51
|
Sharma M, Kumar V. Crystal structure of BinAB toxin receptor (Cqm1) protein and molecular dynamics simulations reveal the role of unique Ca(II) ion. Int J Biol Macromol 2019; 140:1315-1325. [PMID: 31449868 DOI: 10.1016/j.ijbiomac.2019.08.126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 10/26/2022]
Abstract
Glycoside hydrolase 13 (GH13) family represents a large and diverse enzyme family. Cqm1, an amylomaltase of Culex mosquito, belongs to the GH13 family and subfamily 17 (GH13_17). The protein acts as the receptor for mosquito-larvicidal BinAB toxin that is used world-wide for control of the mosquito population. The protein was crystallized in the presence of a mixture of divalent metal ions. Cqm1 crystal structure was solved using the MRSAD method using Cd(II) anomalous at 1.9 Å wavelength and the structure was refined against 1.8 Å synchrotron data. One tightly bound Ca(II) ion in each of the monomer was observed and this site is suggested here to be unique to the GH13_17 family. Molecular dynamics simulations provide clues for the functional role of Ca(II) ion shown earlier to be essential for enzymatic activity. An optimized substrate (maltotriose) bound structure of the complex was constructed based on which 'retaining-type' mechanism can be predicted reliably. It reveals large conformational change in aromatic residues situated at active-site entrance. A Cd(II) ion was observed overlapping with the substrate-binding site. Kinetics data suggests non-competitive inhibition of Cqm1 by Cd(II). This is the first structure from the GH13_17 family and provides template for constructing reliable models for other members.
Collapse
Affiliation(s)
- Mahima Sharma
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Vinay Kumar
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400085, India.
| |
Collapse
|
52
|
Khakurel KP, Angelov B, Andreasson J. Macromolecular Nanocrystal Structural Analysis with Electron and X-Rays: A Comparative Review. Molecules 2019; 24:E3490. [PMID: 31561479 PMCID: PMC6804143 DOI: 10.3390/molecules24193490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 01/10/2023] Open
Abstract
Crystallography has long been the unrivaled method that can provide the atomistic structural models of macromolecules, using either X-rays or electrons as probes. The methodology has gone through several revolutionary periods, driven by the development of new sources, detectors, and other instrumentation. Novel sources of both X-ray and electrons are constantly emerging. The increase in brightness of these sources, complemented by the advanced detection techniques, has relaxed the traditionally strict need for large, high quality, crystals. Recent reports suggest high-quality diffraction datasets from crystals as small as a few hundreds of nanometers can be routinely obtained. This has resulted in the genesis of a new field of macromolecular nanocrystal crystallography. Here we will make a brief comparative review of this growing field focusing on the use of X-rays and electrons sources.
Collapse
Affiliation(s)
- Krishna P Khakurel
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Prague, Czech Republic.
| | - Borislav Angelov
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Prague, Czech Republic.
| | - Jakob Andreasson
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Prague, Czech Republic.
- Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
| |
Collapse
|
53
|
Ye Y, Chen M, Kato K, Yao M. The pH-dependent conformational change of eukaryotic translation initiation factor 5: Insights into partner-binding manner. Biochem Biophys Res Commun 2019; 519:186-191. [PMID: 31492496 DOI: 10.1016/j.bbrc.2019.08.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 08/23/2019] [Indexed: 10/26/2022]
Abstract
In the process of eukaryotic translation, the formation of preinitiation complex 43S, which consists of a 40S subunit, the eIF2-GTP-Met-tRNAiMet ternary complex, eIF3, eIF1, eIF1A, and eIF5, is essential for translational quality control. Of those factors, eIF5 promotes the hydrolysis of eIF2-bound GTP to release eIF2-GDP in the complex for the recycling of eIF2. eIF5 appears to bind to the β subunit of eIF2 (eIF2β) via an interaction between aromatic/acidic residue-rich regions (AA-boxes) in the C-terminal domain of eIF5 (eIF5CTD) and three lysine clusters (K-boxes) in the N-terminal domain of eIF2β (eIF2βNTD). However, the details of this interaction are unclear, due to the lack of a structure for the eIF5-eIF2β complex, and the unavailability of an intact structure of eIF5, in which the AA-boxes are always disordered, with high flexibility. In this study, we solved two crystal structures of eIF5CTD from Candida albicans, which for the first time showed the AA-box2 of eIF5 presenting as an ordered helical structure. The structures exhibited different arrangements of AA-box2 under different pH values, which may reflect the dynamic nature of the interactions of eIF5CTD, and eIF2βNTD in the preinitiation complex.
Collapse
Affiliation(s)
- Yuxin Ye
- Faculty of Advanced Life Science, Hokkaido University, Kita-10, Nishi-8, Kita-ku, Sapporo, 060-0810, Japan
| | - Meirong Chen
- Faculty of Advanced Life Science, Hokkaido University, Kita-10, Nishi-8, Kita-ku, Sapporo, 060-0810, Japan; College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Koji Kato
- Faculty of Advanced Life Science, Hokkaido University, Kita-10, Nishi-8, Kita-ku, Sapporo, 060-0810, Japan
| | - Min Yao
- Faculty of Advanced Life Science, Hokkaido University, Kita-10, Nishi-8, Kita-ku, Sapporo, 060-0810, Japan.
| |
Collapse
|
54
|
Data-driven challenges and opportunities in crystallography. Emerg Top Life Sci 2019; 3:423-432. [PMID: 33523208 PMCID: PMC7289006 DOI: 10.1042/etls20180177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/13/2019] [Accepted: 06/24/2019] [Indexed: 11/17/2022]
Abstract
Abstract
Structural biology is in the midst of a revolution fueled by faster and more powerful instruments capable of delivering orders of magnitude more data than their predecessors. This increased pace in data gathering introduces new experimental and computational challenges, frustrating real-time processing and interpretation of data and requiring long-term solutions for data archival and retrieval. This combination of challenges and opportunities is driving the exploration of new areas of structural biology, including studies of macromolecular dynamics and the investigation of molecular ensembles in search of a better understanding of conformational landscapes. The next generation of instruments promises to yield even greater data rates, requiring a concerted effort by institutions, centers and individuals to extract meaning from every bit and make data accessible to the community at large, facilitating data mining efforts by individuals or groups as analysis tools improve.
Collapse
|
55
|
Zatsepin NA, Li C, Colasurd P, Nannenga BL. The complementarity of serial femtosecond crystallography and MicroED for structure determination from microcrystals. Curr Opin Struct Biol 2019; 58:286-293. [PMID: 31345629 DOI: 10.1016/j.sbi.2019.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 11/19/2022]
Abstract
In recent years, nano and microcrystals have emerged as a valuable source of high-resolution structural information owing to the invention of serial femtosecond crystallography (SFX) with X-ray free electron lasers and microcrystal electron diffraction (MicroED) using electron cryomicroscopes. Once considered useless for structure determination, nano/microcrystals now confer significant advantages for static and time-resolved structure determination from a wide variety of difficult-to-study targets. MicroED has been used to obtain sub-Ångstrom resolution maps in which hydrogen atoms can be clearly resolved from only a few nano/microcrystals, while SFX has been used to probe protein dynamics following reaction initiation on time scales from femtoseconds to minutes. We review these two complementary techniques and their abilities for high-resolution structure determination.
Collapse
Affiliation(s)
- Nadia A Zatsepin
- Department of Physics, Arizona State University, P.O. Box 871504, Tempe, AZ 85287, USA
| | - Chufeng Li
- Department of Physics, Arizona State University, P.O. Box 871504, Tempe, AZ 85287, USA
| | - Paige Colasurd
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA
| | - Brent L Nannenga
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
56
|
Abstract
X-ray free-electron lasers provide femtosecond-duration pulses of hard X-rays with a peak brightness approximately one billion times greater than is available at synchrotron radiation facilities. One motivation for the development of such X-ray sources was the proposal to obtain structures of macromolecules, macromolecular complexes, and virus particles, without the need for crystallization, through diffraction measurements of single noncrystalline objects. Initial explorations of this idea and of outrunning radiation damage with femtosecond pulses led to the development of serial crystallography and the ability to obtain high-resolution structures of small crystals without the need for cryogenic cooling. This technique allows the understanding of conformational dynamics and enzymatics and the resolution of intermediate states in reactions over timescales of 100 fs to minutes. The promise of more photons per atom recorded in a diffraction pattern than electrons per atom contributing to an electron micrograph may enable diffraction measurements of single molecules, although challenges remain.
Collapse
Affiliation(s)
- Henry N. Chapman
- Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
- Department of Physics, University of Hamburg, 22761 Hamburg, Germany
- Centre for Ultrafast Imaging, University of Hamburg, 22761 Hamburg, Germany
| |
Collapse
|
57
|
Mishin A, Gusach A, Luginina A, Marin E, Borshchevskiy V, Cherezov V. An outlook on using serial femtosecond crystallography in drug discovery. Expert Opin Drug Discov 2019; 14:933-945. [PMID: 31184514 DOI: 10.1080/17460441.2019.1626822] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: X-ray crystallography has made important contributions to modern drug development but its application to many important drug targets has been extremely challenging. The recent emergence of X-ray free electron lasers (XFELs) and advancements in serial femtosecond crystallography (SFX) have offered new opportunities to overcome limitations of traditional crystallography to accelerate the structure-based drug discovery (SBDD) process. Areas covered: In this review, the authors describe the general principles of X-ray generation and the main properties of XFEL beams, outline details of SFX data collection and processing, and summarize the progress in the development of associated instrumentation for sample delivery and X-ray detection. An overview of the SFX applications to various important drug targets such as membrane proteins is also provided. Expert opinion: While SFX has already made clear advancements toward the understanding of the structure and dynamics of several major drug targets, its robust application in SBDD still needs further developments of new high-throughput techniques for sample production, automation of crystal delivery and data collection, as well as for processing and storage of large amounts of data. The expansion of the available XFEL beamtime is a key to the success of SFX in SBDD.
Collapse
Affiliation(s)
- Alexey Mishin
- a Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology , Dolgoprudny , Russia
| | - Anastasiia Gusach
- a Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology , Dolgoprudny , Russia
| | - Aleksandra Luginina
- a Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology , Dolgoprudny , Russia
| | - Egor Marin
- a Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology , Dolgoprudny , Russia
| | - Valentin Borshchevskiy
- a Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology , Dolgoprudny , Russia
| | - Vadim Cherezov
- a Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology , Dolgoprudny , Russia.,b Bridge Institute, Departments of Chemistry and Biological Sciences, University of Southern California , Los Angeles , CA , USA
| |
Collapse
|
58
|
Schönherr R, Rudolph JM, Redecke L. Protein crystallization in living cells. Biol Chem 2019; 399:751-772. [PMID: 29894295 DOI: 10.1515/hsz-2018-0158] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/07/2018] [Indexed: 11/15/2022]
Abstract
Protein crystallization in living cells has been observed surprisingly often as a native assembly process during the past decades, and emerging evidence indicates that this phenomenon is also accessible for recombinant proteins. But only recently the advent of high-brilliance synchrotron sources, X-ray free-electron lasers, and improved serial data collection strategies has allowed the use of these micrometer-sized crystals for structural biology. Thus, in cellulo crystallization could offer exciting new possibilities for proteins that do not crystallize applying conventional approaches. In this review, we comprehensively summarize the current knowledge of intracellular protein crystallization. This includes an overview of the cellular functions, the physical properties, and, if known, the mode of regulation of native in cellulo crystal formation, complemented with a discussion of the reported crystallization events of recombinant proteins and the current method developments to successfully collect X-ray diffraction data from in cellulo crystals. Although the intracellular protein self-assembly mechanisms are still poorly understood, regulatory differences between native in cellulo crystallization linked to a specific function and accidently crystallizing proteins, either disease associated or recombinantly introduced, become evident. These insights are important to systematically exploit living cells as protein crystallization chambers in the future.
Collapse
Affiliation(s)
- Robert Schönherr
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany.,Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
| | - Janine Mia Rudolph
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany.,Center for Free-Electron Laser Science (CFEL), DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Lars Redecke
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany.,Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
| |
Collapse
|
59
|
Nass K. Radiation damage in protein crystallography at X-ray free-electron lasers. Acta Crystallogr D Struct Biol 2019; 75:211-218. [PMID: 30821709 PMCID: PMC6400258 DOI: 10.1107/s2059798319000317] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/07/2019] [Indexed: 01/17/2023] Open
Abstract
Radiation damage is still the most limiting factor in obtaining high-resolution structures of macromolecules in crystallographic experiments at synchrotrons. With the advent of X-ray free-electron lasers (XFELs) that produce ultrashort and highly intense X-ray pulses, it became possible to outrun most of the radiation-damage processes occurring in the sample during exposure to XFEL radiation. Although this is generally the case, several experimental and theoretical studies have indicated that structures from XFELs may not always be radiation-damage free. This is especially true when higher intensity pulses are used and protein molecules that contain heavy elements in their structures are studied. Here, the radiation-damage mechanisms that occur in samples exposed to XFEL pulses are summarized, results that show indications of radiation damage are reviewed and methods that can partially overcome it are discussed.
Collapse
Affiliation(s)
- Karol Nass
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| |
Collapse
|
60
|
Grünbein ML, Nass Kovacs G. Sample delivery for serial crystallography at free-electron lasers and synchrotrons. Acta Crystallogr D Struct Biol 2019; 75:178-191. [PMID: 30821706 PMCID: PMC6400261 DOI: 10.1107/s205979831801567x] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/05/2018] [Indexed: 12/21/2022] Open
Abstract
The high peak brilliance and femtosecond pulse duration of X-ray free-electron lasers (XFELs) provide new scientific opportunities for experiments in physics, chemistry and biology. In structural biology, one of the major applications is serial femtosecond crystallography. The intense XFEL pulse results in the destruction of any exposed microcrystal, making serial data collection mandatory. This requires a high-throughput serial approach to sample delivery. To this end, a number of such sample-delivery techniques have been developed, some of which have been ported to synchrotron sources, where they allow convenient low-dose data collection at room temperature. Here, the current sample-delivery techniques used at XFEL and synchrotron sources are reviewed, with an emphasis on liquid injection and high-viscosity extrusion, including their application for time-resolved experiments. The challenges associated with sample delivery at megahertz repetition-rate XFELs are also outlined.
Collapse
Affiliation(s)
- Marie Luise Grünbein
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Gabriela Nass Kovacs
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| |
Collapse
|
61
|
Zohar S, Turner JJ. Multivariate analysis of x-ray scattering using a stochastic source. OPTICS LETTERS 2019; 44:243-246. [PMID: 30644871 DOI: 10.1364/ol.44.000243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The normalization of scattered intensity by incident flux is a crucial step in analyzing data from stochastic x-ray free electron laser sources and is complicated by non-linearities traditionally attributed to detector saturation. Here we show that such non-linearities can also arise when the sample spectra are non-uniform within the monochromator bandwidth. A method for modeling and removing this non-linearity using multivariate regression with shot-by-shot x-ray photon energy as an independent variable is presented. This approach demonstrates the benefit of event building and will allow for a reconsideration of data which has proven challenging to normalize.
Collapse
|
62
|
An aromatic cluster in Lysinibacillus sphaericus BinB involved in toxicity and proper in-membrane folding. Arch Biochem Biophys 2018; 660:29-35. [PMID: 30321498 DOI: 10.1016/j.abb.2018.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 12/29/2022]
Abstract
The binary toxin from Lysinibacillus sphaericus has been successfully used for controlling mosquito-transmitted diseases. Based on structural alignments with other toxins, an aromatic cluster in the C-terminal domain of BinB (termed here BC) has been proposed to be important for toxicity. We tested this experimentally using BinB mutants bearing single mutations in this aromatic cluster. Consistent with the hypothesis, two of these mutations, F311A and F315A, were not toxic to Culex quinquefasciatus larvae and were unable to permeabilize liposomes or elicit ion channel activity, in contrast to wild-type BinB. Despite these effects, none of these mutations altered significantly the interaction between the activated forms of the two subunits in solution. These results indicate that these aromatic residues on the C-terminal domain of BinB are critical for toxin insertion in membranes. The latter can be by direct contact of these residues with the membrane surface, or by facilitating the formation a membrane-inserting oligomer.
Collapse
|
63
|
Oberthür D. Biological single-particle imaging using XFELs - towards the next resolution revolution. IUCRJ 2018; 5:663-666. [PMID: 30443350 PMCID: PMC6211524 DOI: 10.1107/s2052252518015129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Better injectors resulting from careful iterative optimization used at high repetition XFELs in combination with better detectors and further developed algorithms might, in the not so distant future, result in a 'resolution revolution' in SPI, enabling the molecular and atomic imaging of the dynamics of biological macromolecules without the need to freeze or crystallize the sample.
Collapse
Affiliation(s)
- Dominik Oberthür
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
64
|
Megahertz data collection from protein microcrystals at an X-ray free-electron laser. Nat Commun 2018; 9:3487. [PMID: 30154468 PMCID: PMC6113309 DOI: 10.1038/s41467-018-05953-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/01/2018] [Indexed: 11/09/2022] Open
Abstract
X-ray free-electron lasers (XFELs) enable novel experiments because of their high peak brilliance and femtosecond pulse duration. However, non-superconducting XFELs offer repetition rates of only 10–120 Hz, placing significant demands on beam time and sample consumption. We describe serial femtosecond crystallography experiments performed at the European XFEL, the first MHz repetition rate XFEL, delivering 1.128 MHz X-ray pulse trains at 10 Hz. Given the short spacing between pulses, damage caused by shock waves launched by one XFEL pulse on sample probed by subsequent pulses is a concern. To investigate this issue, we collected data from lysozyme microcrystals, exposed to a ~15 μm XFEL beam. Under these conditions, data quality is independent of whether the first or subsequent pulses of the train were used for data collection. We also analyzed a mixture of microcrystals of jack bean proteins, from which the structure of native, magnesium-containing concanavalin A was determined. The European X-ray free-electron laser (EuXFEL) in Hamburg is the first megahertz (MHz) repetition rate XFEL. Here the authors use lysozyme crystals and microcrystals from jack bean proteins and demonstrate that damage-free high quality data can be collected at a MHz repetition rate.
Collapse
|
65
|
Schubert E, Vetter IR, Prumbaum D, Penczek PA, Raunser S. Membrane insertion of α-xenorhabdolysin in near-atomic detail. eLife 2018; 7:38017. [PMID: 30010541 PMCID: PMC6086661 DOI: 10.7554/elife.38017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/15/2018] [Indexed: 12/24/2022] Open
Abstract
α-Xenorhabdolysins (Xax) are α-pore-forming toxins (α-PFT) that form 1–1.3 MDa large pore complexes to perforate the host cell membrane. PFTs are used by a variety of bacterial pathogens to attack host cells. Due to the lack of structural information, the molecular mechanism of action of Xax toxins is poorly understood. Here, we report the cryo-EM structure of the XaxAB pore complex from Xenorhabdus nematophila and the crystal structures of the soluble monomers of XaxA and XaxB. The structures reveal that XaxA and XaxB are built similarly and appear as heterodimers in the 12–15 subunits containing pore, classifying XaxAB as bi-component α-PFT. Major conformational changes in XaxB, including the swinging out of an amphipathic helix are responsible for membrane insertion. XaxA acts as an activator and stabilizer for XaxB that forms the actual transmembrane pore. Based on our results, we propose a novel structural model for the mechanism of Xax intoxication. Some bacteria make toxins that punch large holes into the membranes of host cells, destroying them like a puncture destroys a football. These “pore-forming toxins” allow many bacterial species to infect a variety of organisms, from insects to humans. Some sophisticated pore-forming toxins, such as the anthrax toxin, do not only form a pore but also use it to flood lethal toxins into the cell to kill it. One bacterium called Xenorhabdus nematophila punctures the membranes of insect cells, using the same type of pore-forming toxins that other bacteria use to infect humans. Previous research has shown that two proteins – components A and B – form these pore-forming toxins. Given this two-protein formation, some scientists predicted these pore-forming toxins might act like those of the anthrax bacterium: one component forms the pore; the other component poisons the cell. But without detailed images of this pore-forming toxin’s structure, understanding exactly how these two components work together is almost impossible. To explore how components A and B operate within X. nematophila, Schubert et al. captured images of the molecular structure of the two proteins. Common methods reliant on X-rays and electron microscopes revealed the layouts of both components. By visualizing the proteins at different stages, Schubert et al. observed key structural changes that enable them to form the pore and puncture a host cell. Component A binds to component B’s back, forming a subunit – twelve to fifteen of which then conjoin as the pore-forming toxin. Schubert et al. conclude that component A stabilizes each subunit on the membrane and activates component B, which then punctures the membrane by swinging out its lower end. Unlike the anthrax pore-forming toxin, both components collaborate to form the pore complex and puncture the membrane. These results provide a foundation of knowledge about what these toxins look like and how they operate. More research building upon this structural analysis may help scientists develop antibiotics that prevent bacteria from destroying human cells.
Collapse
Affiliation(s)
- Evelyn Schubert
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Ingrid R Vetter
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Daniel Prumbaum
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Pawel A Penczek
- Department of Biochemistry and Molecular Biology, Houston Medical School, The University of Texas, Houston, United States
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| |
Collapse
|
66
|
Mosquito-larvicidal BinA toxin displays affinity for glycoconjugates: Proposal for BinA mediated cytotoxicity. J Invertebr Pathol 2018; 156:29-40. [PMID: 30003921 DOI: 10.1016/j.jip.2018.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/05/2018] [Accepted: 07/07/2018] [Indexed: 11/20/2022]
Abstract
Lysinibacillus sphaericus parasporal BinAB toxin displays mosquito larvicidal activity against Culex and Anopheles, but several Aedes species are refractory. Recently reported crystal structure of BinAB revealed the presence of N-terminal lectin-like domain in BinA. Hemagglutination and hemolytic activities were not observed for BinA in the present studies. We attempted to characterize carbohydrate specificity of BinA by high-throughput approaches using extrinsic fluorescence and thermofluor shift assay. A total of 34 saccharides (mono-, di- and polysaccharides, and glycoproteins) were used for initial high-throughput screening. The promising glycans were identified based on significant change in the fluorescence intensity. Surface plasmon resonance revealed differential binding of BinA with glycoproteins (fetuin, asialofetuin and thyroglobulin) and affinity for simple sugars, l-fucose and l-arabinose. In the limited carbohydrate competition assay, arabinose, fucose and fetuin inhibited BinA toxicity towards Culex larvae. This study for the first time provides direct evidence that BinA is competent to bind diverse and structurally different glycosylated proteins. This activity may be linked to its intracellular cytotoxicity, as protein N-glycosylation is thought to be critical for development and survival of insect larvae. The glycoproteins do not form stable complexes with BinA, however, as observed in the pull-down assay using affinity immobilized BinA and in native-PAGE analysis. As BinA displays only mild affinity with receptor polypeptide, we hypothesize that toxin-receptor specificity of BinA in Culex may be mediated by dual interaction of BinA with glycan core of GPI anchor and receptor polypeptide. The study shall be useful for refining strategies for improving larvicidal activity and for broadening target specificity of BinAB toxin.
Collapse
|
67
|
Sharma M, Gupta GD, Kumar V. Receptor protein of Lysinibacillus sphaericus mosquito-larvicidal toxin displays amylomaltase activity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 93:37-46. [PMID: 29229337 DOI: 10.1016/j.ibmb.2017.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/20/2017] [Accepted: 12/03/2017] [Indexed: 06/07/2023]
Abstract
The activated binary toxin (BinAB) from Lysinibacillus sphaericus binds to surface receptor protein (Cqm1) on the midgut cell membrane and kills Culex quinquefasciatus larvae on internalization. Cqm1 is attached to cells via a glycosyl-phosphatidylinositol (GPI) anchor. It has been classified as a member of glycoside hydrolase family 13 of the CAZy database. Here, we report characterization of the ordered domain (residues 23-560) of Cqm1. Gene expressing Cqm1 of BinAB susceptible mosquito was chemically synthesized and the protein was purified using E. coli expression system. Values for the Michaelis-Menten kinetics parameters towards 4-nitrophenyl α-D-glucopyranoside (α-pNPG) substrate were estimated to be 0.44 mM (Km) and 1.9 s-1 (kcat). Thin layer chromatography experiments established Cqm1 as α-glucosidase competent to cleave α-1,4-glycosidic bonds of maltose and maltotriose with high glycosyltransferase activity to form glucose-oligomers. The observed hydrolysis and synthesis of glucose-oligomers is consistent with open and accessible active-site in the structural model. The protein also hydrolyses glycogen and sucrose. These activities suggest that Cqm1 may be involved in carbohydrate metabolism in mosquitoes. Further, toxic BinA component does not inhibit α-glucosidase activity of Cqm1, while BinB reduced the activity by nearly 50%. The surface plasmon resonance study reveals strong binding of BinB with Cqm1 (Kd, 9.8 nM). BinA interaction with Cqm1 however, is 1000-fold weaker. Notably the estimated Kd values match well with dissociation constants reported earlier with larvae brush border membrane fractions. The Cqm1 protein forms a stable dimer that is consistent with its apical localization in lipid rafts. Its melting temperature (Tm) as observed by thermofluor-shift assay is 51.5 °C and Ca2+ provides structural stability to the protein.
Collapse
Affiliation(s)
- Mahima Sharma
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Gagan D Gupta
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Vinay Kumar
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
68
|
Two-colour serial femtosecond crystallography dataset from gadoteridol-derivatized lysozyme for MAD phasing. Sci Data 2017; 4:170188. [PMID: 29231920 PMCID: PMC5726314 DOI: 10.1038/sdata.2017.188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/10/2017] [Indexed: 11/15/2022] Open
Abstract
We provide a detailed description of a gadoteridol-derivatized lysozyme (gadolinium lysozyme) two-colour serial femtosecond crystallography (SFX) dataset for multiple wavelength anomalous dispersion (MAD) structure determination. The data was collected at the Spring-8 Angstrom Compact free-electron LAser (SACLA) facility using a two-colour double-pulse beam to record two diffraction patterns simultaneously in one diffraction image. Gadolinium lysozyme was chosen as a well-established model system that has a very strong anomalous signal. Diffraction patterns from gadolinium lysozyme microcrystals were recorded to a resolution of 1.9 Å in both colours. This dataset is publicly available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development.
Collapse
|
69
|
Mizohata E, Nakane T, Fukuda Y, Nango E, Iwata S. Serial femtosecond crystallography at the SACLA: breakthrough to dynamic structural biology. Biophys Rev 2017; 10:209-218. [PMID: 29196935 DOI: 10.1007/s12551-017-0344-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/13/2017] [Indexed: 12/16/2022] Open
Abstract
X-ray crystallography visualizes the world at the atomic level. It has been used as the most powerful technique for observing the three-dimensional structures of biological macromolecules and has pioneered structural biology. To determine a crystal structure with high resolution, it was traditionally required to prepare large crystals (> 200 μm). Later, synchrotron radiation facilities, such as SPring-8, that produce powerful X-rays were built. They enabled users to obtain good quality X-ray diffraction images even with smaller crystals (ca. 200-50 μm). In recent years, one of the most important technological innovations in structural biology has been the development of X-ray free electron lasers (XFELs). The SPring-8 Angstrom Compact free electron LAser (SACLA) in Japan generates the XFEL beam by accelerating electrons to relativistic speeds and directing them through in-vacuum, short-period undulators. Since user operation started in 2012, we have been involved in the development of serial femtosecond crystallography (SFX) measurement systems using XFEL at the SACLA. The SACLA generates X-rays a billion times brighter than SPring-8. The extremely bright XFEL pulses enable data collection with microcrystals (ca. 50-1 μm). Although many molecular analysis techniques exist, SFX is the only technique that can visualize radiation-damage-free structures of biological macromolecules at room temperature in atomic resolution and fast time resolution. Here, we review the achievements of the SACLA-SFX Project in the past 5 years. In particular, we focus on: (1) the measurement system for SFX; (2) experimental phasing by SFX; (3) enzyme chemistry based on damage-free room-temperature structures; and (4) molecular movie taken by time-resolved SFX.
Collapse
Affiliation(s)
- Eiichi Mizohata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Takanori Nakane
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 OQH, UK
| | - Yohta Fukuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eriko Nango
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.,Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - So Iwata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.,Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
70
|
Schulz EC, Kaub J, Busse F, Mehrabi P, Müller-Werkmeister HM, Pai EF, Robertson WD, Miller RJD. Protein crystals IR laser ablated from aqueous solution at high speed retain their diffractive properties: applications in high-speed serial crystallography. J Appl Crystallogr 2017. [DOI: 10.1107/s1600576717014479] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In order to utilize the high repetition rates now available at X-ray free-electron laser sources for serial crystallography, methods must be developed to softly deliver large numbers of individual microcrystals at high repetition rates and high speeds. Picosecond infrared laser (PIRL) pulses, operating under desorption by impulsive vibrational excitation (DIVE) conditions, selectively excite the OH vibrational stretch of water to directly propel the excited volume at high speed with minimized heating effects, nucleation formation or cavitation-induced shock waves, leaving the analytes intact and undamaged. The soft nature and laser-based sampling flexibility provided by the technique make the PIRL system an interesting crystal delivery approach for serial crystallography. This paper demonstrates that protein crystals extracted directly from aqueous buffer solutionviaPIRL-DIVE ablation retain their diffractive properties and can be usefully exploited for structure determination at synchrotron sources. The remaining steps to implement the technology for high-speed serial femtosecond crystallography, such as single-crystal localization, high-speed sampling and synchronization, are described. This proof-of-principle experiment demonstrates the viability of a new laser-based high-speed crystal delivery system without the need for liquid-jet injectors or fixed-target mounting solutions.
Collapse
|
71
|
Meents A, Wiedorn MO, Srajer V, Henning R, Sarrou I, Bergtholdt J, Barthelmess M, Reinke PYA, Dierksmeyer D, Tolstikova A, Schaible S, Messerschmidt M, Ogata CM, Kissick DJ, Taft MH, Manstein DJ, Lieske J, Oberthuer D, Fischetti RF, Chapman HN. Pink-beam serial crystallography. Nat Commun 2017; 8:1281. [PMID: 29097720 PMCID: PMC5668288 DOI: 10.1038/s41467-017-01417-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 09/14/2017] [Indexed: 02/02/2023] Open
Abstract
Serial X-ray crystallography allows macromolecular structure determination at both X-ray free electron lasers (XFELs) and, more recently, synchrotron sources. The time resolution for serial synchrotron crystallography experiments has been limited to millisecond timescales with monochromatic beams. The polychromatic, "pink", beam provides a more than two orders of magnitude increased photon flux and hence allows accessing much shorter timescales in diffraction experiments at synchrotron sources. Here we report the structure determination of two different protein samples by merging pink-beam diffraction patterns from many crystals, each collected with a single 100 ps X-ray pulse exposure per crystal using a setup optimized for very low scattering background. In contrast to experiments with monochromatic radiation, data from only 50 crystals were required to obtain complete datasets. The high quality of the diffraction data highlights the potential of this method for studying irreversible reactions at sub-microsecond timescales using high-brightness X-ray facilities.
Collapse
Affiliation(s)
- A Meents
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany. .,Deutsches Elektronen Synchrotron (DESY), Photon Science, Notkestrasse 85, 22607, Hamburg, Germany.
| | - M O Wiedorn
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany.,Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - V Srajer
- Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - R Henning
- Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - I Sarrou
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - J Bergtholdt
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - M Barthelmess
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - P Y A Reinke
- Medizinische Hochschule Hannover (MHH), Institut für Biophysikalische Chemie, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - D Dierksmeyer
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - A Tolstikova
- Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - S Schaible
- Deutsches Elektronen Synchrotron (DESY), Photon Science, Notkestrasse 85, 22607, Hamburg, Germany
| | - M Messerschmidt
- National Science Foundation BioXFEL Science and Technology Center, 700 Ellicott Street, Buffalo, NY, 14203, USA
| | - C M Ogata
- Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL, 60439, USA
| | - D J Kissick
- Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL, 60439, USA
| | - M H Taft
- Medizinische Hochschule Hannover (MHH), Institut für Biophysikalische Chemie, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - D J Manstein
- Medizinische Hochschule Hannover (MHH), Institut für Biophysikalische Chemie, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - J Lieske
- Deutsches Elektronen Synchrotron (DESY), Photon Science, Notkestrasse 85, 22607, Hamburg, Germany
| | - D Oberthuer
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - R F Fischetti
- Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL, 60439, USA
| | - H N Chapman
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607, Hamburg, Germany.,Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.,Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany
| |
Collapse
|
72
|
Beyerlein KR, Dierksmeyer D, Mariani V, Kuhn M, Sarrou I, Ottaviano A, Awel S, Knoska J, Fuglerud S, Jönsson O, Stern S, Wiedorn MO, Yefanov O, Adriano L, Bean R, Burkhardt A, Fischer P, Heymann M, Horke DA, Jungnickel KEJ, Kovaleva E, Lorbeer O, Metz M, Meyer J, Morgan A, Pande K, Panneerselvam S, Seuring C, Tolstikova A, Lieske J, Aplin S, Roessle M, White TA, Chapman HN, Meents A, Oberthuer D. Mix-and-diffuse serial synchrotron crystallography. IUCRJ 2017; 4:769-777. [PMID: 29123679 PMCID: PMC5668862 DOI: 10.1107/s2052252517013124] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/13/2017] [Indexed: 05/21/2023]
Abstract
Unravelling the interaction of biological macromolecules with ligands and substrates at high spatial and temporal resolution remains a major challenge in structural biology. The development of serial crystallography methods at X-ray free-electron lasers and subsequently at synchrotron light sources allows new approaches to tackle this challenge. Here, a new polyimide tape drive designed for mix-and-diffuse serial crystallography experiments is reported. The structure of lysozyme bound by the competitive inhibitor chitotriose was determined using this device in combination with microfluidic mixers. The electron densities obtained from mixing times of 2 and 50 s show clear binding of chitotriose to the enzyme at a high level of detail. The success of this approach shows the potential for high-throughput drug screening and even structural enzymology on short timescales at bright synchrotron light sources.
Collapse
Affiliation(s)
- Kenneth R. Beyerlein
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | | | - Valerio Mariani
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Manuela Kuhn
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Iosifina Sarrou
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Angelica Ottaviano
- Department of Physics, California State University, Northridge, California, USA
| | - Salah Awel
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, University of Hamburg, 22761 Hamburg, Germany
| | - Juraj Knoska
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, University of Hamburg, Luruper Chaussee 149, 22607 Hamburg, Germany
| | - Silje Fuglerud
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Olof Jönsson
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Stephan Stern
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- European X-ray Free-Electron Laser Facility GmbH (XFEL), Schenefeld, Germany
| | - Max O. Wiedorn
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, University of Hamburg, Luruper Chaussee 149, 22607 Hamburg, Germany
| | - Oleksandr Yefanov
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Luigi Adriano
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Richard Bean
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Anja Burkhardt
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Pontus Fischer
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Michael Heymann
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Daniel A. Horke
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, University of Hamburg, 22761 Hamburg, Germany
| | | | - Elena Kovaleva
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Olga Lorbeer
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Markus Metz
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Jan Meyer
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Andrew Morgan
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Kanupriya Pande
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | | | - Carolin Seuring
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, University of Hamburg, 22761 Hamburg, Germany
| | - Aleksandra Tolstikova
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Julia Lieske
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Steve Aplin
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | | | - Thomas A. White
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Henry N. Chapman
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, University of Hamburg, 22761 Hamburg, Germany
- Department of Physics, University of Hamburg, Luruper Chaussee 149, 22607 Hamburg, Germany
| | - Alke Meents
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Dominik Oberthuer
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
73
|
Gorel A, Motomura K, Fukuzawa H, Doak RB, Grünbein ML, Hilpert M, Inoue I, Kloos M, Kovácsová G, Nango E, Nass K, Roome CM, Shoeman RL, Tanaka R, Tono K, Joti Y, Yabashi M, Iwata S, Foucar L, Ueda K, Barends TRM, Schlichting I. Multi-wavelength anomalous diffraction de novo phasing using a two-colour X-ray free-electron laser with wide tunability. Nat Commun 2017; 8:1170. [PMID: 29079797 PMCID: PMC5660077 DOI: 10.1038/s41467-017-00754-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/25/2017] [Indexed: 11/18/2022] Open
Abstract
Serial femtosecond crystallography at X-ray free-electron lasers (XFELs) offers unprecedented possibilities for macromolecular structure determination of systems prone to radiation damage. However, de novo structure determination, i.e., without prior structural knowledge, is complicated by the inherent inaccuracy of serial femtosecond crystallography data. By its very nature, serial femtosecond crystallography data collection entails shot-to-shot fluctuations in X-ray wavelength and intensity as well as variations in crystal size and quality that must be averaged out. Hence, to obtain accurate diffraction intensities for de novo phasing, large numbers of diffraction patterns are required, and, concomitantly large volumes of sample and long X-ray free-electron laser beamtimes. Here we show that serial femtosecond crystallography data collected using simultaneous two-colour X-ray free-electron laser pulses can be used for multiple wavelength anomalous dispersion phasing. The phase angle determination is significantly more accurate than for single-colour phasing. We anticipate that two-colour multiple wavelength anomalous dispersion phasing will enhance structure determination of difficult-to-phase proteins at X-ray free-electron lasers. X-ray free-electron lasers produce bright femtosecond X-ray pulses. Here, the authors use a two-colour X-ray free-electron laser beam for simultaneous two-wavelength data collection and show that protein structures can be determined with multiple wavelength anomalous dispersion phasing, which is important for difficult-to-phase projects.
Collapse
Affiliation(s)
- Alexander Gorel
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, Heidelberg, 69120, Germany
| | - Koji Motomura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan.,RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo, 679-5148, Japan
| | - Hironobu Fukuzawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan.,RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo, 679-5148, Japan
| | - R Bruce Doak
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, Heidelberg, 69120, Germany
| | - Marie Luise Grünbein
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, Heidelberg, 69120, Germany
| | - Mario Hilpert
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, Heidelberg, 69120, Germany
| | - Ichiro Inoue
- RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo, 679-5148, Japan
| | - Marco Kloos
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, Heidelberg, 69120, Germany
| | - Gabriela Kovácsová
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, Heidelberg, 69120, Germany
| | - Eriko Nango
- RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo, 679-5148, Japan.,Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Karol Nass
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, Heidelberg, 69120, Germany
| | - Christopher M Roome
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, Heidelberg, 69120, Germany
| | - Robert L Shoeman
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, Heidelberg, 69120, Germany
| | - Rie Tanaka
- RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo, 679-5148, Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo, 679-5148, Japan
| | - So Iwata
- RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo, 679-5148, Japan.,Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Lutz Foucar
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, Heidelberg, 69120, Germany
| | - Kiyoshi Ueda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan.,RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo, 679-5148, Japan
| | - Thomas R M Barends
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, Heidelberg, 69120, Germany
| | - Ilme Schlichting
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, Heidelberg, 69120, Germany.
| |
Collapse
|
74
|
Marklund EG, Ekeberg T, Moog M, Benesch JLP, Caleman C. Controlling Protein Orientation in Vacuum Using Electric Fields. J Phys Chem Lett 2017; 8:4540-4544. [PMID: 28862456 DOI: 10.1021/acs.jpclett.7b02005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Single-particle imaging using X-ray free-electron lasers is an emerging technique that could provide high-resolution structures of macromolecules in the gas phase. One of the largest difficulties in realizing this goal is the unknown orientation of the individual sample molecules at the time of exposure. Preorientation of the molecules has been identified as a possible solution to this problem. Using molecular dynamics simulations, we identify a range of electric field strengths where proteins become oriented without losing their structure. For a number of experimentally relevant cases we show that structure determination is possible only when orientation information is included in the orientation-recovery process. We conclude that nondestructive field orientation of intact proteins is feasible and that it enables a range of new structural investigations with single-particle imaging.
Collapse
Affiliation(s)
- Erik G Marklund
- Department of Chemistry - BMC, Uppsala University , Box 576, SE-751 23 Uppsala, Sweden
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford GB-OX1 3QZ, United Kingdom
| | - Tomas Ekeberg
- Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron , DE-22607 Hamburg, Germany
| | - Mathieu Moog
- Department of Physics and Astronomy, Uppsala University , Box 516, SE-751 20 Uppsala, Sweden
| | - Justin L P Benesch
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford GB-OX1 3QZ, United Kingdom
| | - Carl Caleman
- Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron , DE-22607 Hamburg, Germany
- Department of Physics and Astronomy, Uppsala University , Box 516, SE-751 20 Uppsala, Sweden
| |
Collapse
|
75
|
Bideshi DK, Park HW, Hice RH, Wirth MC, Federici BA. Highly Effective Broad Spectrum Chimeric Larvicide That Targets Vector Mosquitoes Using a Lipophilic Protein. Sci Rep 2017; 7:11282. [PMID: 28900215 PMCID: PMC5596012 DOI: 10.1038/s41598-017-11717-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/24/2017] [Indexed: 12/11/2022] Open
Abstract
Two mosquitocidal bacteria, Bacillus thuringiensis subsp. israelensis (Bti) and Lysinibacillus sphaericus (Ls) are the active ingredients of commercial larvicides used widely to control vector mosquitoes. Bti’s efficacy is due to synergistic interactions among four proteins, Cry4Aa, Cry4Ba, Cry11Aa, and Cyt1Aa, whereas Ls’s activity is caused by Bin, a heterodimer consisting of BinA, the toxin, and BinB, a midgut-binding protein. Cyt1Aa is lipophilic and synergizes Bti Cry proteins by increasing midgut binding. We fused Bti’s Cyt1Aa to Ls’s BinA yielding a broad-spectrum chimeric protein highly mosquitocidal to important vector species including Anopheles gambiae, Culex quinquefasciatus, and Aedes aegypti, the latter an important Zika and Dengue virus vector insensitive to Ls Bin. Aside from its vector control potential, our bioassay data, in contrast to numerous other reports, provide strong evidence that BinA does not require conformational interactions with BinB or microvillar membrane lipids to bind to its intracellular target and kill mosquitoes.
Collapse
Affiliation(s)
- Dennis K Bideshi
- Department of Entomology, University of California, Riverside, Riverside, CA, 92521, USA.,Department of Biological Sciences, California Baptist University, Riverside, CA, 92504, USA
| | - Hyun-Woo Park
- Department of Entomology, University of California, Riverside, Riverside, CA, 92521, USA.,Department of Biological Sciences, California Baptist University, Riverside, CA, 92504, USA
| | - Robert H Hice
- Department of Entomology, University of California, Riverside, Riverside, CA, 92521, USA
| | - Margaret C Wirth
- Department of Entomology, University of California, Riverside, Riverside, CA, 92521, USA
| | - Brian A Federici
- Department of Entomology, University of California, Riverside, Riverside, CA, 92521, USA. .,Interdepartmental Graduate Program in Microbiology and Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
76
|
Yamashita K, Kuwabara N, Nakane T, Murai T, Mizohata E, Sugahara M, Pan D, Masuda T, Suzuki M, Sato T, Kodan A, Yamaguchi T, Nango E, Tanaka T, Tono K, Joti Y, Kameshima T, Hatsui T, Yabashi M, Manya H, Endo T, Kato R, Senda T, Kato H, Iwata S, Ago H, Yamamoto M, Yumoto F, Nakatsu T. Experimental phase determination with selenomethionine or mercury-derivatization in serial femtosecond crystallography. IUCRJ 2017; 4:639-647. [PMID: 28989719 PMCID: PMC5619855 DOI: 10.1107/s2052252517008557] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/08/2017] [Indexed: 05/31/2023]
Abstract
Serial femtosecond crystallography (SFX) using X-ray free-electron lasers (XFELs) holds enormous potential for the structure determination of proteins for which it is difficult to produce large and high-quality crystals. SFX has been applied to various systems, but rarely to proteins that have previously unknown structures. Consequently, the majority of previously obtained SFX structures have been solved by the molecular replacement method. To facilitate protein structure determination by SFX, it is essential to establish phasing methods that work efficiently for SFX. Here, selenomethionine derivatization and mercury soaking have been investigated for SFX experiments using the high-energy XFEL at the SPring-8 Angstrom Compact Free-Electron Laser (SACLA), Hyogo, Japan. Three successful cases are reported of single-wavelength anomalous diffraction (SAD) phasing using X-rays of less than 1 Å wavelength with reasonable numbers of diffraction patterns (13 000, 60 000 and 11 000). It is demonstrated that the combination of high-energy X-rays from an XFEL and commonly used heavy-atom incorporation techniques will enable routine de novo structural determination of biomacromolecules.
Collapse
Affiliation(s)
- Keitaro Yamashita
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Naoyuki Kuwabara
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, KEK/High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Takanori Nakane
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomohiro Murai
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Eiichi Mizohata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Michihiro Sugahara
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Dongqing Pan
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tetsuya Masuda
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Mamoru Suzuki
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Research Center for Structural and Functional Proteomics, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tomomi Sato
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Atsushi Kodan
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomohiro Yamaguchi
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Eriko Nango
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tomoyuki Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Takashi Kameshima
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Takaki Hatsui
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Hiroshi Manya
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Tamao Endo
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Ryuichi Kato
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, KEK/High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, KEK/High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Hiroaki Kato
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - So Iwata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hideo Ago
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Masaki Yamamoto
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Fumiaki Yumoto
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, KEK/High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Toru Nakatsu
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
77
|
Abstract
A synopsis of and prospects for de novo phasing using diffraction data collected at X-ray free-electron lasers are given.
Collapse
|
78
|
Johansson LC, Stauch B, Ishchenko A, Cherezov V. A Bright Future for Serial Femtosecond Crystallography with XFELs. Trends Biochem Sci 2017; 42:749-762. [PMID: 28733116 DOI: 10.1016/j.tibs.2017.06.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/12/2017] [Accepted: 06/20/2017] [Indexed: 11/19/2022]
Abstract
X-ray free electron lasers (XFELs) have the potential to revolutionize macromolecular structural biology due to the unique combination of spatial coherence, extreme peak brilliance, and short duration of X-ray pulses. A recently emerged serial femtosecond (fs) crystallography (SFX) approach using XFEL radiation overcomes some of the biggest hurdles of traditional crystallography related to radiation damage through the diffraction-before-destruction principle. Intense fs XFEL pulses enable high-resolution room-temperature structure determination of difficult-to-crystallize biological macromolecules, while simultaneously opening a new era of time-resolved structural studies. Here, we review the latest developments in instrumentation, sample delivery, data analysis, crystallization methods, and applications of SFX to important biological questions, and conclude with brief insights into the bright future of structural biology using XFELs.
Collapse
Affiliation(s)
- Linda C Johansson
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089-3303, USA
| | - Benjamin Stauch
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089-3303, USA
| | - Andrii Ishchenko
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089-3303, USA
| | - Vadim Cherezov
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089-3303, USA.
| |
Collapse
|
79
|
On the state of crystallography at the dawn of the electron microscopy revolution. Curr Opin Struct Biol 2017; 46:95-101. [PMID: 28686957 PMCID: PMC5689515 DOI: 10.1016/j.sbi.2017.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/05/2017] [Accepted: 06/11/2017] [Indexed: 12/20/2022]
Abstract
While protein crystallography has, for many years, been the most used method for structural analysis of macromolecular complexes, remarkable recent advances in high-resolution electron cryo-microscopy led to suggestions that 'the revolution will not be crystallised'. Here we highlight the current success rate, speed and ease of modern crystallographic structure determination and some recent triumphs of both 'classical' crystallography and the use of X-ray free electron lasers. We also outline fundamental differences between structure determination using X-ray crystallography and electron microscopy. We suggest that crystallography will continue to co-exist with electron microscopy as part of an integrated array of methods, allowing structural biologists to focus on fundamental biological questions rather than being constrained by the methods available.
Collapse
|
80
|
Sugahara M, Nakane T, Masuda T, Suzuki M, Inoue S, Song C, Tanaka R, Nakatsu T, Mizohata E, Yumoto F, Tono K, Joti Y, Kameshima T, Hatsui T, Yabashi M, Nureki O, Numata K, Nango E, Iwata S. Hydroxyethyl cellulose matrix applied to serial crystallography. Sci Rep 2017; 7:703. [PMID: 28386083 PMCID: PMC5429652 DOI: 10.1038/s41598-017-00761-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/13/2017] [Indexed: 11/24/2022] Open
Abstract
Serial femtosecond crystallography (SFX) allows structures of proteins to be determined at room temperature with minimal radiation damage. A highly viscous matrix acts as a crystal carrier for serial sample loading at a low flow rate that enables the determination of the structure, while requiring consumption of less than 1 mg of the sample. However, a reliable and versatile carrier matrix for a wide variety of protein samples is still elusive. Here we introduce a hydroxyethyl cellulose-matrix carrier, to determine the structure of three proteins. The de novo structure determination of proteinase K from single-wavelength anomalous diffraction (SAD) by utilizing the anomalous signal of the praseodymium atom was demonstrated using 3,000 diffraction images.
Collapse
Affiliation(s)
- Michihiro Sugahara
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.
| | - Takanori Nakane
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tetsuya Masuda
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.,Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Mamoru Suzuki
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.,Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shigeyuki Inoue
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.,Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Changyong Song
- Department of Physics, POSTECH, Pohang, 37673, Republic of Korea
| | - Rie Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Toru Nakatsu
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Eiichi Mizohata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Fumiaki Yumoto
- Structural Biology Research Center, KEK High Energy Accelerator Research Organization, Tsukuba, Ibaraki, 305-0801, Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Takashi Kameshima
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Takaki Hatsui
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Keiji Numata
- Enzyme Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Eriko Nango
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - So Iwata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.,Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
81
|
Double-flow focused liquid injector for efficient serial femtosecond crystallography. Sci Rep 2017; 7:44628. [PMID: 28300169 PMCID: PMC5353652 DOI: 10.1038/srep44628] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/10/2017] [Indexed: 01/12/2023] Open
Abstract
Serial femtosecond crystallography requires reliable and efficient delivery of fresh crystals across the beam of an X-ray free-electron laser over the course of an experiment. We introduce a double-flow focusing nozzle to meet this challenge, with significantly reduced sample consumption, while improving jet stability over previous generations of nozzles. We demonstrate its use to determine the first room-temperature structure of RNA polymerase II at high resolution, revealing new structural details. Moreover, the double-flow focusing nozzles were successfully tested with three other protein samples and the first room temperature structure of an extradiol ring-cleaving dioxygenase was solved by utilizing the improved operation and characteristics of these devices [corrected].
Collapse
|
82
|
Sharma M, Hire RS, Hadapad AB, Gupta GD, Kumar V. PEGylation Enhances Mosquito-Larvicidal Activity of Lysinibacillus sphaericus Binary Toxin. Bioconjug Chem 2017; 28:410-418. [PMID: 28118708 DOI: 10.1021/acs.bioconjchem.6b00565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Toxic strains of Lysinibacillus sphaericus have been used in the field for larval control of mosquito vector diseases. The high toxicity of L. sphaericus is attributed to the binary (BinAB) toxin produced as parasporal crystalline inclusions during the early stages of sporulation. BinA and BinB, the primary components of these spore-crystals, exert high toxicity when administered together. However, instability, short half-lives, and rapid proteolytic digestion can limit their use as an effective insecticide. BinA alone displays larvicidal toxicity, in the absence of BinB, albeit with much reduced activity. Here for the first time, we demonstrate the beneficial effect of PEGylation (covalent attachment of polyethylene glycol) on mosquito-larvicidal activity of BinA. Polymer conjugation was achieved using 750 Da polyethylene glycol (PEG) at two different pH values (pH 7.2 and 8.5). Two different isoforms of the biopolymers, purified to homogeneity, were highly water-soluble and resistant to trypsin and proteinase K. The mono-PEGylated BinA isoforms also displayed preservation of the toxin structure with improved thermal stability by about 3-5 °C, as evident from thermal denaturation studies by circular dichroism and differential scanning fluorimetry. Notably, PEGylation enhanced BinA toxicity by nearly 6-fold. The PEGylated BinA isoforms alone displayed high larvicidal activity (LC50 value of ∼3.4 ng/mL) against the third instar Culex larvae, which compares favorably against LC50 reported for the combination of BinA and BinB proteins. Since BinA can be synthesized easily through recombinant technology and easily PEGylated, the conjugated biopolymers offer a promising opportunity for mosquito control programs.
Collapse
Affiliation(s)
- Mahima Sharma
- Homi Bhabha National Institute, Training School Complex , Anushaktinagar, Mumbai 400094, India
| | | | | | | | - Vinay Kumar
- Homi Bhabha National Institute, Training School Complex , Anushaktinagar, Mumbai 400094, India
| |
Collapse
|