding and refolding of a β-propeller. Nature 2018; 563:209-213. [DOI: 10.1038/s41586-018-0556-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 08/23/2018] [Indexed: 12/14/2022]
|
71
|
Schubert E, Vetter IR, Prumbaum D, Penczek PA, Raunser S. Membrane insertion of α-xenorhabdolysin in near-atomic detail. eLife 2018; 7:38017. [PMID: 30010541 PMCID: PMC6086661 DOI: 10.7554/elife.38017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/15/2018] [Indexed: 12/24/2022] Open
Abstract
α-Xenorhabdolysins (Xax) are α-pore-forming toxins (α-PFT) that form 1–1.3 MDa large pore complexes to perforate the host cell membrane. PFTs are used by a variety of bacterial pathogens to attack host cells. Due to the lack of structural information, the molecular mechanism of action of Xax toxins is poorly understood. Here, we report the cryo-EM structure of the XaxAB pore complex from Xenorhabdus nematophila and the crystal structures of the soluble monomers of XaxA and XaxB. The structures reveal that XaxA and XaxB are built similarly and appear as heterodimers in the 12–15 subunits containing pore, classifying XaxAB as bi-component α-PFT. Major conformational changes in XaxB, including the swinging out of an amphipathic helix are responsible for membrane insertion. XaxA acts as an activator and stabilizer for XaxB that forms the actual transmembrane pore. Based on our results, we propose a novel structural model for the mechanism of Xax intoxication. Some bacteria make toxins that punch large holes into the membranes of host cells, destroying them like a puncture destroys a football. These “pore-forming toxins” allow many bacterial species to infect a variety of organisms, from insects to humans. Some sophisticated pore-forming toxins, such as the anthrax toxin, do not only form a pore but also use it to flood lethal toxins into the cell to kill it. One bacterium called Xenorhabdus nematophila punctures the membranes of insect cells, using the same type of pore-forming toxins that other bacteria use to infect humans. Previous research has shown that two proteins – components A and B – form these pore-forming toxins. Given this two-protein formation, some scientists predicted these pore-forming toxins might act like those of the anthrax bacterium: one component forms the pore; the other component poisons the cell. But without detailed images of this pore-forming toxin’s structure, understanding exactly how these two components work together is almost impossible. To explore how components A and B operate within X. nematophila, Schubert et al. captured images of the molecular structure of the two proteins. Common methods reliant on X-rays and electron microscopes revealed the layouts of both components. By visualizing the proteins at different stages, Schubert et al. observed key structural changes that enable them to form the pore and puncture a host cell. Component A binds to component B’s back, forming a subunit – twelve to fifteen of which then conjoin as the pore-forming toxin. Schubert et al. conclude that component A stabilizes each subunit on the membrane and activates component B, which then punctures the membrane by swinging out its lower end. Unlike the anthrax pore-forming toxin, both components collaborate to form the pore complex and puncture the membrane. These results provide a foundation of knowledge about what these toxins look like and how they operate. More research building upon this structural analysis may help scientists develop antibiotics that prevent bacteria from destroying human cells.
Collapse
Affiliation(s)
- Evelyn Schubert
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Ingrid R Vetter
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Daniel Prumbaum
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Pawel A Penczek
- Department of Biochemistry and Molecular Biology, Houston Medical School, The University of Texas, Houston, United States
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| |
Collapse
|
72
|
Electron cryomicroscopy as a powerful tool in biomedical research. J Mol Med (Berl) 2018; 96:483-493. [PMID: 29730699 PMCID: PMC5988769 DOI: 10.1007/s00109-018-1640-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/05/2018] [Accepted: 04/11/2018] [Indexed: 01/08/2023]
Abstract
A human cell is a precisely regulated system that relies on the complex interaction of molecules. Structural insights into the cellular machinery at the atomic level allow us to understand the underlying regulatory mechanism and provide us with a roadmap for the development of novel drugs to fight diseases. Facilitated by recent technological breakthroughs, the Nobel prize-winning technique electron cryomicroscopy (cryo-EM) has become a versatile and extremely powerful tool to solve routinely near-atomic resolution three-dimensional protein structures. Consequently, it has become the focus of attention for structure-based drug design. In this review, we describe the basics of cryo-EM and highlight its growing role in biomedical research. Furthermore, we discuss latest developments as well as future perspectives.
Collapse
|
73
|
Bräuning B, Bertosin E, Praetorius F, Ihling C, Schatt A, Adler A, Richter K, Sinz A, Dietz H, Groll M. Structure and mechanism of the two-component α-helical pore-forming toxin YaxAB. Nat Commun 2018; 9:1806. [PMID: 29728606 PMCID: PMC5935710 DOI: 10.1038/s41467-018-04139-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 04/02/2018] [Indexed: 01/30/2023] Open
Abstract
Pore-forming toxins (PFT) are virulence factors that transform from soluble to membrane-bound states. The Yersinia YaxAB system represents a family of binary α-PFTs with orthologues in human, insect, and plant pathogens, with unknown structures. YaxAB was shown to be cytotoxic and likely involved in pathogenesis, though the molecular basis for its two-component lytic mechanism remains elusive. Here, we present crystal structures of YaxA and YaxB, together with a cryo-electron microscopy map of the YaxAB complex. Our structures reveal a pore predominantly composed of decamers of YaxA-YaxB heterodimers. Both subunits bear membrane-active moieties, but only YaxA is capable of binding to membranes by itself. YaxB can subsequently be recruited to membrane-associated YaxA and induced to present its lytic transmembrane helices. Pore formation can progress by further oligomerization of YaxA-YaxB dimers. Our results allow for a comparison between pore assemblies belonging to the wider ClyA-like family of α-PFTs, highlighting diverse pore architectures.
Collapse
Affiliation(s)
- Bastian Bräuning
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Chair of Biochemistry, Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany.
| | - Eva Bertosin
- Center for Integrated Protein Science Munich (CIPSM), Department of Physics, Technische Universität München, Am Coulombwall 4a, 85748, Garching, Germany
| | - Florian Praetorius
- Center for Integrated Protein Science Munich (CIPSM), Department of Physics, Technische Universität München, Am Coulombwall 4a, 85748, Garching, Germany
| | - Christian Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str.4, 06120, Halle/Saale, Germany
| | - Alexandra Schatt
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str.4, 06120, Halle/Saale, Germany
| | - Agnes Adler
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Chair of Biochemistry, Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Klaus Richter
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Chair of Biotechnology, Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str.4, 06120, Halle/Saale, Germany
| | - Hendrik Dietz
- Center for Integrated Protein Science Munich (CIPSM), Department of Physics, Technische Universität München, Am Coulombwall 4a, 85748, Garching, Germany
| | - Michael Groll
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Chair of Biochemistry, Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| |
Collapse
|
74
|
Wolle P, Müller MP, Rauh D. Augmented Reality in Scientific Publications-Taking the Visualization of 3D Structures to the Next Level. ACS Chem Biol 2018; 13:496-499. [PMID: 29544257 DOI: 10.1021/acschembio.8b00153] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The examination of three-dimensional structural models in scientific publications allows the reader to validate or invalidate conclusions drawn by the authors. However, either due to a (temporary) lack of access to proper visualization software or a lack of proficiency, this information is not necessarily available to every reader. As the digital revolution is quickly progressing, technologies have become widely available that overcome the limitations and offer to all the opportunity to appreciate models not only in 2D, but also in 3D. Additionally, mobile devices such as smartphones and tablets allow access to this information almost anywhere, at any time. Since access to such information has only recently become standard practice, we want to outline straightforward ways to incorporate 3D models in augmented reality into scientific publications, books, posters, and presentations and suggest that this should become general practice.
Collapse
Affiliation(s)
- Patrik Wolle
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, D-44227 Dortmund, Germany
| | - Matthias P. Müller
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, D-44227 Dortmund, Germany
| | - Daniel Rauh
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, D-44227 Dortmund, Germany
| |
Collapse
|
75
|
Jackson VA, Meijer DH, Carrasquero M, van Bezouwen LS, Lowe ED, Kleanthous C, Janssen BJC, Seiradake E. Structures of Teneurin adhesion receptors reveal an ancient fold for cell-cell interaction. Nat Commun 2018. [PMID: 29540701 PMCID: PMC5851990 DOI: 10.1038/s41467-018-03460-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Teneurins are ancient cell–cell adhesion receptors that are vital for brain development and synapse organisation. They originated in early metazoan evolution through a horizontal gene transfer event when a bacterial YD-repeat toxin fused to a eukaryotic receptor. We present X-ray crystallography and cryo-EM structures of two Teneurins, revealing a ~200 kDa extracellular super-fold in which eight sub-domains form an intricate structure centred on a spiralling YD-repeat shell. An alternatively spliced loop, which is implicated in homophilic Teneurin interaction and specificity, is exposed and thus poised for interaction. The N-terminal side of the shell is ‘plugged’ via a fibronectin-plug domain combination, which defines a new class of YD proteins. Unexpectedly, we find that these proteins are widespread amongst modern bacteria, suggesting early metazoan receptor evolution from a distinct class of proteins, which today includes both bacterial proteins and eukaryotic Teneurins. Teneurins are cell-cell adhesion receptors that evolved through horizontal gene transfer in which a bacterial YD-repeat protein fused to a eukaryotic receptor. Here the authors present crystallographic and cryo-EM structures of two Teneurins, revealing an ancient YD-repeat protein super-fold.
Collapse
Affiliation(s)
- Verity A Jackson
- Department of Biochemistry, Oxford University, OX1 3QU, Oxford, UK.
| | - Dimphna H Meijer
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | | | - Laura S van Bezouwen
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands.,Cryo-electron Microscopy, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Edward D Lowe
- Department of Biochemistry, Oxford University, OX1 3QU, Oxford, UK
| | - Colin Kleanthous
- Department of Biochemistry, Oxford University, OX1 3QU, Oxford, UK
| | - Bert J C Janssen
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Elena Seiradake
- Department of Biochemistry, Oxford University, OX1 3QU, Oxford, UK.
| |
Collapse
|
76
|
Munguira ILB, Takahashi H, Casuso I, Scheuring S. Lysenin Toxin Membrane Insertion Is pH-Dependent but Independent of Neighboring Lysenins. Biophys J 2017; 113:2029-2036. [PMID: 29117526 DOI: 10.1016/j.bpj.2017.08.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/11/2017] [Indexed: 10/18/2022] Open
Abstract
Pore-forming toxins form a family of proteins that act as virulence factors of pathogenic bacteria, but similar proteins are found in all kingdoms of life, including the vertebrate immune system. They are secreted as soluble monomers that oligomerize on target membranes in the so-called prepore state; after activation, they insert into the membrane and adopt the pore state. Lysenin is a pore-forming toxin from the earthworm Eisenida foetida, of which both the soluble and membrane-inserted structures are solved. However, the activation and membrane-insertion mechanisms have remained elusive. Here, we used high-speed atomic force microscopy to directly visualize the membrane-insertion mechanism. Changing the environmental pH from pH 7.5 to below pH 6.0 favored membrane insertion. We detected a short α-helix in the soluble structure that comprised three glutamic acids (Glu92, Glu94, and Glu97) that we hypothesized may represent a pH-sensor (as in similar toxins, e.g., Listeriolysin). Mutant lysenin still can form pores, but mutating these glutamic acids to glutamines rendered the toxin pH-insensitive. On the other hand, toxins in the pore state did not favor insertion of neighboring prepores; indeed, pore insertion breaks the hexagonal ordered domains of prepores and separates from neighboring molecules in the membrane. pH-dependent activation of toxins may represent a common feature of pore-forming toxins. High-speed atomic force microscopy with single-molecule resolution at high temporal resolution and the possibility of exchanging buffers during the experiments presents itself as a unique tool for the study of toxin-state conversion.
Collapse
Affiliation(s)
- Ignacio L B Munguira
- U1006 INSERM, Université Aix-Marseille, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Hirohide Takahashi
- U1006 INSERM, Université Aix-Marseille, Parc Scientifique et Technologique de Luminy, Marseille, France; Departments of Anesthesiology and Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | - Ignacio Casuso
- U1006 INSERM, Université Aix-Marseille, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Simon Scheuring
- U1006 INSERM, Université Aix-Marseille, Parc Scientifique et Technologique de Luminy, Marseille, France; Departments of Anesthesiology and Physiology and Biophysics, Weill Cornell Medical College, New York, New York.
| |
Collapse
|
77
|
Roche DB, Viet PD, Bakulina A, Hirsh L, Tosatto SCE, Kajava AV. Classification of β-hairpin repeat proteins. J Struct Biol 2017; 201:130-138. [PMID: 29017817 DOI: 10.1016/j.jsb.2017.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 12/11/2022]
Abstract
In recent years, a number of new protein structures that possess tandem repeats have emerged. Many of these proteins are comprised of tandem arrays of β-hairpins. Today, the amount and variety of the data on these β-hairpin repeat (BHR) structures have reached a level that requires detailed analysis and further classification. In this paper, we classified the BHR proteins, compared structures, sequences of repeat motifs, functions and distribution across the major taxonomic kingdoms of life and within organisms. As a result, we identified six different BHR folds in tandem repeat proteins of Class III (elongated structures) and one BHR fold (up-and-down β-barrel) in Class IV ("closed" structures). Our survey reveals the high incidence of the BHR proteins among bacteria and viruses and their possible relationship to the structures of amyloid fibrils. It indicates that BHR folds will be an attractive target for future structural studies, especially in the context of age-related amyloidosis and emerging infectious diseases. This work allowed us to update the RepeatsDB database, which contains annotated tandem repeat protein structures and to construct sequence profiles based on BHR structural alignments.
Collapse
Affiliation(s)
- Daniel B Roche
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), UMR 5237 CNRS, Université Montpellier, 1919 Route de Mende, Cedex 5, Montpellier 34293, France; Institut de Biologie Computationnelle, Montpellier, France
| | - Phuong Do Viet
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), UMR 5237 CNRS, Université Montpellier, 1919 Route de Mende, Cedex 5, Montpellier 34293, France; Institut de Biologie Computationnelle, Montpellier, France
| | - Anastasia Bakulina
- Novosibirsk State University, Pirogova str. 1, Novosibirsk 630090, Russia; State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Russia
| | - Layla Hirsh
- Department of Biomedical Sciences, University of Padova, I-35121 Padova, Italy; Engineering Department, Pontifical Catholic University of Peru, Lima 32, Peru
| | - Silvio C E Tosatto
- Department of Biomedical Sciences, University of Padova, I-35121 Padova, Italy
| | - Andrey V Kajava
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), UMR 5237 CNRS, Université Montpellier, 1919 Route de Mende, Cedex 5, Montpellier 34293, France; Institut de Biologie Computationnelle, Montpellier, France.
| |
Collapse
|
78
|
Aktories K, Schwan C, Lang AE. ADP-Ribosylation and Cross-Linking of Actin by Bacterial Protein Toxins. Handb Exp Pharmacol 2017; 235:179-206. [PMID: 27316913 DOI: 10.1007/164_2016_26] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Actin and the actin cytoskeleton play fundamental roles in host-pathogen interactions. Proper function of the actin cytoskeleton is crucial for innate and acquired immune defense. Bacterial toxins attack the actin cytoskeleton by targeting regulators of actin. Moreover, actin is directly modified by various bacterial protein toxins and effectors, which cause ADP-ribosylation or cross-linking of actin. Modification of actin can result in inhibition or stimulation of actin polymerization. Toxins, acting directly on actin, are reviewed.
Collapse
Affiliation(s)
- Klaus Aktories
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-Universität Freiburg, Freiburg, 79104, Germany. .,Freiburg Institute of Advanced Studies (FRIAS), Albert-Ludwigs-Universität Freiburg, Freiburg, 79104, Germany.
| | - Carsten Schwan
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-Universität Freiburg, Freiburg, 79104, Germany
| | - Alexander E Lang
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-Universität Freiburg, Freiburg, 79104, Germany
| |
Collapse
|
79
|
Kim IH, Ensign J, Kim DY, Jung HY, Kim NR, Choi BH, Park SM, Lan Q, Goodman WG. Specificity and putative mode of action of a mosquito larvicidal toxin from the bacterium Xenorhabdus innexi. J Invertebr Pathol 2017; 149:21-28. [PMID: 28712711 DOI: 10.1016/j.jip.2017.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 07/01/2017] [Accepted: 07/10/2017] [Indexed: 11/17/2022]
Abstract
Reduction of mosquito-borne diseases relies, in part, on the use of synthetic pesticides to control pest mosquitoes. This reliance has led to genetic resistance, environmental contamination and the nondiscriminatory elimination of both pest and non-pest species. To expand our options for control, we screened entomopathogenic bacteria for potential larvicidal activity. A lipopeptide from the bacterium, Xenorhabdus innexi, was discovered that displayed potent larvicidal activity. The LC50s of the lipopeptide towards Aedes aegypti, Culex pipiens and Anopheles gambiae larvae were 1.81, 1.25 and 1.86 parts-per-million, respectively. No mortality was observed in other insect species tested. The putative mode of action of the lipopeptide suggested that after orally ingestion, it bound to the apical membrane of anterior midgut cells and created pores in the cellular membranes. The rapid neutralization of midgut pH suggested the pores disabled the H+-V-ATPase on the basal membrane and led to epithelial cell death. Specificity and toxicity towards mosquito larvae and the unique mode of action makes this lipopeptide a potentially attractive bacterial insecticide for control of mosquitoes.
Collapse
Affiliation(s)
- Il-Hwan Kim
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA; Department of Entomology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Jerald Ensign
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Do-Young Kim
- Advanced Bio Convergence Center, Pohang Technopark, Jigok-dong, Pohang, Republic of Korea
| | - Hoe-Yune Jung
- Advanced Bio Convergence Center, Pohang Technopark, Jigok-dong, Pohang, Republic of Korea; R&D Center, NovMetaPharma Co., Ltd., Jigok-dong, Pohang, Republic of Korea
| | - Na-Ri Kim
- Advanced Bio Convergence Center, Pohang Technopark, Jigok-dong, Pohang, Republic of Korea
| | - Bo-Hwa Choi
- Advanced Bio Convergence Center, Pohang Technopark, Jigok-dong, Pohang, Republic of Korea
| | - Sun-Min Park
- Advanced Bio Convergence Center, Pohang Technopark, Jigok-dong, Pohang, Republic of Korea
| | - Que Lan
- Department of Entomology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Walter G Goodman
- Department of Entomology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
80
|
Comparative Studies of Actin- and Rho-Specific ADP-Ribosylating Toxins: Insight from Structural Biology. Curr Top Microbiol Immunol 2017; 399:69-86. [PMID: 27540723 DOI: 10.1007/82_2016_23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mono-ADP-ribosylation is a major post-translational modification performed by bacterial toxins, which transfer an ADP-ribose moiety to a substrate acceptor residue. Actin- and Rho-specific ADP-ribosylating toxins (ARTs) are typical ARTs known to have very similar tertiary structures but totally different targets. Actin-specific ARTs are the A components of binary toxins, ADP-ribosylate actin at Arg177, leading to the depolymerization of the actin cytoskeleton. On the other hand, C3-like exoenzymes are Rho-specific ARTs, ADP-ribosylate Rho GTPases at Asn41, exerting an indirect effect on the actin cytoskeleton. This review focuses on the differences and similarities of actin- and Rho-specific ARTs, especially with respect to their substrate recognition and cell entry mechanisms, based on structural studies.
Collapse
|
81
|
Orrell KE, Zhang Z, Sugiman-Marangos SN, Melnyk RA. Clostridium difficile toxins A and B: Receptors, pores, and translocation into cells. Crit Rev Biochem Mol Biol 2017; 52:461-473. [DOI: 10.1080/10409238.2017.1325831] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kathleen E. Orrell
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Zhifen Zhang
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | | | - Roman A. Melnyk
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
82
|
Moriya T, Saur M, Stabrin M, Merino F, Voicu H, Huang Z, Penczek PA, Raunser S, Gatsogiannis C. High-resolution Single Particle Analysis from Electron Cryo-microscopy Images Using SPHIRE. J Vis Exp 2017. [PMID: 28570515 PMCID: PMC5607996 DOI: 10.3791/55448] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
SPHIRE (SPARX for High-Resolution Electron Microscopy) is a novel open-source, user-friendly software suite for the semi-automated processing of single particle electron cryo-microscopy (cryo-EM) data. The protocol presented here describes in detail how to obtain a near-atomic resolution structure starting from cryo-EM micrograph movies by guiding users through all steps of the single particle structure determination pipeline. These steps are controlled from the new SPHIRE graphical user interface and require minimum user intervention. Using this protocol, a 3.5 Å structure of TcdA1, a Tc toxin complex from Photorhabdus luminescens, was derived from only 9500 single particles. This streamlined approach will help novice users without extensive processing experience and a priori structural information, to obtain noise-free and unbiased atomic models of their purified macromolecular complexes in their native state.
Collapse
Affiliation(s)
- Toshio Moriya
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology
| | - Michael Saur
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology
| | - Markus Stabrin
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology
| | - Felipe Merino
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology
| | - Horatiu Voicu
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston
| | - Zhong Huang
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston
| | - Pawel A Penczek
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology
| | - Christos Gatsogiannis
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology;
| |
Collapse
|
83
|
Bowling AJ, Pence HE, Li H, Tan SY, Evans SL, Narva KE. Histopathological Effects of Bt and TcdA Insecticidal Proteins on the Midgut Epithelium of Western Corn Rootworm Larvae (Diabrotica virgifera virgifera). Toxins (Basel) 2017; 9:toxins9050156. [PMID: 28481307 PMCID: PMC5450704 DOI: 10.3390/toxins9050156] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/20/2017] [Accepted: 04/28/2017] [Indexed: 01/21/2023] Open
Abstract
Western corn rootworm (WCR, Diabrotica virgifera virgifera LeConte) is a major corn pest in the United States, causing annual losses of over $1 billion. One approach to protect against crop loss by this insect is the use of transgenic corn hybrids expressing one or more crystal (Cry) proteins derived from Bacillus thuringiensis. Cry34Ab1 and Cry35Ab1 together comprise a binary insecticidal toxin with specific activity against WCR. These proteins have been developed as insect resistance traits in commercialized corn hybrids resistant to WCR feeding damage. Cry34/35Ab1 is a pore forming toxin, but the specific effects of Cry34/35Ab1 on WCR cells and tissues have not been well characterized microscopically, and the overall histopathology is poorly understood. Using high-resolution resin-based histopathology methods, the effects of Cry34/35Ab1 as well as Cry3Aa1, Cry6Aa1, and the Photorhabdus toxin complex protein TcdA have been directly visualized and documented. Clear symptoms of intoxication were observed for all insecticidal proteins tested, including swelling and sloughing of enterocytes, constriction of midgut circular muscles, stem cell activation, and obstruction of the midgut lumen. These data demonstrate the effects of these insecticidal proteins on WCR midgut cells, and the collective response of the midgut to intoxication. Taken together, these results advance our understanding of the insect cell biology and pathology of these insecticidal proteins, which should further the field of insect resistance traits and corn rootworm management.
Collapse
Affiliation(s)
| | | | - Huarong Li
- Dow AgroSciences, Indianapolis, IN 46268, USA.
| | - Sek Yee Tan
- Dow AgroSciences, Indianapolis, IN 46268, USA.
| | | | | |
Collapse
|
84
|
Chen L, Xu Y, Wong W, Thompson JK, Healer J, Goddard-Borger ED, Lawrence MC, Cowman AF. Structural basis for inhibition of erythrocyte invasion by antibodies to Plasmodium falciparum protein CyRPA. eLife 2017; 6. [PMID: 28195530 PMCID: PMC5349848 DOI: 10.7554/elife.21347] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/31/2017] [Indexed: 02/01/2023] Open
Abstract
Plasmodium falciparum causes malaria in humans with over 450,000 deaths annually. The asexual blood stage involves invasion of erythrocytes by merozoites, in which they grow and divide to release daughter merozoites, which in turn invade new erythrocytes perpetuating the cycle responsible for malaria. A key step in merozoite invasion is the essential binding of PfRh5/CyRPA/PfRipr complex to basigin, a step linked to the formation of a pore between merozoites and erythrocytes. We show CyRPA interacts directly with PfRh5. An invasion inhibitory monoclonal antibody to CyRPA blocks binding of CyRPA to PfRh5 and complex formation thus illuminating the molecular mechanism for inhibition of parasite growth. We determined the crystal structures of CyRPA alone and in complex with an antibody Fab fragment. CyRPA has a six-bladed β-propeller fold, and we identify the region that interacts with PfRh5. This functionally conserved epitope is a potential target for vaccines against P. falciparum.
Collapse
Affiliation(s)
- Lin Chen
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Yibin Xu
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Wilson Wong
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Jennifer K Thompson
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Julie Healer
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Ethan D Goddard-Borger
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Michael C Lawrence
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Alan F Cowman
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
85
|
Merino F, Raunser S. Kryo-Elektronenmikroskopie als Methode für die strukturbasierte Wirkstoffentwicklung. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201608432] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Felipe Merino
- Strukturelle Biochemie; Max-Planck-Institut für Molekulare Physiologie; 44227 Dortmund Deutschland
| | - Stefan Raunser
- Strukturelle Biochemie; Max-Planck-Institut für Molekulare Physiologie; 44227 Dortmund Deutschland
| |
Collapse
|
86
|
Merino F, Raunser S. Electron Cryo-microscopy as a Tool for Structure-Based Drug Development. Angew Chem Int Ed Engl 2017; 56:2846-2860. [PMID: 27860084 DOI: 10.1002/anie.201608432] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Indexed: 12/15/2022]
Abstract
For decades, X-ray crystallography and NMR have been the most important techniques for studying the atomic structure of macromolecules. However, as a result of size, instability, low yield, and other factors, many macromolecules are difficult to crystallize or unsuitable for NMR studies. Electron cryo-microscopy (cryo-EM) does not depend on crystals and has therefore been the method of choice for many macromolecular complexes that cannot be crystallized, but atomic resolution has mostly been beyond its reach. A new generation of detectors that are capable of sensing directly the incident electrons has recently revolutionized the field, with structures of macromolecules now routinely being solved to near-atomic resolution. In this review, we summarize some of the most recent examples of high-resolution cryo-EM structures. We put particular emphasis on proteins with pharmacological relevance that have traditionally been inaccessible to crystallography. Furthermore, we discuss examples where interactions with small molecules have been fully characterized at atomic resolution. Finally, we stress the current limits of cryo-EM, and methodological issues related to its usage as a tool for drug development.
Collapse
Affiliation(s)
- Felipe Merino
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany
| |
Collapse
|
87
|
Targeted delivery of an ADP-ribosylating bacterial toxin into cancer cells. Sci Rep 2017; 7:41252. [PMID: 28128281 PMCID: PMC5269596 DOI: 10.1038/srep41252] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022] Open
Abstract
The actin cytoskeleton is an attractive target for bacterial toxins. The ADP-ribosyltransferase TccC3 from the insect bacterial pathogen Photorhabdus luminescence modifies actin to force its aggregation. We intended to transport the catalytic part of this toxin preferentially into cancer cells using a toxin transporter (Protective antigen, PA) which was redirected to Epidermal Growth Factor Receptors (EGFR) or to human EGF receptors 2 (HER2), which are overexpressed in several cancer cells. Protective antigen of anthrax toxin forms a pore through which the two catalytic parts (lethal factor and edema factor) or other proteins can be transported into mammalian cells. Here, we used PA as a double mutant (N682A, D683A; mPA) which cannot bind to the two natural anthrax receptors. Each mutated monomer is fused either to EGF or to an affibody directed against the human EGF receptor 2 (HER2). We established a cellular model system composed of two cell lines representing HER2 overexpressing esophageal adenocarcinomas (EACs) and EGFR overexpressing esophageal squamous cell carcinomas (ESCCs). We studied the specificity and efficiency of the re-directed anthrax pore for transport of TccC3 toxin and established Photorhabdus luminescence TccC3 as a toxin suitable for the development of a targeted toxin selectively killing cancer cells.
Collapse
|
88
|
Efremov RG, Gatsogiannis C, Raunser S. Lipid Nanodiscs as a Tool for High-Resolution Structure Determination of Membrane Proteins by Single-Particle Cryo-EM. Methods Enzymol 2017; 594:1-30. [DOI: 10.1016/bs.mie.2017.05.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
89
|
Lack of Overt Genome Reduction in the Bryostatin-Producing Bryozoan Symbiont "Candidatus Endobugula sertula". Appl Environ Microbiol 2016; 82:6573-6583. [PMID: 27590822 DOI: 10.1128/aem.01800-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/25/2016] [Indexed: 11/20/2022] Open
Abstract
The uncultured bacterial symbiont "Candidatus Endobugula sertula" is known to produce cytotoxic compounds called bryostatins, which protect the larvae of its host, Bugula neritina The symbiont has never been successfully cultured, and it was thought that its genome might be significantly reduced. Here, we took a shotgun metagenomics and metatranscriptomics approach to assemble and characterize the genome of "Ca Endobugula sertula." We found that it had specific metabolic deficiencies in the biosynthesis of certain amino acids but few other signs of genome degradation, such as small size, abundant pseudogenes, and low coding density. We also identified homologs to genes associated with insect pathogenesis in other gammaproteobacteria, and these genes may be involved in host-symbiont interactions and vertical transmission. Metatranscriptomics revealed that these genes were highly expressed in a reproductive host, along with bry genes for the biosynthesis of bryostatins. We identified two new putative bry genes fragmented from the main bry operon, accounting for previously missing enzymatic functions in the pathway. We also determined that a gene previously assigned to the pathway, bryS, is not expressed in reproductive tissue, suggesting that it is not involved in the production of bryostatins. Our findings suggest that "Ca Endobugula sertula" may be able to live outside the host if its metabolic deficiencies are alleviated by medium components, which is consistent with recent findings that it may be possible for "Ca Endobugula sertula" to be transmitted horizontally. IMPORTANCE The bryostatins are potent protein kinase C activators that have been evaluated in clinical trials for a number of indications, including cancer and Alzheimer's disease. There is, therefore, considerable interest in securing a renewable supply of these compounds, which is currently only possible through aquaculture of Bugula neritina and total chemical synthesis. However, these approaches are labor-intensive and low-yielding and thus preclude the use of bryostatins as a viable therapeutic agent. Our genome assembly and transcriptome analysis for "Ca Endobugula sertula" shed light on the metabolism of this symbiont, potentially aiding isolation and culturing efforts. Our identification of additional bry genes may also facilitate efforts to express the complete pathway heterologously.
Collapse
|
90
|
Lang AE, Kühn S, Mannherz HG. Photorhabdus luminescens Toxins TccC3 and TccC5 Affect the Interaction of Actin with Actin-Binding Proteins Essential for Treadmilling. Curr Top Microbiol Immunol 2016; 399:53-67. [DOI: 10.1007/82_2016_43] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
|
91
|
Gatsogiannis C, Merino F, Prumbaum D, Roderer D, Leidreiter F, Meusch D, Raunser S. Membrane insertion of a Tc toxin in near-atomic detail. Nat Struct Mol Biol 2016; 23:884-890. [PMID: 27571177 DOI: 10.1038/nsmb.3281] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/26/2016] [Indexed: 12/22/2022]
Abstract
Tc toxins from pathogenic bacteria use a special syringe-like mechanism to perforate the host cell membrane and inject a deadly enzyme into the host cytosol. The molecular mechanism of this unusual injection system is poorly understood. Using electron cryomicroscopy, we determined the structure of TcdA1 from Photorhabdus luminescens embedded in lipid nanodiscs. In our structure, compared with the previous structure of TcdA1 in the prepore state, the transmembrane helices rearrange in the membrane and open the initially closed pore. However, the helices do not span the complete membrane; instead, the loops connecting the helices form the rim of the funnel. Lipid head groups reach into the space between the loops and consequently stabilize the pore conformation. The linker domain is folded and packed into a pocket formed by the other domains of the toxin, thereby considerably contributing to stabilization of the pore state.
Collapse
Affiliation(s)
- Christos Gatsogiannis
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Felipe Merino
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Daniel Prumbaum
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Daniel Roderer
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Franziska Leidreiter
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Dominic Meusch
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| |
Collapse
|
92
|
Peptide- and proton-driven allosteric clamps catalyze anthrax toxin translocation across membranes. Proc Natl Acad Sci U S A 2016; 113:9611-6. [PMID: 27506790 DOI: 10.1073/pnas.1600624113] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Anthrax toxin is an intracellularly acting toxin in which sufficient information is available regarding the structure of its transmembrane channel, allowing for detailed investigation of models of translocation. Anthrax toxin, comprising three proteins-protective antigen (PA), lethal factor (LF), and edema factor-translocates large proteins across membranes. Here we show that the PA translocase channel has a transport function in which its catalytic active sites operate allosterically. We find that the phenylalanine clamp (ϕ-clamp), the known conductance bottleneck in the PA translocase, gates as either a more closed state or a more dilated state. Thermodynamically, the two channel states have >300-fold different binding affinities for an LF-derived peptide. The change in clamp thermodynamics requires distant α-clamp and ϕ-clamp sites. Clamp allostery and translocation are more optimal for LF peptides with uniform stereochemistry, where the least allosteric and least efficiently translocated peptide had a mixed stereochemistry. Overall, the kinetic results are in less agreement with an extended-chain Brownian ratchet model but, instead, are more consistent with an allosteric helix-compression model that is dependent also on substrate peptide coil-to-helix/helix-to-coil cooperativity.
Collapse
|
93
|
Basler M. Type VI secretion system: secretion by a contractile nanomachine. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0021. [PMID: 26370934 PMCID: PMC4632598 DOI: 10.1098/rstb.2015.0021] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The type VI secretion systems (T6SS) are present in about a quarter of all Gram-negative bacteria. Several key components of T6SS are evolutionarily related to components of contractile nanomachines such as phages and R-type pyocins. The T6SS assembly is initiated by formation of a membrane complex that binds a phage-like baseplate with a sharp spike, and this is followed by polymerization of a long rigid inner tube and an outer contractile sheath. Effectors are preloaded onto the spike or into the tube during the assembly by various mechanisms. Contraction of the sheath releases an unprecedented amount of energy, which is used to thrust the spike and tube with the associated effectors out of the effector cell and across membranes of both bacterial and eukaryotic target cells. Subunits of the contracted sheath are recycled by T6SS-specific unfoldase to allow for a new round of assembly. Live-cell imaging has shown that the assembly is highly dynamic and its subcellular localization is in certain bacteria regulated with a remarkable precision. Through the action of effectors, T6SS has mainly been shown to contribute to pathogenicity and competition between bacteria. This review summarizes the knowledge that has contributed to our current understanding of T6SS mode of action.
Collapse
Affiliation(s)
- Marek Basler
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
94
|
Rho-modifying bacterial protein toxins from Photorhabdus species. Toxicon 2016; 116:17-22. [DOI: 10.1016/j.toxicon.2015.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/15/2015] [Accepted: 05/26/2015] [Indexed: 02/04/2023]
|
95
|
Romano S, Fernàndez-Guerra A, Reen FJ, Glöckner FO, Crowley SP, O'Sullivan O, Cotter PD, Adams C, Dobson ADW, O'Gara F. Comparative Genomic Analysis Reveals a Diverse Repertoire of Genes Involved in Prokaryote-Eukaryote Interactions within the Pseudovibrio Genus. Front Microbiol 2016; 7:387. [PMID: 27065959 PMCID: PMC4811931 DOI: 10.3389/fmicb.2016.00387] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/11/2016] [Indexed: 01/15/2023] Open
Abstract
Strains of the Pseudovibrio genus have been detected worldwide, mainly as part of bacterial communities associated with marine invertebrates, particularly sponges. This recurrent association has been considered as an indication of a symbiotic relationship between these microbes and their host. Until recently, the availability of only two genomes, belonging to closely related strains, has limited the knowledge on the genomic and physiological features of the genus to a single phylogenetic lineage. Here we present 10 newly sequenced genomes of Pseudovibrio strains isolated from marine sponges from the west coast of Ireland, and including the other two publicly available genomes we performed an extensive comparative genomic analysis. Homogeneity was apparent in terms of both the orthologous genes and the metabolic features shared amongst the 12 strains. At the genomic level, a key physiological difference observed amongst the isolates was the presence only in strain P. axinellae AD2 of genes encoding proteins involved in assimilatory nitrate reduction, which was then proved experimentally. We then focused on studying those systems known to be involved in the interactions with eukaryotic and prokaryotic cells. This analysis revealed that the genus harbors a large diversity of toxin-like proteins, secretion systems and their potential effectors. Their distribution in the genus was not always consistent with the phylogenetic relationship of the strains. Finally, our analyses identified new genomic islands encoding potential toxin-immunity systems, previously unknown in the genus. Our analyses shed new light on the Pseudovibrio genus, indicating a large diversity of both metabolic features and systems for interacting with the host. The diversity in both distribution and abundance of these systems amongst the strains underlines how metabolically and phylogenetically similar bacteria may use different strategies to interact with the host and find a niche within its microbiota. Our data suggest the presence of a sponge-specific lineage of Pseudovibrio. The reduction in genome size and the loss of some systems potentially used to successfully enter the host, leads to the hypothesis that P. axinellae strain AD2 may be a lineage that presents an ancient association with the host and that may be vertically transmitted to the progeny.
Collapse
Affiliation(s)
- Stefano Romano
- BIOMERIT Research Centre, University College Cork Cork, Ireland
| | - Antonio Fernàndez-Guerra
- Oxford e-Research Centre, University of OxfordOxford, UK; Microbial Genomics and Bioinformatics Research Group, Max Planck Institute for Marine MicrobiologyBremen, Germany
| | - F Jerry Reen
- BIOMERIT Research Centre, University College Cork Cork, Ireland
| | - Frank O Glöckner
- Microbial Genomics and Bioinformatics Research Group, Max Planck Institute for Marine MicrobiologyBremen, Germany; Jacobs University Bremen gGmbHBremen, Germany
| | | | - Orla O'Sullivan
- Teagasc Food Research CentreFermoy, Ireland; APC Microbiome InstituteCork, Ireland
| | - Paul D Cotter
- Teagasc Food Research CentreFermoy, Ireland; APC Microbiome InstituteCork, Ireland
| | - Claire Adams
- BIOMERIT Research Centre, University College Cork Cork, Ireland
| | - Alan D W Dobson
- School of Microbiology, University College CorkCork, Ireland; Environmental Research Institute, University College CorkCork, Ireland
| | - Fergal O'Gara
- BIOMERIT Research Centre, University College CorkCork, Ireland; School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin UniversityPerth, WA, Australia
| |
Collapse
|
96
|
de Vries SJ, Chauvot de Beauchêne I, Schindler CEM, Zacharias M. Cryo-EM Data Are Superior to Contact and Interface Information in Integrative Modeling. Biophys J 2016; 110:785-97. [PMID: 26846888 DOI: 10.1016/j.bpj.2015.12.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/18/2015] [Accepted: 12/14/2015] [Indexed: 12/29/2022] Open
Abstract
Protein-protein interactions carry out a large variety of essential cellular processes. Cryo-electron microscopy (cryo-EM) is a powerful technique for the modeling of protein-protein interactions at a wide range of resolutions, and recent developments have caused a revolution in the field. At low resolution, cryo-EM maps can drive integrative modeling of the interaction, assembling existing structures into the map. Other experimental techniques can provide information on the interface or on the contacts between the monomers in the complex. This inevitably raises the question regarding which type of data is best suited to drive integrative modeling approaches. Systematic comparison of the prediction accuracy and specificity of the different integrative modeling paradigms is unavailable to date. Here, we compare EM-driven, interface-driven, and contact-driven integrative modeling paradigms. Models were generated for the protein docking benchmark using the ATTRACT docking engine and evaluated using the CAPRI two-star criterion. At 20 Å resolution, EM-driven modeling achieved a success rate of 100%, outperforming the other paradigms even with perfect interface and contact information. Therefore, even very low resolution cryo-EM data is superior in predicting heterodimeric and heterotrimeric protein assemblies. Our study demonstrates that a force field is not necessary, cryo-EM data alone is sufficient to accurately guide the monomers into place. The resulting rigid models successfully identify regions of conformational change, opening up perspectives for targeted flexible remodeling.
Collapse
Affiliation(s)
- Sjoerd J de Vries
- Physik-Department T38, Technische Universität München, Garching, Germany.
| | | | - Christina E M Schindler
- Physik-Department T38, Technische Universität München, Garching, Germany; Center for Integrated Protein Science Munich (CIPSM) at the Physics Department, Technische Universität München, Garching, Germany
| | - Martin Zacharias
- Physik-Department T38, Technische Universität München, Garching, Germany; Center for Integrated Protein Science Munich (CIPSM) at the Physics Department, Technische Universität München, Garching, Germany
| |
Collapse
|
97
|
Sheets J, Aktories K. Insecticidal Toxin Complexes from Photorhabdus luminescens. Curr Top Microbiol Immunol 2016; 402:3-23. [DOI: 10.1007/82_2016_55] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
98
|
Peraro MD, van der Goot FG. Pore-forming toxins: ancient, but never really out of fashion. Nat Rev Microbiol 2015; 14:77-92. [DOI: 10.1038/nrmicro.2015.3] [Citation(s) in RCA: 476] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
99
|
Sayavedra L, Kleiner M, Ponnudurai R, Wetzel S, Pelletier E, Barbe V, Satoh N, Shoguchi E, Fink D, Breusing C, Reusch TBH, Rosenstiel P, Schilhabel MB, Becher D, Schweder T, Markert S, Dubilier N, Petersen JM. Abundant toxin-related genes in the genomes of beneficial symbionts from deep-sea hydrothermal vent mussels. eLife 2015; 4:e07966. [PMID: 26371554 PMCID: PMC4612132 DOI: 10.7554/elife.07966] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/14/2015] [Indexed: 01/06/2023] Open
Abstract
Bathymodiolus mussels live in symbiosis with intracellular sulfur-oxidizing (SOX) bacteria that provide them with nutrition. We sequenced the SOX symbiont genomes from two Bathymodiolus species. Comparison of these symbiont genomes with those of their closest relatives revealed that the symbionts have undergone genome rearrangements, and up to 35% of their genes may have been acquired by horizontal gene transfer. Many of the genes specific to the symbionts were homologs of virulence genes. We discovered an abundant and diverse array of genes similar to insecticidal toxins of nematode and aphid symbionts, and toxins of pathogens such as Yersinia and Vibrio. Transcriptomics and proteomics revealed that the SOX symbionts express the toxin-related genes (TRGs) in their hosts. We hypothesize that the symbionts use these TRGs in beneficial interactions with their host, including protection against parasites. This would explain why a mutualistic symbiont would contain such a remarkable 'arsenal' of TRGs.
Collapse
Affiliation(s)
| | - Manuel Kleiner
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Ruby Ponnudurai
- Institute of Pharmacy, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | - Silke Wetzel
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Eric Pelletier
- Genoscope - Centre National de Séquençage, Commissariat à l'énergie atomique et aux énergies alternatives, Evry, France
- Metabolic Genomics Group, Commissariat à l'énergie atomique et aux énergies alternatives, Evry, France
- University of Évry-Val d'Essonne, Evry, France
| | - Valerie Barbe
- Genoscope - Centre National de Séquençage, Commissariat à l'énergie atomique et aux énergies alternatives, Evry, France
| | - Nori Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology, Onna, Japan
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology, Onna, Japan
| | - Dennis Fink
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Corinna Breusing
- Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Thorsten BH Reusch
- Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | | | | | - Dörte Becher
- Institute of Marine Biotechnology, Greifswald, Germany
- Institute of Microbiology, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | - Thomas Schweder
- Institute of Pharmacy, Ernst-Moritz-Arndt-University, Greifswald, Germany
- Institute of Marine Biotechnology, Greifswald, Germany
| | - Stephanie Markert
- Institute of Pharmacy, Ernst-Moritz-Arndt-University, Greifswald, Germany
- Institute of Marine Biotechnology, Greifswald, Germany
| | - Nicole Dubilier
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- University of Bremen, Bremen, Germany
| | | |
Collapse
|
100
|
Identification of divergent type VI secretion effectors using a conserved chaperone domain. Proc Natl Acad Sci U S A 2015; 112:9106-11. [PMID: 26150500 DOI: 10.1073/pnas.1505317112] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The type VI secretion system (T6SS) is a lethal weapon used by many bacteria to kill eukaryotic predators or prokaryotic competitors. Killing by the T6SS results from repetitive delivery of toxic effectors. Despite their importance in dictating bacterial fitness, systematic prediction of T6SS effectors remains challenging due to high effector diversity and the absence of a conserved signature sequence. Here, we report a class of T6SS effector chaperone (TEC) proteins that are required for effector delivery through binding to VgrG and effector proteins. The TEC proteins share a highly conserved domain (DUF4123) and are genetically encoded upstream of their cognate effector genes. Using the conserved TEC domain sequence, we identified a large family of TEC genes coupled to putative T6SS effectors in Gram-negative bacteria. We validated this approach by verifying a predicted effector TseC in Aeromonas hydrophila. We show that TseC is a T6SS-secreted antibacterial effector and that the downstream gene tsiC encodes the cognate immunity protein. Further, we demonstrate that TseC secretion requires its cognate TEC protein and an associated VgrG protein. Distinct from previous effector-dependent bioinformatic analyses, our approach using the conserved TEC domain will facilitate the discovery and functional characterization of new T6SS effectors in Gram-negative bacteria.
Collapse
|