51
|
Bernis C, Swift-Taylor B, Nord M, Carmona S, Chook YM, Forbes DJ. Transportin acts to regulate mitotic assembly events by target binding rather than Ran sequestration. Mol Biol Cell 2014; 25:992-1009. [PMID: 24478460 PMCID: PMC3967982 DOI: 10.1091/mbc.e13-08-0506] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Transportin-specific molecular tools are used to show that the mitotic cell contains importin β and transportin “global positioning system” pathways that are mechanistically parallel. Transportin works to control where the spindle, nuclear membrane, and nuclear pores are formed by directly affecting assembly factor function. The nuclear import receptors importin β and transportin play a different role in mitosis: both act phenotypically as spatial regulators to ensure that mitotic spindle, nuclear membrane, and nuclear pore assembly occur exclusively around chromatin. Importin β is known to act by repressing assembly factors in regions distant from chromatin, whereas RanGTP produced on chromatin frees factors from importin β for localized assembly. The mechanism of transportin regulation was unknown. Diametrically opposed models for transportin action are as follows: 1) indirect action by RanGTP sequestration, thus down-regulating release of assembly factors from importin β, and 2) direct action by transportin binding and inhibiting assembly factors. Experiments in Xenopus assembly extracts with M9M, a superaffinity nuclear localization sequence that displaces cargoes bound by transportin, or TLB, a mutant transportin that can bind cargo and RanGTP simultaneously, support direct inhibition. Consistently, simple addition of M9M to mitotic cytosol induces microtubule aster assembly. ELYS and the nucleoporin 107–160 complex, components of mitotic kinetochores and nuclear pores, are blocked from binding to kinetochores in vitro by transportin, a block reversible by M9M. In vivo, 30% of M9M-transfected cells have spindle/cytokinesis defects. We conclude that the cell contains importin β and transportin “global positioning system”or “GPS” pathways that are mechanistically parallel.
Collapse
Affiliation(s)
- Cyril Bernis
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, University of California-San Diego, La Jolla, CA 92093-0347 Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041
| | | | | | | | | | | |
Collapse
|
52
|
Bussolati G, Maletta F, Asioli S, Annaratone L, Sapino A, Marchiò C. "To be or not to be in a good shape": diagnostic and clinical value of nuclear shape irregularities in thyroid and breast cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 773:101-21. [PMID: 24563345 DOI: 10.1007/978-1-4899-8032-8_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Variation in both nuclear shape and size ("pleomorphism"), coupled with changes in chromatin amount and distribution, remains the basic criteria for microscopy in a cytologic diagnosis of cancer. The biological determinants of nuclear shape irregularities are not clarified, so, rather than on the genesis of nuclear irregularities, we here focus our attention on a descriptive analysis of nuclear pleomorphism. We keep in mind that evaluation of nuclear shape as currently practiced in routine preparations is improper because it is indirectly based on the distribution of DNA as revealed by the affinity for basic dyes. Therefore, over the last years we have been using as criteria morphological features of nuclei of thyroid and breast carcinomas as determined by immunofluorescence, in situ hybridization, and 3D reconstruction. We have translated this approach to routine diagnostic pathology on tissue sections by employing immunoperoxidase staining for emerin. Direct detection of nuclear envelope irregularities by tagging nuclear membrane proteins such as lamin B and emerin has resulted in a more objective definition of the shape of the nucleus. In this review we discuss in detail methodological issues as well as diagnostic and prognostic implications provided by decoration/staining of the nuclear envelope in both thyroid and breast cancer, thus demonstrating how much it matters "to be in the right shape" when dealing with pathological diagnosis of cancer.
Collapse
Affiliation(s)
- Gianni Bussolati
- Department of Medical Sciences, University of Turin, via Santena 7, 10126, Turin, Italy,
| | | | | | | | | | | |
Collapse
|
53
|
Nagai M, Yoneda Y. Downregulation of the small GTPase ras-related nuclear protein accelerates cellular ageing. Biochim Biophys Acta Gen Subj 2013; 1830:2813-9. [PMID: 23160023 DOI: 10.1016/j.bbagen.2012.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 09/26/2012] [Accepted: 11/09/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND The small GTPase Ran, Ras-related nuclear protein, plays important roles in multiple fundamental cellular functions such as nucleocytoplasmic transport, mitotic spindle assembly, and nuclear envelope formation, by binding to either GTP or GDP as a molecular switch. Although it has been clinically demonstrated that Ran is highly expressed in multiple types of cancer cells and specimens, the physiological significance of Ran expression levels is unknown. METHODS During the long-term culture of normal mammalian cells, we found that the endogenous Ran level gradually reduced in a passage-dependent manner. To examine the physiological significance of Ran reduction, we first performed small interfering RNA (siRNA)-mediated abrogation of Ran in human diploid fibroblasts. RESULTS Ran-depleted cells showed several senescent phenotypes. Furthermore, we found that nuclear accumulation of importin alpha, which was also observed in cells treated with siRNA against CAS, a specific export factor for importin alpha, occurred in the Ran-depleted cells before the cells showed senescent phenotypes. Further, the CAS-depleted cells also exhibited cellular senescence. Indeed, importin alpha showed predominant nuclear localisation in a passage-dependent manner. CONCLUSIONS Reduction in Ran levels causes cytoplasmic decrease and nuclear accumulation of importin alpha leading to cellular senescence in normal cells. GENERAL SIGNIFICANCE The amount of intracellular Ran may be critically related to cell fate determination, such as malignant transformation and senescence. The cellular ageing process may proceed through gradual regression of Ran-dependent nucleocytoplasmic transport competency.
Collapse
Affiliation(s)
- Masahiro Nagai
- Biomolecular Dynamics Laboratory, Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | |
Collapse
|
54
|
Guvenc H, Pavlyukov MS, Joshi K, Kurt H, Banasavadi-Siddegowda YK, Mao P, Hong C, Yamada R, Kwon CH, Bhasin D, Chettiar S, Kitange G, Park IH, Sarkaria JN, Li C, Shakhparonov MI, Nakano I. Impairment of glioma stem cell survival and growth by a novel inhibitor for Survivin-Ran protein complex. Clin Cancer Res 2012; 19:631-42. [PMID: 23251006 DOI: 10.1158/1078-0432.ccr-12-0647] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE Glioblastoma multiforme (GBM) is a devastating disease. Recent studies suggest that the stem cell properties of GBM contribute to the development of therapy resistance. EXPERIMENTAL DESIGN The expression of Survivin and Ran was evaluated by immunohistochemistry with GBM tissues, and quantitative reverse transcriptase (qRT)-PCR and immunocytochemistry with patient-derived GBM sphere cultures. With a computational structure-based drug design, 11 small-molecule compounds were designed, synthesized, and evaluated as inhibitor candidates for the molecular interaction of Survivin protein. The molecular mechanism of the lead compound, LLP-3, was determined by Western blot, ELISA, in situ proximity ligation assay, and immunocytochemistry. The effects of LLP-3 treatment on GSCs were evaluated both in vitro and in vivo. Quantitative immunohistochemistry was carried out to compare Survivin expression in tissues from 44 newly diagnosed and 31 recurrent post-chemoradiation GBM patients. Lastly, the sensitivities of temozolomide-resistant GBM spheres to LLP-3 were evaluated in vitro. RESULTS Survivin and Ran were strongly expressed in GBM tissues, particularly in the perivasculature, and also in patient-derived GSC cultures. LLP-3 treatment disrupted the Survivin-Ran protein complex in cancer cells and abolished the growth of patient-derived GBM spheres in vitro and in vivo. This inhibition was dependent on caspase activity and associated with p53 status of cells. Immunohistochemistry showed that Survivin expression is significantly increased in recurrent GBM compared with newly diagnosed tumors, and temozolomide-resistant GBM spheres exhibited high sensitivities to LLP-3 treatment. CONCLUSIONS Disruption of the Survivin-Ran complex by LLP-3 abolishes survival and growth of GSCs both in vitro and in vivo, indicating an attractive novel therapeutic approach for GBM.
Collapse
Affiliation(s)
- Hacer Guvenc
- Department of Neurological Surgery, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
In vivo localization and identification of SUMOylated proteins in the brain of His6-HA-SUMO1 knock-in mice. Proc Natl Acad Sci U S A 2012; 109:21122-7. [PMID: 23213215 DOI: 10.1073/pnas.1215366110] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
SUMOylation, an essential posttranslational protein modification, is involved in many eukaryotic cellular signaling pathways. The identification of SUMOylated proteins is difficult, because SUMOylation sites in proteins are hard to predict, SUMOylated protein states are transient in vivo and labile in vitro, only a small substrate fraction is SUMOylated in vivo, and identification tools for natively SUMOylated proteins are rare. To solve these problems, we generated knock-in mice expressing His(6)-HA-SUMO1. By anti-HA immunostaining, we show that SUMO1 conjugates in neurons are only detectable in nuclei and annulate lamellae. By anti-HA affinity purification, we identified several hundred candidate SUMO1 substrates, of which we validated Smchd1, Ctip2, TIF1γ, and Zbtb20 as novel substrates. The knock-in mouse represents an excellent mammalian model for studies on SUMO1 localization and screens for SUMO1 conjugates in vivo.
Collapse
|
56
|
Han F, Wang X, Wang Z. Characterization of myosin light chain gene up-regulated in the large yellow croaker immunity by interaction with RanGTPase. Gene 2012; 514:54-61. [PMID: 23159872 DOI: 10.1016/j.gene.2012.09.135] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 09/19/2012] [Accepted: 09/28/2012] [Indexed: 10/27/2022]
Abstract
RanGTPases are highly conserved in eukaryotes from yeast to human and have been implicated in many aspects of nuclear structure and function. In our previous study, it was revealed that the RanGTPase was up-regulated in large yellow croaker challenged by pathogen. However, the mechanism of RanGTPase in immunity remains unclear. In this investigation, on the basis of protein interaction, it was found that RanGTPase interacted with myosin light chain (designated as LycMLC), a crucial protein in the process of phagocytosis. Furthermore, it was found and characterized in this marine fish for the first time. The full-length cDNA of LycMLC was 771bp, including a 5'-terminal untranslated region (UTR) of 36bp, 3'-terminal UTR of 279bp and an open reading frame (ORF) of 456bp encoding a polypeptide of 151 amino acids. RT-PCR analysis indicated that LycMLC gene was constitutively expressed in the 9 tissues examined, including kidney, liver, gill, muscle, spleen, skin, heart, intestine and blood. The result of quantitative real-time PCR analysis revealed the highest expression in muscle and the weakest expression in skin. Time course analysis showed that LycMLC expression was obviously up-regulated in blood after immunization with either poly I:C or formalin-inactive Gram-negative bacteria Vibrio parahaemolyticus. It indicated that the highest expression was 4.5 times (at 24h) as much as that in the control (P<0.05) challenged by poly I:C and 5.0 times (at 24h) challenged by bacteria. These results suggested that LycMLC might play an important role in large yellow croaker defense against the pathogen infection. Therefore our study revealed a novel pathway concerning immunity of RanGTPase by the direct interaction with the cytoskeleton protein, which would help to better understand the molecular events in immune response against pathogen infection in fish.
Collapse
Affiliation(s)
- Fang Han
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | | | | |
Collapse
|
57
|
Building a nuclear envelope at the end of mitosis: coordinating membrane reorganization, nuclear pore complex assembly, and chromatin de-condensation. Chromosoma 2012; 121:539-54. [PMID: 23104094 PMCID: PMC3501164 DOI: 10.1007/s00412-012-0388-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/04/2012] [Accepted: 10/04/2012] [Indexed: 12/01/2022]
Abstract
The metazoan nucleus is disassembled and re-built at every mitotic cell division. The nuclear envelope, including nuclear pore complexes, breaks down at the beginning of mitosis to accommodate the capture of massively condensed chromosomes by the spindle apparatus. At the end of mitosis, a nuclear envelope is newly formed around each set of segregating and de-condensing chromatin. We review the current understanding of the membrane restructuring events involved in the formation of the nuclear membrane sheets of the envelope, the mechanisms governing nuclear pore complex assembly and integration in the nascent nuclear membranes, and the regulated coordination of these events with chromatin de-condensation.
Collapse
|
58
|
Scheffzek K, Welti S. Pleckstrin homology (PH) like domains - versatile modules in protein-protein interaction platforms. FEBS Lett 2012; 586:2662-73. [PMID: 22728242 DOI: 10.1016/j.febslet.2012.06.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 06/07/2012] [Accepted: 06/08/2012] [Indexed: 12/21/2022]
Abstract
The initial reports on pleckstrin homology (PH) domains almost 20 years ago described them as sequence feature of proteins involved in signal transduction processes. Investigated at first along the phospholipid binding properties of a small subset of PH representatives, the PH fold turned out to appear as mediator of phosphotyrosine and polyproline peptide binding to other signaling proteins. While phospholipid binding now seems rather the exception among PH-like domains, protein-protein interactions established as more and more important feature of these modules. In this review we focus on the PH superfold as a versatile protein-protein interaction platform and its three-dimensional integration in an increasing number of available multidomain structures.
Collapse
Affiliation(s)
- Klaus Scheffzek
- Division Biological Chemistry, Biocenter, Innsbruck Medical University, Innrain 80/82, A-6020 Innsbruck, Austria.
| | | |
Collapse
|
59
|
Han F, Wang X, Wang Z. Molecular characterization of a Ran isoform gene up-regulated in shrimp immunity. Gene 2012; 495:65-71. [PMID: 22192911 DOI: 10.1016/j.gene.2011.11.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/17/2011] [Accepted: 11/21/2011] [Indexed: 11/24/2022]
Abstract
Diseases caused by viruses are the greatest challenge to worldwide shrimp aquaculture. Ran gene was an important antiviral gene identified from shrimp and its mRNA level was up-regulated in response to viral infection. In this investigation, a Ran isoform gene (named Ran-iso) cDNA was cloned from shrimp, Marsupenaeus japonicus. The full-length cDNA of Ran-iso was 1286 bp, including a 5'-terminal untranslated region (UTR) of 272 bp, 3'-terminal UTR of 366 bp and an open reading frame (ORF) of 648 bp encoding a polypeptide of 215 amino acids. The deduced protein was highly homologous, it shared 90.64%, 84.19%, 81.48% and 67.58% identities with Ran protein of shrimp, honey bee, human and tobacco respectively. Ran-iso gene was constitutively expressed in 6 tissues examined, including gill, hepatopancreas, hemolymph, heart, intestine and muscle. However, Ran-iso was highest expressed in hepatopancreas (p<0.01), whereas the expressions of other five tissues were equal and relatively low. Time course analysis showed that the expression level of Ran-iso was obviously up-regulated 2.8 times (at 6h) as much as that in the control in the hepatopancreas challenged by WSSV. This investigation might provide a clue to elucidate the shrimp innate immunity and would be helpful to shrimp disease control.
Collapse
Affiliation(s)
- Fang Han
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | | | | |
Collapse
|
60
|
Liu P, Qi M, Xue X, Ren H. Dynamics and functions of the actin cytoskeleton during the plant cell cycle. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11434-011-4801-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
61
|
Kühn K, Carrie C, Giraud E, Wang Y, Meyer EH, Narsai R, des Francs-Small CC, Zhang B, Murcha MW, Whelan J. The RCC1 family protein RUG3 is required for splicing of nad2 and complex I biogenesis in mitochondria of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:1067-80. [PMID: 21623974 DOI: 10.1111/j.1365-313x.2011.04658.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We have identified a mitochondrial protein (RUG3) that is required for accumulation of mitochondrial respiratory chain complex I. RUG3 is related to human REGULATOR OF CHROMOSOME CONDENSATION 1 (RCC1) and Arabidopsis UV-B RESISTANCE 8 (UVR8). Although the family of RCC1-like proteins in Arabidopsis has over 20 members, UVR8 is the sole plant representative of this family to have been functionally characterized. Mitochondria from Arabidopsis plants lacking a functional RUG3 gene showed greatly reduced complex I abundance and activity. In contrast, accumulation of complexes III, IV and V of the oxidative phosphorylation system and the capacity for succinate-dependent respiration were unaffected. A comprehensive study of processes contributing to complex I biogenesis in rug3 mutants revealed that RUG3 is required for efficient splicing of the nad2 mRNA, which encodes a complex I subunit. A comparison of the formation of complex I assembly intermediates between rug3 and wild type mitochondria indicated that NAD2 enters the assembly pathway at an early stage. Remarkably, rug3 mutants displayed increased capacities for import of nucleus-encoded mitochondrial proteins into the organelle and showed moderately increased mitochondrial transcript levels. This observation is consistent with global transcript changes indicating enhanced mitochondrial biogenesis in the rug3 mutant in response to the complex I defect.
Collapse
Affiliation(s)
- Kristina Kühn
- Australian Research Council Centre of Excellence in Plant Energy Biology, M316, University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Oster M, Murani E, Metges CC, Ponsuksili S, Wimmers K. A high protein diet during pregnancy affects hepatic gene expression of energy sensing pathways along ontogenesis in a porcine model. PLoS One 2011; 6:e21691. [PMID: 21789176 PMCID: PMC3138750 DOI: 10.1371/journal.pone.0021691] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 05/26/2011] [Indexed: 12/30/2022] Open
Abstract
In rodent models and in humans the impact of gestational diets on the offspring's phenotype was shown experimentally and epidemiologically. The underlying programming of fetal development was shown to be associated with an increased risk of degenerative diseases in adulthood, including the metabolic syndrome. There are clues that diet-dependent modifications of the metabolism during fetal life can persist until adulthood. This leads to the hypothesis that the offspring's transcriptomes show short-term and long-term changes depending on the maternal diet. To this end pregnant German landrace gilts were fed either a high protein diet (HP, 30% CP) or an adequate protein diet (AP, 12% CP) throughout pregnancy. Hepatic transcriptome profiles of the offspring were analyzed at prenatal (94 dpc) and postnatal stages (1, 28, 188 dpn). Depending on the gestational dietary exposure, mRNA expression levels of genes related to energy metabolism, N-metabolism, growth factor signaling pathways, lipid metabolism, nucleic acid metabolism and stress/immune response were affected either in a short-term or in a long-term manner. Gene expression profiles at fetal stage 94 dpc were almost unchanged between the diets. The gestational HP diet affected the hepatic expression profiles at prenatal and postnatal stages. The effects encompassed a modulation of the genome in terms of an altered responsiveness of energy and nutrient sensing pathways. Differential expression of genes related to energy production and nutrient utilization contribute to the maintenance of development and growth performance within physiological norms, however the modulation of these pathways may be accompanied by a predisposition for metabolic disturbances up to adult stages.
Collapse
Affiliation(s)
- Michael Oster
- Research Unit Molecular Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Eduard Murani
- Research Unit Molecular Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Cornelia C. Metges
- Research Unit Physiology of Nutrition, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Research Group Functional Genomics, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Klaus Wimmers
- Research Unit Molecular Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- * E-mail:
| |
Collapse
|
63
|
Zhou F, Zheng L, Yang Q, Qiu L, Huang J, Su T, Jiang S. Molecular analysis of a ras-like nuclear (Ran) gene from Penaeus monodon and its expression at the different ovarian stages of development. Mol Biol Rep 2011; 39:3821-7. [PMID: 21748319 DOI: 10.1007/s11033-011-1160-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 06/30/2011] [Indexed: 01/06/2023]
Abstract
In the present study, a ras-like nuclear (Ran) gene was obtained from the ovary and neurosecretory organ in eyestalk cDNA library of black tiger prawn (Penaeus monodon). The full-length black tiger prawn Ran (PmRan) cDNA consisted of 1140 nucleotides including an open reading frame (ORF) 648 bp, a 5' untranslated region (5'UTR) of 117 bp and a 3'UTR of 375 bp with a polyadenylation signal sequence "aataaa" and a poly (A) tail. The ORF encoded a peptide of 215 amino acids with molecular mass 24.6 kDa and a theoretical isoelectric point of 7.39. ScanProsite analysis indicated that PmRan protein sequence contained a small GTPase Ran family motif. Homology analysis of the deduced amino acid sequence of the PmRan with other known Ran sequences by MatGAT software revealed that the PmRan show very high homology with the sequences of other animals (92.1-98.6% similarity, 85.6-98.1% identity). Analysis of the tissue expression pattern of the PmRan gene showed that the PmRan mRNA was expressed in all tested tissues, including hepatopancreas, ovary, muscle, intestine, neurosecretory organ in eyestalk, neurosecretory organ in brain, stomach, and heart, with the highest levels in ovary. Furthermore, the PmRan expression was found to be high level in the six ovarian stages of development. The results indicated PmRan might play an important role in ovarian development.
Collapse
Affiliation(s)
- Falin Zhou
- South China Sea Fisheries Research Institute, CAFS, 231 Xingang Road Western, Guangzhou, 510300, Guangdong, China
| | | | | | | | | | | | | |
Collapse
|
64
|
Glatt S, Alfieri C, Müller CW. Recognizing and remodeling the nucleosome. Curr Opin Struct Biol 2011; 21:335-41. [PMID: 21377352 DOI: 10.1016/j.sbi.2011.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 02/09/2011] [Accepted: 02/10/2011] [Indexed: 11/19/2022]
Abstract
The X-ray structure of the nucleosome core particle (NCP) has been a major milestone in the structural biology of chromatin. Since, our understanding how NCPs interact with multiple partners has been extending from single chromatin-binding domains recognizing post-translational modifications (PTMs) in histone tails towards the recognition of higher-order chromatin structure by multi-subunit chromatin remodeling complexes. The current review summarizes recent progress in the structural biology of nucleosome-recognition from chromatin-binding domains to multi-protein remodeling complexes.
Collapse
Affiliation(s)
- Sebastian Glatt
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, Heidelberg, Germany
| | | | | |
Collapse
|
65
|
Nagai M, Moriyama T, Mehmood R, Tokuhiro K, Ikawa M, Okabe M, Tanaka H, Yoneda Y. Mice lacking Ran binding protein 1 are viable and show male infertility. FEBS Lett 2011; 585:791-6. [PMID: 21310149 DOI: 10.1016/j.febslet.2011.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 01/31/2011] [Accepted: 02/01/2011] [Indexed: 11/29/2022]
Abstract
The small GTPase Ran plays important roles in multiple aspects of cellular function. Maximal RanGAP activity is achieved with the aid of RanBP1 and/or presumably of RanBP2. Here, we show that RanBP1-knockout mice are unexpectedly viable, and exhibit male infertility due to a spermatogenesis arrest, presumably caused by down-regulation of RanBP2 during spermatogenesis. Indeed, siRNA-mediated depletion of RanBP2 caused severe cell death only in RanBP1-deficient MEFs, indicating that simultaneous depletion of RanBP1 and RanBP2 severely affects normal cell viability. Collectively, we conclude that the dramatic decrease in "RanBP" activity impairs germ cell viability and affects spermatogenesis decisively in RanBP1-knockout mice.
Collapse
Affiliation(s)
- Masahiro Nagai
- Biomolecular Dynamics Laboratory, Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Funakoshi T, Clever M, Watanabe A, Imamoto N. Localization of Pom121 to the inner nuclear membrane is required for an early step of interphase nuclear pore complex assembly. Mol Biol Cell 2011; 22:1058-69. [PMID: 21289085 PMCID: PMC3069009 DOI: 10.1091/mbc.e10-07-0641] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Pom121 plays key roles in interphase nuclear pore complex (NPC) assembly and possesses a set of NLSs and an inner nuclear membrane (INM) binding region crucial for its NPC targeting. Here we propose that the nuclear migration of Pom121 and its subsequent interaction with the INM are required for interphase NPC assembly by seeding “prepore” to INM. The nuclear pore complex (NPC) is a large protein assembly that mediates molecular trafficking between the cytoplasm and the nucleus. NPCs assemble twice during the cell cycle in metazoans: postmitosis and during interphase. In this study, using small interfering RNA (siRNA) in conjunction with a cell fusion–based NPC assembly assay, we demonstrated that pore membrane protein (Pom)121, a vertebrate-specific integral membrane nucleoporin, is indispensable for an early step in interphase NPC assembly. Functional domain analysis of Pom121 showed that its nuclear localization signals, which bind to importin β via importin α and likely function with RanGTP, play an essential role in targeting Pom121 to the interphase NPC. Furthermore, a region of Pom121 that interacts with the inner nuclear membrane (INM) and lamin B receptor was found to be crucial for its NPC targeting. Based on these findings and on evidence that Pom121 localizes at the INM in the absence of a complete NPC structure, we propose that the nuclear migration of Pom121 and its subsequent interaction with INM proteins are required to initiate interphase NPC assembly. Our data also suggest, for the first time, the importance of the INM as a seeding site for “prepores” during interphase NPC assembly.
Collapse
Affiliation(s)
- Tomoko Funakoshi
- Cellular Dynamics Laboratory, Riken Advanced Science Institute, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
67
|
Abstract
The nuclear envelope (NE) is a highly regulated membrane barrier that separates the nucleus from the cytoplasm in eukaryotic cells. It contains a large number of different proteins that have been implicated in chromatin organization and gene regulation. Although the nuclear membrane enables complex levels of gene expression, it also poses a challenge when it comes to cell division. To allow access of the mitotic spindle to chromatin, the nucleus of metazoans must completely disassemble during mitosis, generating the need to re-establish the nuclear compartment at the end of each cell division. Here, I summarize our current understanding of the dynamic remodeling of the NE during the cell cycle.
Collapse
Affiliation(s)
- Martin W Hetzer
- Salk Institute for Biological Studies, Molecular and Cell Biology Laboratory, La Jolla, California 92037, USA.
| |
Collapse
|
68
|
Yavuz S, Santarella-Mellwig R, Koch B, Jaedicke A, Mattaj IW, Antonin W. NLS-mediated NPC functions of the nucleoporin Pom121. FEBS Lett 2010; 584:3292-8. [PMID: 20624389 DOI: 10.1016/j.febslet.2010.07.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 05/31/2010] [Accepted: 07/02/2010] [Indexed: 12/12/2022]
Abstract
RanGTP mediates nuclear import and mitotic spindle assembly by dissociating import receptors from nuclear localization signal (NLS) bearing proteins. We investigated the interplay between import receptors and the transmembrane nucleoporin Pom121. We found that Pom121 interacts with importin alpha/beta and a group of nucleoporins in an NLS-dependent manner. In vivo, replacement of Pom121 with an NLS mutant version resulted in defective nuclear transport, induction of aberrant cytoplasmic membrane stacks and decreased cell viability. We propose that the NLS sites of Pom121 affect its function in NPC assembly both by influencing nucleoporin interactions and pore membrane structure.
Collapse
Affiliation(s)
- Sevil Yavuz
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
69
|
Hitakomate E, Hood FE, Sanderson HS, Clarke PR. The methylated N-terminal tail of RCC1 is required for stabilisation of its interaction with chromatin by Ran in live cells. BMC Cell Biol 2010; 11:43. [PMID: 20565941 PMCID: PMC2898669 DOI: 10.1186/1471-2121-11-43] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 06/21/2010] [Indexed: 11/30/2022] Open
Abstract
Background Regulator of chromosome condensation 1 (RCC1) is the guanine nucleotide exchange factor for Ran GTPase. Localised generation of Ran-GTP by RCC1 on chromatin is critical for nucleocytoplasmic transport, mitotic spindle assembly and nuclear envelope formation. Both the N-terminal tail of RCC1 and its association with Ran are important for its interaction with chromatin in cells. In vitro, the association of Ran with RCC1 induces a conformational change in the N-terminal tail that promotes its interaction with DNA. Results We have investigated the mechanism of the dynamic interaction of the α isoform of human RCC1 (RCC1α) with chromatin in live cells using fluorescence recovery after photobleaching (FRAP) of green fluorescent protein (GFP) fusions. We show that the N-terminal tail stabilises the interaction of RCC1α with chromatin and this function can be partially replaced by another lysine-rich nuclear localisation signal. Removal of the tail prevents the interaction of RCC1α with chromatin from being stabilised by RanT24N, a mutant that binds stably to RCC1α. The interaction of RCC1α with chromatin is destabilised by mutation of lysine 4 (K4Q), which abolishes α-N-terminal methylation, and this interaction is no longer stabilised by RanT24N. However, α-N-terminal methylation of RCC1α is not regulated by the binding of RanT24N. Conversely, the association of Ran with precipitated RCC1α does not require the N-terminal tail of RCC1α or its methylation. The mobility of RCC1α on chromatin is increased by mutation of aspartate 182 (D182A), which inhibits guanine-nucleotide exchange activity, but RCC1αD182A can still bind nucleotide-free Ran and its interaction with chromatin is stabilised by RanT24N. Conclusions These results show that the stabilisation of the dynamic interaction of RCC1α with chromatin by Ran in live cells requires the N-terminal tail of RCC1α. α-N-methylation is not regulated by formation of the binary complex with Ran, but it promotes chromatin binding through the tail. This work supports a model in which the association of RCC1α with chromatin is promoted by a conformational change in the α-N-terminal methylated tail that is induced allosterically in the binary complex with Ran.
Collapse
Affiliation(s)
- Ekarat Hitakomate
- Biomedical Research Institute, School of Medicine, College of Medicine, Dentistry and Nursing, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | | | | | | |
Collapse
|
70
|
Brucker S, Gerwert K, Kötting C. Tyr39 of ran preserves the Ran.GTP gradient by inhibiting GTP hydrolysis. J Mol Biol 2010; 401:1-6. [PMID: 20609434 DOI: 10.1016/j.jmb.2010.05.068] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/20/2010] [Accepted: 05/26/2010] [Indexed: 10/19/2022]
Abstract
Ran is a member of the superfamily of small GTPases, which cycle between a GTP-bound "on" and a GDP-bound "off" state. Ran regulates nuclear transport. In order to maintain a gradient of excess Ran.GTP within the nucleoplasm and excess Ran.GDP within the cytoplasm, the hydrolysis of Ran.GTP in the nucleoplasm should be prevented, whereas in the cytoplasm, hydrolysis is catalyzed by Ran.GAP (GTPase-activating protein). In this article, we investigate the GTPase reaction of Ran in complex with its binding protein Ran-binding protein 1 by time-resolved Fourier transform infrared spectroscopy: We show that the slowdown of the intrinsic hydrolysis of RanGTP is accomplished by tyrosine 39, which is probably misplacing the attacking water. We monitored the interaction of Ran with RanGAP, which reveals two reactions steps. By isotopic labeling of Ran and RanGAP, we were able to assign the first step to a small conformational change within the catalytic site. The following bond breakage is the rate-limiting step of hydrolysis. An intermediate of protein-bound phosphate as found for Ras or Rap systems is kinetically unresolved. This demonstrates that despite the structural similarity among the G-domain of the GTPases, different reaction mechanisms are utilized.
Collapse
Affiliation(s)
- Sven Brucker
- Lehrstuhl für Biophysik, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | | | |
Collapse
|
71
|
Kosako H, Imamoto N. Phosphorylation of nucleoporins: signal transduction-mediated regulation of their interaction with nuclear transport receptors. Nucleus 2010; 1:309-13. [PMID: 21327077 DOI: 10.4161/nucl.1.4.11744] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/01/2010] [Accepted: 01/26/2010] [Indexed: 11/19/2022] Open
Abstract
The nuclear pore complex (NPC) is composed of ∼30 unique proteins, collectively referred to as nucleoporins or Nups. While metazoan Nups are known to be phosphorylated during mitosis to cause disassembly of the NPC, what is less clear is whether Nups are phosphorylated and regulated by extracellular stimuli in interphase cells. Our multi-step phosphoproteomic approach revealed a number of physiologically relevant extracellular signal-regulated kinase (ERK) targets, including Nups containing FG repeats (FG Nups) that provide binding sites for nuclear transport receptors (NTRs) during the NPC passage. The phosphorylation of FG Nups by ERK does not affect the overall architecture of the NPC but directly inhibits their interactions with NTRs and regulates the permeability barrier properties of the NPC. Such regulation at the levels of transport machinery is expected to have a broad impact on cellular physiology through the spatiotemporal control of signaling events. Until recently, many studies have focused on cellular signaling-mediated phosphorylation of individual cargo proteins, such as transcription factors. An understanding of the effects of signaling pathways on nucleocytoplasmic transport machinery is only beginning to emerge.
Collapse
Affiliation(s)
- Hidetaka Kosako
- Division of Disease Proteomics; Institute for Enzyme Research; The University of Tokushima; Tokushima, Japan.
| | | |
Collapse
|
72
|
Spatial distribution and mobility of the Ran GTPase in live interphase cells. Biophys J 2010; 97:2164-78. [PMID: 19843449 DOI: 10.1016/j.bpj.2009.07.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 07/14/2009] [Accepted: 07/30/2009] [Indexed: 12/30/2022] Open
Abstract
The GTPase Ran is a key regulator of molecular transport through nuclear pore complex (NPC) channels. To analyze the role of Ran in its nuclear transport function, we used several quantitative fluorescence techniques to follow the distribution and dynamics of an enhanced yellow fluorescent protein (EYFP)-Ran in HeLa cells. The diffusion coefficient of the majority of EYFP-Ran molecules throughout the cells corresponded to an unbound state, revealing the remarkably dynamic Ran regulation. Although we observed no significant immobile Ran populations in cells, approximately 10% of the cytoplasmic EYFP-Ran and 30% of the nuclear EYFP-Ran exhibited low mobility indicative of molecular interactions. The high fraction of slow nuclear EYFP-Ran reflects the expected numerous interactions of nuclear RanGTP with nuclear transport receptors. However, it is not high enough to support retention mechanisms as the main cause for the observed nuclear accumulation of Ran. The highest cellular concentration of EYFP-Ran was detected at the nuclear envelope, corresponding to approximately 200 endogenous Ran molecules for each NPC, and exceeding the currently estimated NPC channel transport capacity. Together with the relatively long residence time of EYFP-Ran at the nuclear envelope (33 +/- 14 ms), these observations suggest that only a fraction of the Ran concentrated at NPCs transits through NPC channels.
Collapse
|
73
|
Yokoyama H, Rybina S, Santarella-Mellwig R, Mattaj IW, Karsenti E. ISWI is a RanGTP-dependent MAP required for chromosome segregation. ACTA ACUST UNITED AC 2010; 187:813-29. [PMID: 20008562 PMCID: PMC2806316 DOI: 10.1083/jcb.200906020] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chromatin-remodeling factor ISWI is a microtubule-associated protein that contributes to chromosome segregation by stabilizing microtubules during anaphase. Production of RanGTP around chromosomes induces spindle assembly by activating nuclear localization signal (NLS)–containing factors. Here, we show that the NLS protein ISWI, a known chromatin-remodeling ATPase, is a RanGTP-dependent microtubule (MT)-associated protein. Recombinant ISWI induces MT nucleation, stabilization, and bundling in vitro. In Xenopus culture cells and egg extract, ISWI localizes within the nucleus in interphase and on spindles during mitosis. Depletion of ISWI in egg extracts does not affect spindle assembly, but in anaphase spindle MTs disappear and chromosomes do not segregate. We show directly that ISWI is required for the RanGTP-dependent stabilization of MTs during anaphase independently of its effect on chromosomes. ISWI depletion in Drosophila S2 cells induces defects in spindle MTs and chromosome segregation in anaphase, and the cells eventually stop growing. Our results demonstrate that distinctly from its role in spindle assembly, RanGTP maintains spindle MTs in anaphase through the local activation of ISWI and that this is essential for proper chromosome segregation.
Collapse
Affiliation(s)
- Hideki Yokoyama
- European Molecular Biology Laboratory, Heidelberg 69117, Germany.
| | | | | | | | | |
Collapse
|
74
|
Green KD, Garneau-Tsodikova S. Posttranslational Modification of Proteins. COMPREHENSIVE NATURAL PRODUCTS II 2010:433-468. [DOI: 10.1016/b978-008045382-8.00662-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
75
|
Honma K, Takemasa I, Matoba R, Yamamoto Y, Takeshita F, Mori M, Monden M, Matsubara K, Ochiya T. Screening of potential molecular targets for colorectal cancer therapy. Int J Gen Med 2009; 2:243-57. [PMID: 20360909 PMCID: PMC2840570 DOI: 10.2147/ijgm.s5158] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Indexed: 11/23/2022] Open
Abstract
Colorectal cancer is a leading cause of cancer death worldwide. To identify molecular targets for colorectal cancer therapy, we tested small interfering RNAs (siRNAs) against 97 genes whose expression was elevated in human colorectal cancer tissues for the ability to promote apoptosis of human colorectal cancer cells (HT-29 cells). The results indicate that the downregulation of PSMA7 (proteasome subunit, alpha-type, 7) and RAN (ras-related nuclear protein) most efficiently induced apoptosis of HT-29 cells. PSMA7 and RAN were highly expressed in colorectal cancer cell lines compared with normal colon tissues. Furthermore, PSMA7 and RAN were overexpressed in not only colon tumor tissues but also the other tumor tissues. Moreover, in vivo delivery of PSMA7 siRNA and RAN siRNA markedly induced apoptosis in HT-29 xenograft tumors in mice. Thus, silencing of PSMA7 and RAN induces cancer cells to undergo apoptosis, and PSMA7 and RAN might be promising new molecular targets for drug and RNA interference-based therapeutics against colorectal cancer.
Collapse
Affiliation(s)
- Kimi Honma
- Section for Studies on Metastasis, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Dm nxf1/sbr gene affects the formation of meiotic spindle in female Drosophila melanogaster. Chromosome Res 2009; 17:833-45. [PMID: 19779841 DOI: 10.1007/s10577-009-9046-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 06/08/2009] [Accepted: 06/08/2009] [Indexed: 10/20/2022]
Abstract
The small bristles (sbr) gene of Drosophila melanogaster belongs to the family of nuclear export factor (NXF) genes that participate in mRNA nuclear export. During meiosis, females of Drosophila melanogaster that carry various combinations of mutant alleles of the Dm nxf1/sbr gene exhibit disruption of the division spindle and misalignment of chromosomes at the metaphase plate. Meiosis of sbr ( 5 ) /+ females is characterized by the formation of tripolar spindles during the first cell division. According to the sequencing results, the sbr ( 5 ) (l(1)K4) lethal allele is a deletion of 492 nucleotides. In SBR(5) protein, 57 of the 146 amino acids that have been lost by deletion belong to the NTF2-like domain.
Collapse
|
77
|
Hutchins JRA, Moore WJ, Clarke PR. Dynamic localisation of Ran GTPase during the cell cycle. BMC Cell Biol 2009; 10:66. [PMID: 19765287 PMCID: PMC2755469 DOI: 10.1186/1471-2121-10-66] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 09/18/2009] [Indexed: 11/30/2022] Open
Abstract
Background Ran GTPase has multiple functions during the cell division cycle, including nucleocytoplasmic transport, mitotic spindle assembly and nuclear envelope formation. The activity of Ran is determined by both its guanine nucleotide-bound state and its subcellular localization. Results Here, we have characterised the localisation and mobility of Ran coupled to green fluorescent protein (GFP) during the cell cycle in live human cells. Ran-GFP is nuclear during interphase and is dispersed throughout the cell during mitosis. GFP-RanQ69L, a mutant locked in the GTP-bound state, is less highly concentrated in the nucleus and associates with nuclear pore complexes within the nuclear envelope. During mitosis, GFP-RanQ69L is excluded from chromosomes and localizes to the spindle. By contrast, GFP-RanT24N, a mutant with low affinity for nucleotides, interacts relatively stably with chromatin throughout the cell cycle and is highly concentrated on mitotic chromosomes. Conclusion These results show that Ran interacts dynamically with chromatin, nuclear pore complexes and the mitotic spindle during the cell cycle. These interactions are dependent on the nucleotide-bound state of the protein. Our data indicate that Ran-GTP generated at chromatin is highly mobile and interacts dynamically with distal structures that are involved in nuclear transport and mitotic spindle assembly.
Collapse
Affiliation(s)
- James R A Hutchins
- Biomedical Research Institute, College of Medicine, Dentistry and Nursing, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK.
| | | | | |
Collapse
|
78
|
Nucleocytoplasmic transport of Alp7/TACC organizes spatiotemporal microtubule formation in fission yeast. EMBO Rep 2009; 10:1161-7. [PMID: 19696784 PMCID: PMC2731110 DOI: 10.1038/embor.2009.158] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 06/12/2009] [Accepted: 06/15/2009] [Indexed: 11/17/2022] Open
Abstract
Ran GTPase activates several target molecules to induce microtubule formation around the chromosomes and centrosomes. In fission yeast, in which the nuclear envelope does not break down during mitosis, Ran targets the centrosomal transforming acidic coiled-coil (TACC) protein Alp7 for spindle formation. Alp7 accumulates in the nucleus only during mitosis, although its underlying mechanism remains elusive. Here, we investigate the behaviour of Alp7 and its binding partner, Alp14/TOG, throughout the cell cycle. Interestingly, Alp7 enters the nucleus during interphase but is subsequently exported to the cytoplasm by the Exportin-dependent nuclear export machinery. The continuous nuclear export of Alp7 during interphase is essential for maintaining the array-like cytoplasmic microtubule structure. The mitosis-specific nuclear accumulation of Alp7 seems to be under the control of cyclin-dependent kinase (CDK). These results indicate that the spatiotemporal regulation of microtubule formation is established by the Alp7/TACC–Alp14/TOG complex through the coordinated interplay of Ran and CDK.
Collapse
|
79
|
Tartakoff AM, Tao T. Comparative and evolutionary aspects of macromolecular translocation across membranes. Int J Biochem Cell Biol 2009; 42:214-29. [PMID: 19643202 DOI: 10.1016/j.biocel.2009.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/21/2009] [Accepted: 07/21/2009] [Indexed: 01/10/2023]
Abstract
Membrane barriers preserve the integrity of organelles of eukaryotic cells, yet the genesis and ongoing functions of the same organelles requires that their limiting membranes allow import and export of selected macromolecules. Multiple distinct mechanisms are used for this purpose, only some of which have been traced to prokaryotes. Some can accommodate both monomeric and also large heterooligomeric cargoes. The best characterized of these is nucleocytoplasmic transport. This synthesis compares the unidirectional and bidirectional mechanisms of macromolecular transport of the endoplasmic reticulum, mitochondria, peroxisomes and the nucleus, calls attention to the powerful experimental approaches which have been used for their elucidation, discusses their regulation and evolutionary origins, and highlights relatively unexplored areas.
Collapse
Affiliation(s)
- Alan M Tartakoff
- Department of Pathology & Cell Biology Program, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| | | |
Collapse
|
80
|
Orchestrating nuclear envelope disassembly and reassembly during mitosis. Nat Rev Mol Cell Biol 2009; 10:178-91. [PMID: 19234477 DOI: 10.1038/nrm2641] [Citation(s) in RCA: 362] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell division in eukaryotes requires extensive architectural changes of the nuclear envelope (NE) to ensure that segregated DNA is finally enclosed in a single cell nucleus in each daughter cell. Higher eukaryotic cells have evolved 'open' mitosis, the most extreme mechanism to solve the problem of nuclear division, in which the NE is initially completely disassembled and then reassembled in coordination with DNA segregation. Recent progress in the field has now started to uncover mechanistic and molecular details that underlie the changes in NE reorganization during open mitosis. These studies reveal a tight interplay between NE components and the mitotic machinery.
Collapse
|
81
|
Shen E, Lei Y, Liu Q, Zheng Y, Song C, Marc J, Wang Y, Sun L, Liang Q. Identification and characterization of INMAP, a novel interphase nucleus and mitotic apparatus protein that is involved in spindle formation and cell cycle progression. Exp Cell Res 2009; 315:1100-16. [PMID: 19331820 DOI: 10.1016/j.yexcr.2009.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2008] [Revised: 01/20/2009] [Accepted: 01/20/2009] [Indexed: 02/07/2023]
Abstract
A novel protein that associates with interphase nucleus and mitotic apparatus (INMAP) was identified by screening HeLa cDNA expression library with an autoimmune serum followed by tandem mass spectrometry. Its complete cDNA sequence of 1.818 kb encodes 343 amino acids with predicted molecular mass of 38.2 kDa and numerous phosphorylation sites. The sequence is identical with nucleotides 1-1800 bp of an unnamed gene (GenBank accession no. 7022388) and highly homologous with the 3'-terminal sequence of POLR3B. A monoclonal antibody against INMAP reacted with similar proteins in S. cerevisiae, Mel and HeLa cells, suggesting that it is a conserved protein. Confocal microscopy using either GFP-INMAP fusion protein or labeling with the monoclonal antibody revealed that the protein localizes as distinct dots in the interphase nucleus, but during mitosis associates closely with the spindle. Double immunolabeling using specific antibodies showed that the INMAP co-localizes with alpha-tubulin, gamma-tubulin, and NuMA. INMAP also co-immunoprecipitated with these proteins in their native state. Stable overexpression of INMAP in HeLa cell lines leads to defects in the spindle, mitotic arrest, formation of polycentrosomal and multinuclear cells, inhibition of growth, and apoptosis. We propose that INMAP is a novel protein that plays essential role in spindle formation and cell-cycle progression.
Collapse
Affiliation(s)
- Enzhi Shen
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Narayanan NN, Grosic S, Tasma IM, Grant D, Shoemaker R, Bhattacharyya MK. Identification of candidate signaling genes including regulators of chromosome condensation 1 protein family differentially expressed in the soybean-Phytophthora sojae interaction. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 118:399-412. [PMID: 18825360 DOI: 10.1007/s00122-008-0895-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Accepted: 09/06/2008] [Indexed: 05/07/2023]
Abstract
Stem and root rot caused by the oomycete pathogen, Phytophthora sojae, is a serious soybean disease. Use of Phytophthora resistance genes (Rps) in soybean cultivars has been very effective in controlling this pathogen. Resistance encoded by Rps genes is manifested through activation of defense responses. In order to identify candidate signaling genes involved in the expression of Phytophthora resistance in soybean, a cDNA library was prepared from infected etiolated hypocotyl tissues of a Phytophthora resistant soybean cultivar harvested 2 and 4 h following P. sojae inoculation. In silico subtraction of 101,833 expressed sequence tags (ESTs) originating from unstressed cDNA libraries from 4,737 ESTs of this library resulted in identification of 204 genes that were absent in the unstressed libraries. Of the 204 identified genes, seven were P. sojae genes. Putative function of 91 of the 204 genes could not be assigned based on sequence comparison. Macroarray analyses of all 204 genes led to identification of 60 genes including 15 signaling-related soybean genes and three P. sojae genes, transcripts of which were induced twofold in P. sojae-infected tissues as compared to that in water controls. Eight soybean genes were down-regulated twofold following P. sojae infection as compared to water controls. Differential expression of a few selected genes was confirmed by conducting Northern and RT-PCR analyses. We have shown that two putative regulators of chromosome condensation 1 (RCC1) family proteins were down-regulated in the incompatible interaction. This observation suggested that the nucleocytoplasmic transport function for trafficking protein and non-coding RNA is suppressed during expression of race-specific Phytophthora resistance. Characterization of a cDNA library generated from tissues harvested almost immediately following P. sojae-infection of a resistant cultivar allowed us to identify many candidate signaling genes that are presumably involved in regulating the expression of defense-related pathways for expression of Phytophthora resistance in soybean.
Collapse
|
83
|
Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO J 2009; 28:591-601. [PMID: 19165148 DOI: 10.1038/emboj.2009.4] [Citation(s) in RCA: 453] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 01/05/2009] [Indexed: 12/28/2022] Open
Abstract
The ultraviolet-B (UV-B) portion of the solar radiation functions as an environmental signal for which plants have evolved specific and sensitive UV-B perception systems. The UV-B-specific UV RESPONSE LOCUS 8 (UVR8) and the multifunctional E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) are key regulators of the UV-B response. We show here that uvr8-null mutants are deficient in UV-B-induced photomorphogenesis and hypersensitive to UV-B stress, whereas overexpression of UVR8 results in enhanced UV-B photomorphogenesis, acclimation and tolerance to UV-B stress. By using sun simulators, we provide evidence at the physiological level that UV-B acclimation mediated by the UV-B-specific photoregulatory pathway is indeed required for survival in sunlight. At the molecular level, we demonstrate that the wild type but not the mutant UVR8 and COP1 proteins directly interact in a UV-B-dependent, rapid manner in planta. These data collectively suggest that UV-B-specific interaction of COP1 and UVR8 in the nucleus is a very early step in signalling and responsible for the plant's coordinated response to UV-B ensuring UV-B acclimation and protection in the natural environment.
Collapse
|
84
|
Abstract
A little over 10 years after its discovery in 1997, the small inhibitor of apoptosis (IAP) protein, survivin, continues to generate intense interest and keen attention from disparate segments of basic and disease-related research. Part of this interest reflects the intricate biology of this multifunctional protein that intersects fundamental networks of cellular homeostasis. Part is because of the role of survivin as a cancer gene, which touches nearly every aspect of the disease, from onset to outcome. And part is due to the potential value of survivin for novel cancer diagnostics and therapeutics, which have already reached the clinic, and with some promise. Grappling with emerging new signaling circuits in survivin biology, and their implications in cancer, will further our understanding of this nodal protein, and open fresh opportunities for translational oncology research.
Collapse
Affiliation(s)
- D C Altieri
- Department of Cancer Biology and the Cancer Center, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
85
|
Kutay U, Hetzer MW. Reorganization of the nuclear envelope during open mitosis. Curr Opin Cell Biol 2008; 20:669-77. [PMID: 18938243 DOI: 10.1016/j.ceb.2008.09.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2008] [Revised: 09/18/2008] [Accepted: 09/23/2008] [Indexed: 01/08/2023]
Abstract
The nuclear envelope (NE) provides a selective barrier between the nuclear interior and the cytoplasm and constitutes a central component of intracellular architecture. During mitosis in metazoa, the NE breaks down leading to the complete mixing of the nuclear content with the cytosol. Interestingly, many NE components actively participate in mitotic progression. After chromosome segregation, the NE is reassembled around decondensing chromatin and the nuclear compartment is reestablished in the daughter cells. Here, we summarize recent progress in deciphering the molecular mechanisms underlying NE dynamics during cell division.
Collapse
Affiliation(s)
- Ulrike Kutay
- Institute of Biochemistry, ETH Zurich, HPM F11.1, Schafmattstr.18, 8093 Zurich, Switzerland.
| | | |
Collapse
|
86
|
Meier I, Xu XM, Brkljacic J, Zhao Q, Wang HJ. Going green: plants' alternative way to position the Ran gradient. J Microsc 2008; 231:225-33. [PMID: 18778420 DOI: 10.1111/j.1365-2818.2008.02038.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ran is a multi-functional small GTPase of the Ras super-family involved in nucleocytoplasmic transport, mitotic spindle assembly, cell cycle control and nuclear envelope (NE) formation. Its roles are accomplished by the asymmetric distribution of its GTP- and GDP-bound forms, enabled by the specific localization of Ran accessory proteins, the Ran GTPase-activating protein RanGAP and the nucleotide exchange factor RCC1. Mammalian RanGAP1 is targeted to the NE during interphase and to the spindle and kinetochores during mitosis via a SUMOylated C-terminal domain and interaction with the nucleoporin Nup358/RanBP2. Arabidopsis RanGAP1 (AtRanGAP1) lacks the SUMOylated C-terminal domain of vertebrate RanGAP, but contains a plant-specific N-terminal domain (WPP domain), which is necessary and sufficient for its targeting to the NE in interphase. AtRanGAP1 has a mitotic trafficking pattern uniquely different from that of vertebrate RanGAP, which includes targeting to the outward-growing rim of the cell plate. The WPP domain is necessary and sufficient for this targeting. Now, a novel family of plant-specific, nuclear pore-associated proteins has been identified in Arabidopsis, which is essential for anchoring RanGAP to the Arabidopsis nuclear envelope at the root meristem. This suggests that RanGAP anchoring to the nuclear pore has been solved in two fundamentally different ways in animals and plants. These findings support a separate evolution of RanGAP targeting mechanisms in different kingdoms, possibly related to different functional geometries of the Ran gradient in animal and higher plant cell division.
Collapse
Affiliation(s)
- I Meier
- Plant Biotechnology Center and Department of Plant Cellular and Molecular Biology, The Ohio State University, 244 Rightmire Hall, 1060 Carmack Road, Columbus, Ohio 43210, USA.
| | | | | | | | | |
Collapse
|
87
|
Vos JW, Pieuchot L, Evrard JL, Janski N, Bergdoll M, de Ronde D, Perez LH, Sardon T, Vernos I, Schmit AC. The plant TPX2 protein regulates prospindle assembly before nuclear envelope breakdown. THE PLANT CELL 2008; 20:2783-97. [PMID: 18941054 PMCID: PMC2590745 DOI: 10.1105/tpc.107.056796] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 10/02/2008] [Accepted: 10/09/2008] [Indexed: 05/18/2023]
Abstract
The Targeting Protein for Xklp2 (TPX2) is a central regulator of spindle assembly in vertebrate cells. The absence or excess of TPX2 inhibits spindle formation. We have defined a TPX2 signature motif that is present once in vertebrate sequences but twice in plants. Plant TPX2 is predominantly nuclear during interphase and is actively exported before nuclear envelope breakdown to initiate prospindle assembly. It localizes to the spindle microtubules but not to the interdigitating polar microtubules during anaphase or to the phragmoplast as it is rapidly degraded during telophase. We characterized the Arabidopsis thaliana TPX2-targeting domains and show that the protein is able to rescue microtubule assembly in TPX2-depleted Xenopus laevis egg extracts. Injection of antibodies to TPX2 into living plant cells inhibits the onset of mitosis. These results demonstrate that plant TPX2 already functions before nuclear envelope breakdown. Thus, plants have adapted nuclear-cytoplasmic shuttling of TPX2 to maintain proper spindle assembly without centrosomes.
Collapse
Affiliation(s)
- Jan W Vos
- Laboratory of Plant Cell Biology, Wageningen University, 6703 BD Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Venoux M, Delmouly K, Milhavet O, Vidal-Eychenié S, Giorgi D, Rouquier S. Gene organization, evolution and expression of the microtubule-associated protein ASAP (MAP9). BMC Genomics 2008; 9:406. [PMID: 18782428 PMCID: PMC2551623 DOI: 10.1186/1471-2164-9-406] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 09/09/2008] [Indexed: 11/10/2022] Open
Abstract
Background ASAP is a newly characterized microtubule-associated protein (MAP) essential for proper cell-cycling. We have previously shown that expression deregulation of human ASAP results in profound defects in mitotic spindle formation and mitotic progression leading to aneuploidy, cytokinesis defects and/or cell death. In the present work we analyze the structure and evolution of the ASAP gene, as well as the domain composition of the encoded protein. Mouse and Xenopus cDNAs were cloned, the tissue expression characterized and the overexpression profile analyzed. Results Bona fide ASAP orthologs are found in vertebrates with more distantly related potential orthologs in invertebrates. This single-copy gene is conserved in mammals where it maps to syntenic chromosomal regions, but is also clearly identified in bird, fish and frog. The human gene is strongly expressed in brain and testis as a 2.6 Kb transcript encoding a ~110 KDa protein. The protein contains MAP, MIT-like and THY domains in the C-terminal part indicative of microtubule interaction, while the N-terminal part is more divergent. ASAP is composed of ~42% alpha helical structures, and two main coiled-coil regions have been identified. Different sequence features may suggest a role in DNA damage response. As with human ASAP, the mouse and Xenopus proteins localize to the microtubule network in interphase and to the mitotic spindle during mitosis. Overexpression of the mouse protein induces mitotic defects similar to those observed in human. In situ hybridization in testis localized ASAP to the germ cells, whereas in culture neurons ASAP localized to the cell body and growing neurites. Conclusion The conservation of ASAP indicated in our results reflects an essential function in vertebrates. We have cloned the ASAP orthologs in mouse and Xenopus, two valuable models to study the function of ASAP. Tissue expression of ASAP revealed a high expression in brain and testis, two tissues rich in microtubules. ASAP associates to the mitotic spindle and cytoplasmic microtubules, and represents a key factor of mitosis with possible involvement in other cell cycle processes. It may have a role in spermatogenesis and also represents a potential new target for antitumoral drugs. Possible involvement in neuron dynamics also highlights ASAP as a candidate target in neurodegenerative diseases.
Collapse
Affiliation(s)
- Magali Venoux
- Groupe Microtubules et Cycle Cellulaire, Institut de Génétique Humaine, CNRS UPR 1142, rue de cardonille, 34396 Montpellier cédex 5, France.
| | | | | | | | | | | |
Collapse
|
89
|
A survivin-ran complex regulates spindle formation in tumor cells. Mol Cell Biol 2008; 28:5299-311. [PMID: 18591255 DOI: 10.1128/mcb.02039-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aberrant cell division is a hallmark of cancer, but the molecular circuitries of this process in tumor cells are not well understood. Here, we used a high-throughput proteomics screening to identify novel molecular partners of survivin, an essential regulator of mitosis overexpressed in cancer. We found that survivin associates with the small GTPase Ran in an evolutionarily conserved recognition in mammalian cells and Xenopus laevis extracts. This interaction is regulated during the cell cycle, involves Ran-GTP, requires a discrete binding interface centered on Glu65 in survivin, and is independent of the Ran effector Crm1. Disruption of a survivin-Ran complex does not affect the assembly of survivin within the chromosomal passenger complex or its cytosolic accumulation, but it inhibits the delivery of the Ran effector molecule TPX2 to microtubules. In turn, this results in aberrant mitotic spindle formation and chromosome missegregation in tumor, but not normal, cells. Therefore, survivin is a novel effector of Ran signaling, and this pathway may be preferentially exploited for spindle assembly in tumor cells.
Collapse
|
90
|
Abstract
The small nuclear GTPase Ran controls the directionality of macromolecular transport between the nucleus and the cytoplasm. Ran also has important roles during mitosis, when the nucleus is dramatically reorganized to allow chromosome segregation. Ran directs the assembly of the mitotic spindle, nuclear-envelope dynamics and the timing of cell-cycle transitions. The mechanisms that underlie these functions provide insights into the spatial and temporal coordination of the changes that occur in intracellular organization during the cell-division cycle.
Collapse
Affiliation(s)
- Paul R Clarke
- Biomedical Research Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK.
| | | |
Collapse
|
91
|
Zhao Q, Brkljacic J, Meier I. Two distinct interacting classes of nuclear envelope-associated coiled-coil proteins are required for the tissue-specific nuclear envelope targeting of Arabidopsis RanGAP. THE PLANT CELL 2008; 20:1639-51. [PMID: 18591351 PMCID: PMC2483365 DOI: 10.1105/tpc.108.059220] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Ran GTPase plays essential roles in multiple cellular processes, including nucleocytoplasmic transport, spindle formation, and postmitotic nuclear envelope (NE) reassembly. The cytoplasmic Ran GTPase activating protein RanGAP is critical to establish a functional RanGTP/RanGDP gradient across the NE and is associated with the outer surface of the NE in metazoan and higher plant cells. Arabidopsis thaliana RanGAP association with the root tip NE requires a family of likely plant-specific nucleoporins combining coiled-coil and transmembrane domains (CC-TMD) and WPP domain-interacting proteins (WIPs). We have now identified, by tandem affinity purification coupled with mass spectrometry, a second family of CC-TMD proteins, structurally similar, yet clearly distinct from the WIP family, that is required for RanGAP NE association in root tip cells. A combination of loss-of-function mutant analysis and protein interaction data indicates that at least one member of each NE-associated CC-TMD protein family is required for RanGAP targeting in root tip cells, while both families are dispensable in other plant tissues. This suggests an unanticipated complexity of RanGAP NE targeting in higher plant cells, contrasting both the single nucleoporin anchor in metazoans and the lack of targeting in fungi and proposes an early evolutionary divergence of the underlying plant and animal mechanisms.
Collapse
Affiliation(s)
- Qiao Zhao
- Department of Plant Cellular and Molecular Biology, Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
92
|
Anderson DJ, Hetzer MW. Shaping the endoplasmic reticulum into the nuclear envelope. J Cell Sci 2008; 121:137-42. [PMID: 18187447 DOI: 10.1242/jcs.005777] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The nuclear envelope (NE), a double membrane enclosing the nucleus of eukaryotic cells, controls the flow of information between the nucleoplasm and the cytoplasm and provides a scaffold for the organization of chromatin and the cytoskeleton. In dividing metazoan cells, the NE breaks down at the onset of mitosis and then reforms around segregated chromosomes to generate the daughter nuclei. Recent data from intact cells and cell-free nuclear assembly systems suggest that the endoplasmic reticulum (ER) is the source of membrane for NE assembly. At the end of mitosis, ER membrane tubules are targeted to chromatin via tubule ends and reorganized into flat nuclear membrane sheets by specific DNA-binding membrane proteins. In contrast to previous models, which proposed vesicle fusion to be the principal mechanism of NE formation, these new studies suggest that the nuclear membrane forms by the chromatin-mediated reshaping of the ER.
Collapse
Affiliation(s)
- Daniel J Anderson
- Salk Institute for Biological Studies, Molecular and Cell Biology Laboratory, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
93
|
Abstract
The GTPase Ran has a key role in nuclear import and export, mitotic spindle assembly and nuclear envelope formation. The cycling of Ran between its GTP- and GDP-bound forms is catalyzed by the chromatin-bound guanine nucleotide exchange factor RCC1 and the cytoplasmic Ran GTPase-activating protein RanGAP. The result is an intracellular concentration gradient of RanGTP that equips eukaryotic cells with a ;genome-positioning system' (GPS). The binding of RanGTP to nuclear transport receptors (NTRs) of the importin beta superfamily mediates the effects of the gradient and generates further downstream gradients, which have been elucidated by fluorescence resonance energy transfer (FRET) imaging and computational modeling. The Ran-dependent GPS spatially directs many functions required for genome segregation by the mitotic spindle during mitosis. Through exportin 1, RanGTP recruits essential centrosome and kinetochore components, whereas the RanGTP-induced release of spindle assembly factors (SAFs) from importins activates SAFs to nucleate, bind and organize nascent spindle microtubules. Although a considerable fraction of cytoplasmic SAFs is active and RanGTP induces only partial further activation near chromatin, bipolar spindle assembly is robustly induced by cooperativity and positive-feedback mechanisms within the network of Ran-activated SAFs. The RanGTP gradient is conserved, although its roles vary among different cell types and species, and much remains to be learned regarding its functions.
Collapse
Affiliation(s)
- Petr Kalab
- Laboratory of Cell and Molecular Biology, National Cancer Institute, Bethesda, MD 20892-4256, USA.
| | | |
Collapse
|
94
|
Abstract
Deregulated cell division is a hallmark of cancer, but whether tumor cells become dependent on specific mitotic mechanisms is not known. Here, we show that the small GTPase Ran, a regulator of mitotic spindle formation, is differentially overexpressed in human cancer as compared with normal tissues, in vivo. Acute silencing of Ran in various tumor cell types causes aberrant mitotic spindle formation, mitochondrial dysfunction, and apoptosis. This pathway does not require p53, Bax, or Smac, but is controlled by survivin as a novel Ran target in cancer. Conversely, loss of Ran in normal cells is well tolerated and does not result in mitotic defects or loss of cell viability. Therefore, tumor cells can become dependent on Ran signaling for cell division, and targeting this pathway may provide a novel and selective anticancer strategy.
Collapse
Affiliation(s)
- Fang Xia
- Department of Cancer Biology, Cancer Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | |
Collapse
|
95
|
Tahara K, Takagi M, Ohsugi M, Sone T, Nishiumi F, Maeshima K, Horiuchi Y, Tokai-Nishizumi N, Imamoto F, Yamamoto T, Kose S, Imamoto N. Importin-beta and the small guanosine triphosphatase Ran mediate chromosome loading of the human chromokinesin Kid. ACTA ACUST UNITED AC 2008; 180:493-506. [PMID: 18268099 PMCID: PMC2234231 DOI: 10.1083/jcb.200708003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nucleocytoplasmic transport factors mediate various cellular processes, including nuclear transport, spindle assembly, and nuclear envelope/pore formation. In this paper, we identify the chromokinesin human kinesin-like DNA binding protein (hKid) as an import cargo of the importin-alpha/beta transport pathway and determine its nuclear localization signals (NLSs). Upon the loss of its functional NLSs, hKid exhibited reduced interactions with the mitotic chromosomes of living cells. In digitonin-permeabilized mitotic cells, hKid was bound only to the spindle and not to the chromosomes themselves. Surprisingly, hKid bound to importin-alpha/beta was efficiently targeted to mitotic chromosomes. The addition of Ran-guanosine diphosphate and an energy source, which generates Ran-guanosine triphosphate (GTP) locally at mitotic chromosomes, enhanced the importin-beta-mediated chromosome loading of hKid. Our results indicate that the association of importin-beta and -alpha with hKid triggers the initial targeting of hKid to mitotic chromosomes and that local Ran-GTP-mediated cargo release promotes the accumulation of hKid on chromosomes. Thus, this study demonstrates a novel nucleocytoplasmic transport factor-mediated mechanism for targeting proteins to mitotic chromosomes.
Collapse
Affiliation(s)
- Kiyoshi Tahara
- Cellular Dynamics Laboratory, Discovery Research Institute, Institute of Physical and Chemical Research, Wako, Saitama, 351-0198, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
|
97
|
Salpingidou G, Rzepecki R, Kiseleva E, Lyon C, Lane B, Fusiek K, Golebiewska A, Drummond S, Allen T, Ellis JA, Smythe C, Goldberg MW, Hutchison CJ. NEP-A and NEP-B both contribute to nuclear pore formation in Xenopus eggs and oocytes. J Cell Sci 2008; 121:706-16. [PMID: 18270266 DOI: 10.1242/jcs.019968] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In vertebrates, the nuclear envelope (NE) assembles and disassembles during mitosis. As the NE is a complex structure consisting of inner and outer membranes, nuclear pore complexes (NPCs) and the nuclear lamina, NE assembly must be a controlled and systematic process. In Xenopus egg extracts, NE assembly is mediated by two distinct membrane vesicle populations, termed NEP-A and NEP-B. Here, we re-investigate how these two membrane populations contribute to NPC assembly. In growing stage III Xenopus oocytes, NPC assembly intermediates are frequently observed. High concentrations of NPC assembly intermediates always correlate with fusion of vesicles into preformed membranes. In Xenopus egg extracts, two integral membrane proteins essential for NPC assembly, POM121 and NDC1, are exclusively associated with NEP-B membranes. By contrast, a third integral membrane protein associated with the NPCs, gp210, associates only with NEP-A membranes. During NE assembly, fusion between NEP-A and NEP-B led to the formation of fusion junctions at which >65% of assembling NPCs were located. To investigate how each membrane type contributes to NPC assembly, we preferentially limited NEP-A in NE assembly assays. We found that, by limiting the NEP-A contribution to the NE, partially formed NPCs were assembled in which protein components of the nucleoplasmic face were depleted or absent. Our data suggest that fusion between NEP-A and NEP-B membranes is essential for NPC assembly and that, in contrast to previous reports, both membranes contribute to NPC assembly.
Collapse
Affiliation(s)
- Georgia Salpingidou
- Integrative Cell Biology Laboratories, School of Biological and Biomedical Sciences, The University of Durham, South Road, Durham DH1 3LE, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Walczak CE, Heald R. Mechanisms of mitotic spindle assembly and function. INTERNATIONAL REVIEW OF CYTOLOGY 2008; 265:111-58. [PMID: 18275887 DOI: 10.1016/s0074-7696(07)65003-7] [Citation(s) in RCA: 281] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mitotic spindle is the macromolecular machine that segregates chromosomes to two daughter cells during mitosis. The major structural elements of the spindle are microtubule polymers, whose intrinsic polarity and dynamic properties are critical for bipolar spindle organization and function. In most cell types, spindle microtubule nucleation occurs primarily at two centrosomes, which define the spindle poles, but microtubules can also be generated by the chromosomes and within the spindle itself. Many associated factors help organize the spindle, including molecular motors and regulators of microtubule dynamics. The past decade has provided a wealth of information on the molecular players that are critical for spindle assembly as well as a high-resolution view of the intricate movements and dynamics of the spindle microtubules and the chromosomes. In this chapter we provide a historical account of the key observations leading to current models of spindle assembly, as well as an up-to-date status report on this exciting field.
Collapse
Affiliation(s)
- Claire E Walczak
- Medical Sciences Program, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
99
|
Kalab P, Pralle A. Chapter 21 Quantitative Fluorescence Lifetime Imaging in Cells as a Tool to Design Computational Models of Ran‐Regulated Reaction Networks. Methods Cell Biol 2008; 89:541-68. [DOI: 10.1016/s0091-679x(08)00621-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
100
|
Abstract
Alp7/TACC has been identified as an important target for Ran GTPase in spindle formation in fission yeast. This discovery underlines a general role for Ran in orchestrating mitosis in all eukaryotes.
Collapse
Affiliation(s)
- Paul R Clarke
- Biomedical Research Centre, Level 5, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK.
| | | |
Collapse
|