51
|
Tran NM, Nguyen AN, Bae J, Kim J, Kim D, Yoo H. Recent strategies for constructing hierarchical multicomponent nanoparticles/metal-organic framework hybrids and their applications. NANOSCALE ADVANCES 2023; 5:3589-3605. [PMID: 37441260 PMCID: PMC10334412 DOI: 10.1039/d3na00213f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/25/2023] [Indexed: 07/15/2023]
Abstract
Hybrid nanoparticles with unique tailored morphologies and compositions can be utilized for numerous applications owing to their combination of inherent properties as well as the structural and supportive functions of each component. Controlled encapsulation of nanoparticles within nanospaces (NPNSs) of metal-organic frameworks (MOFs) (denoted as NPNS@MOF) can generate a large number of hybrid nanomaterials, facilitating superior activity in targeted applications. In this review, recent strategies for the fabrication of NPNS@MOFs with a hierarchical architecture, tailorability, unique intrinsic properties, and superior catalytic performance are summarized. In addition, the latest and most important examples in this sector are emphasized since they are more conducive to the practical applicability of NPNS@MOF nanohybrids.
Collapse
Affiliation(s)
- Ngoc Minh Tran
- Department of Materials Science and Chemical Engineering, Hanyang University Ansan Gyeonggi-do 15588 Republic of Korea
| | - Anh Ngoc Nguyen
- Department of Materials Science and Chemical Engineering, Hanyang University Ansan Gyeonggi-do 15588 Republic of Korea
| | - Jungeun Bae
- Department of Materials Science and Chemical Engineering, Hanyang University Ansan Gyeonggi-do 15588 Republic of Korea
| | - Jinhee Kim
- Department of Materials Science and Chemical Engineering, Hanyang University Ansan Gyeonggi-do 15588 Republic of Korea
| | - Dahae Kim
- Department of Materials Science and Chemical Engineering, Hanyang University Ansan Gyeonggi-do 15588 Republic of Korea
| | - Hyojong Yoo
- Department of Materials Science and Chemical Engineering, Hanyang University Ansan Gyeonggi-do 15588 Republic of Korea
| |
Collapse
|
52
|
Li C, Zhang Y, Gong S, Zhang Y, Yan X, Xu H, Cui Z, Qi J, Wang H, Fan X, Peng W, Liu J. Strong interface coupling boosting hierarchical bismuth embedded carbon hybrid for high-performance capacitive deionization. J Colloid Interface Sci 2023; 648:357-364. [PMID: 37301160 DOI: 10.1016/j.jcis.2023.05.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Capacitive deionization (CDI) is regarded as a promising desalination technology owing to its low cost and environmental friendliness. However, the lack of high-performance electrode materials remains a challenge in CDI. Herein, the hierarchical bismuth-embedded carbon (Bi@C) hybrid with strong interface coupling was prepared through facile solvothermal and annealing strategy. The hierarchical structure with strong interface coupling between the bismuth and carbon matrix afforded abundant active sites for chloridion (Cl-) capture, improved electrons/ions transfer and the stability of the Bi@C hybrid. As a result of these advantages, the Bi@C hybrid showed a high salt adsorption capacity (75.3 mg/g under 1.2 V), salt adsorption rate and good stability, making it a promising electrode material for CDI. Furthermore, the desalination mechanism of the Bi@C hybrid was elucidated through various characterizations. Therefore, this work provides valuable insights for the design of high-performance bismuth-based electrode materials for CDI.
Collapse
Affiliation(s)
- Chunli Li
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Yaning Zhang
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Siqi Gong
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Yufen Zhang
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Xiaoteng Yan
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Huiting Xu
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Zhijie Cui
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Junjie Qi
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Honghai Wang
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiapeng Liu
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
53
|
Fu M, Lin L, Wang X, Yang X. Hydrogen bonds and space restriction promoting long-lived room-temperature phosphorescence and its application for white light-emitting diodes. J Colloid Interface Sci 2023; 639:78-86. [PMID: 36804795 DOI: 10.1016/j.jcis.2023.02.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Achieving the long-lived and strong room-temperature phosphorescence (RTP) is challengeable but desirable, especially for the enhanced phosphorescence and metal-free nanomaterials. Herein, we initially synthesized the green-fluorescence carbon dots (pm-CDs), and further obtained the composite of pm-CDs@DCDA with a long RTP lifetime of 1.01 s through embedding pm-CDs in dicyandiamide (DCDA). And the bright and long-lived afterglow of pm-CDs@DCDA with 365 nm of UV light excitation was observed by the naked eyes for more than 17 s either emerging as the dry solid or in water. Importantly, the phosphorescence intensity and lifetime of pm-CDs@DCDA were remarkably promoted owing to the intermolecular hydrogen bonds and the rigid environment, hence facilitating the intersystem crossing (ISC) process and restricting the non-radiative transition of triplet excitons. Taking advantage of the superior solid-state luminescence of pm-CDs@DCDA, we further innovatively prepared the white light-emitting diodes (WLEDs) with the tunable color temperatures by regulating the mass of pm-CDs@DCDA coated on the chips. This proposed study originally employed DCDA as a matrix to separate and immobilize pm-CDs, which built up a new avenue to improve the RTP property and offered a promising application in WLEDs.
Collapse
Affiliation(s)
- Miao Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Liuquan Lin
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xin Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoming Yang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
54
|
Gadipelli S, Guo J, Li Z, Howard CA, Liang Y, Zhang H, Shearing PR, Brett DJL. Understanding and Optimizing Capacitance Performance in Reduced Graphene-Oxide Based Supercapacitors. SMALL METHODS 2023; 7:e2201557. [PMID: 36895068 DOI: 10.1002/smtd.202201557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/10/2023] [Indexed: 06/09/2023]
Abstract
Reduced graphene-oxide (RGO)-based electrodes in supercapacitors deliver high energy/power capacities compared to typical nanoporous carbon materials. However, extensive critical analysis of literature reveals enormous discrepancies (up to 250 F g-1 ) in the reported capacitance (variation of 100-350 F g-1 ) of RGO materials synthesized under seemingly similar methods, inhibiting an understanding of capacitance variation. Here, the key factors that control the capacitance performance of RGO electrodes are demonstrated by analyzing and optimizing various types of commonly applied electrode fabrication methods. Beyond usual data acquisition parameters and oxidation/reduction properties of RGO, a substantial difference of more than 100% in capacitance values (with change from 190 ± 20 to 340 ± 10 F g-1 ) is found depending on the electrode preparation method. For this demonstration, ≈40 RGO-based electrodes are fabricated from numerous distinctly different RGO materials via typically applied methods of solution (aqueous and organic) casting and compressed powders. The influence of data acquisition conditions and capacitance estimation practices are also discussed. Furthermore, by optimizing electrode processing method, a direct surface area governed capacitance relationship for RGO structures is revealed.
Collapse
Affiliation(s)
- Srinivas Gadipelli
- College of Physics, Sichuan University, Chengdu, 610064, China
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Jian Guo
- College of Physics, Sichuan University, Chengdu, 610064, China
| | - Zhuangnan Li
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK
| | - Christopher A Howard
- Department of Physics & Astronomy, University College London, London, WC1E 6BT, UK
| | - Yini Liang
- College of Physics, Sichuan University, Chengdu, 610064, China
| | - Hong Zhang
- College of Physics, Sichuan University, Chengdu, 610064, China
| | - Paul R Shearing
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Dan J L Brett
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| |
Collapse
|
55
|
Pan Z, Yu S, Wang L, Li C, Meng F, Wang N, Zhou S, Xiong Y, Wang Z, Wu Y, Liu X, Fang B, Zhang Y. Recent Advances in Porous Carbon Materials as Electrodes for Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111744. [PMID: 37299646 DOI: 10.3390/nano13111744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/13/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Porous carbon materials have demonstrated exceptional performance in various energy and environment-related applications. Recently, research on supercapacitors has been steadily increasing, and porous carbon materials have emerged as the most significant electrode material for supercapacitors. Nonetheless, the high cost and potential for environmental pollution associated with the preparation process of porous carbon materials remain significant issues. This paper presents an overview of common methods for preparing porous carbon materials, including the carbon-activation method, hard-templating method, soft-templating method, sacrificial-templating method, and self-templating method. Additionally, we also review several emerging methods for the preparation of porous carbon materials, such as copolymer pyrolysis, carbohydrate self-activation, and laser scribing. We then categorise porous carbons based on their pore sizes and the presence or absence of heteroatom doping. Finally, we provide an overview of recent applications of porous carbon materials as electrodes for supercapacitors.
Collapse
Affiliation(s)
- Zhengdao Pan
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Sheng Yu
- Department of Chemistry, Washington State University, Pullman, Washington, DC 99164, USA
| | - Linfang Wang
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chenyu Li
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Fei Meng
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Nan Wang
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shouxin Zhou
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ye Xiong
- Kucap Smart Technology (Nanjing) Co., Ltd., Nanjing 211106, China
| | - Zhoulu Wang
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yutong Wu
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiang Liu
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Baizeng Fang
- Department of Energy Storage Science and Technology, University of Science and Technology Beijing, 30 College Road, Beijing 100083, China
| | - Yi Zhang
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
56
|
Pappas NS, Mason JA. Effect of modulator ligands on the growth of Co 2(dobdc) nanorods. Chem Sci 2023; 14:4647-4652. [PMID: 37152265 PMCID: PMC10155910 DOI: 10.1039/d2sc06869a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
Control over the size, shape, uniformity, and external surface chemistry of metal-organic framework nanocrystals is important for a wide range of applications. Here, we investigate how monotopic modulators that mimic the coordination mode of native bridging ligands affect the growth of anisotropic Co2(dobdc) (dobdc4- = 2,5-dihydroxy-1,4-benzenedicarboxylic acid) nanorods. Through a combination of transmission electron microscopy (TEM) and nuclear magnetic resonance spectroscopy (NMR) studies, nanorod diameter was found to be strongly correlated to the acidity of the modulator and to the degree of modulator incorporation into the nanorod structure. Notably, highly acidic modulators allowed for the preparation of sub-10 nm nanorods, a previously elusive size regime for the M2(dobdc) family. More broadly, this study provides new insights into the mechanism of modulated growth of metal-organic framework nanoparticles.
Collapse
Affiliation(s)
- Nina S Pappas
- Department of Chemistry and Chemical Biology, Harvard University Cambridge MA 02138 USA
| | - Jarad A Mason
- Department of Chemistry and Chemical Biology, Harvard University Cambridge MA 02138 USA
| |
Collapse
|
57
|
Hada V, Chaturvedi K, Singhwane A, Siraj N, Gupta A, Sathish N, Chaurasia JP, Srivastava AK, Verma S. Nanoantibiotic effect of carbon-based nanocomposites: epicentric on graphene, carbon nanotubes and fullerene composites: a review. 3 Biotech 2023; 13:147. [PMID: 37124988 PMCID: PMC10140225 DOI: 10.1007/s13205-023-03552-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Carbon in many different forms especially, Graphene, Carbon nanotubes (CNTs), and Fullerene is emerging as an important material in the areas of the biomedical field for various applications. This review comprehensively describes the nano antibiotic effect of carbon-based nanocomposites: epicenter on graphene, carbon nanotubes, and fullerene Composites. It summarises the studies conducted to evaluate their antimicrobial applications as they can disrupt the cell membrane of bacteria resulting in cell death. The initial section gives a glimpse of both "Gram"-positive and negative bacteria, which have been affected by Graphene, CNTs, and Fullerene-based nanocomposites. These bacteria include Staphylococcus Aureus, Bacillus Thuringiensis, Enterococcus faecalis, Enterococcus faecium, Bacillus subtilis, Escherichia coli, Klebseilla pneumoniae, Pseudomonas aeroginosa, Pseudomonas syringae , Shigella flexneri,Candida Albicans, Mucor. Another section is dedicated to the insight of Graphene, and its types such as Graphene Oxide (GO), Reduced graphene oxide (rGO), Graphene Nanoplatelets (GNPs), Graphene Nanoribbons (GNRs), and Graphene Quantum Dots (GQDs). Insight into CNT, including both the types SWCNT and MWCNT, studied, followed by understanding fullerene is also reported. Another section is dedicated to the antibacterial mechanism of Graphene, CNT, and Fullerene-based nanocomposites. Further, an additional section is dedicated to a comprehensive review of the antibacterial characteristics of Graphene, CNT, and nanocomposites based on fullerene. Future perspectives and recommendations have also been highlighted in the last section.
Collapse
Affiliation(s)
- Vaishnavi Hada
- Council of Scientific and Industrial Research, Advanced Materials and Processes Research Institute, Bhopal, MP 462026 India
| | - Kamna Chaturvedi
- Council of Scientific and Industrial Research, Advanced Materials and Processes Research Institute, Bhopal, MP 462026 India
- Academy of Council Scientific and Industrial Research, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, MP 462026 India
| | - Anju Singhwane
- Council of Scientific and Industrial Research, Advanced Materials and Processes Research Institute, Bhopal, MP 462026 India
| | - Naved Siraj
- Academy of Council Scientific and Industrial Research, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, MP 462026 India
| | - Ayush Gupta
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Bhopal, MP 462026 India
| | - N. Sathish
- Council of Scientific and Industrial Research, Advanced Materials and Processes Research Institute, Bhopal, MP 462026 India
- Academy of Council Scientific and Industrial Research, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, MP 462026 India
| | - J. P. Chaurasia
- Council of Scientific and Industrial Research, Advanced Materials and Processes Research Institute, Bhopal, MP 462026 India
- Academy of Council Scientific and Industrial Research, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, MP 462026 India
| | - A. K. Srivastava
- Council of Scientific and Industrial Research, Advanced Materials and Processes Research Institute, Bhopal, MP 462026 India
- Academy of Council Scientific and Industrial Research, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, MP 462026 India
| | - Sarika Verma
- Council of Scientific and Industrial Research, Advanced Materials and Processes Research Institute, Bhopal, MP 462026 India
- Academy of Council Scientific and Industrial Research, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, MP 462026 India
| |
Collapse
|
58
|
Wu D, Wu S, Zhang G, Hui C, Cao D, Guo S, Feng H, Wang Q, Cheng S, Cui P, Yang Z. Boosting Li-O 2 Battery Performance via Coupling of P-N Site-Rich N, P Co-Doped Graphene-Like Carbon Nanosheets with Nano-CePO 4. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206455. [PMID: 36755193 DOI: 10.1002/smll.202206455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/11/2023] [Indexed: 05/11/2023]
Abstract
Development of efficient and robust cathode catalysts is critical for the commercialization of Li-O2 batteries (LOBs). Herein, a well-designed CePO4 @N-P-CNSs cathode catalyst for LOBs via coupling P-N site-rich N, P co-doped graphene-like carbon nanosheets (N-P-CNSs) with nano-CePO4 via a novel "in situ derivation" coupling strategy by in situ transforming the P atoms of P-C sites in N-P-CNSs to CePO4 is reported. The CePO4 @N-P-CNSs exhibit superior bifunctional ORR/OER activity relative to commercial Pt/C-RuO2 with an overall overpotential of 0.64 V (vs RHE). Moreover, the LOB with CePO4 @N-P-CNSs as the cathode catalyst delivers a low charge overpotential of 0.67 V (vs Li/Li+ ), high discharge capacity of 29774 mAh g-1 at 100 mA g-1 and long cycling stability of 415 cycles, respectively. The remarkably enhanced LOB performance is attributable to the in situ derived CePO4 nanoparticles and the P-N sites in N-P-CNSs, which facilitate increased bifunctional ORR/OER activity, promote the rapid and effective decomposition of Li2 O2 and inhibit the formation of Li2 CO3 . This work may provide new inspiration for designing efficient, durable, and cost-effective cathode catalysts for LOBs.
Collapse
Affiliation(s)
- Di Wu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, P. R. China
| | - Shan Wu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, P. R. China
| | - Genlei Zhang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, P. R. China
| | - Chenyang Hui
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, P. R. China
| | - Dongjie Cao
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, P. R. China
| | - Shiyu Guo
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, P. R. China
| | - Huajie Feng
- School of Chemistry and Chemical Engineering, Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, Hainan Normal University, Longkunnan Road 99, Haikou, 571158, P. R. China
| | - Qi Wang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, P. R. China
| | - Sheng Cheng
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, P. R. China
| | - Peng Cui
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, P. R. China
| | - Zhenzhen Yang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Tunxi Road 193, Hefei, 230009, P. R. China
| |
Collapse
|
59
|
Chen N, Che S, Yuan Y, Liu H, Ta N, Li G, Chen FJ, Ma G, Jiang B, Wu N, Yu W, Yang F, Li Y. Self-supporting electrocatalyst constructed from in-situ transformation of Co(OH) 2 to metal-organic framework to Co/CoP/NC nanosheets for high-current-density water splitting. J Colloid Interface Sci 2023; 645:513-524. [PMID: 37159993 DOI: 10.1016/j.jcis.2023.04.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/11/2023]
Abstract
Transition metal phosphide (TMP) emerges as a promising electrocatalyst for overall water splitting (OWS). However, conventional TMP materials require exogenous metal ions to participate in coordination reactions, which usually suffer from active site blocking, pronounced intrinsic impedance, and inevitable catalyst shedding at high current density. Herein, a novel in-situ construction strategy has been developed to grow N-doped carbon (NC) enwrapped Co/CoP nanosheets directly onto Co foam (abbreviated as CoF) through a three-step transformation of Co to Co(OH)2 to Co-Metal-Organic Framework (Co-MOF) to Co/CoP/NC. In the entire preparation process, Co metal is only provided by the CoF substrate without external metal sources. Such in-situ construction yields tight contact at the interface of the heterogeneous catalyst, leading to much-reduced impedance and boundary vacancy, while the porous nitrogen-doped carbon backbone further endows the catalyst with the exposure of massive active sites, promotes mass transfer, and possesses high electrical conductivity. The Co/CoP/NC/CoF requires overpotentials of only 64 mV/263 mV@10 mA cm-2 and 414 mV/481 mV@400 mA cm-2 for both HER/OER in 1.0 M KOH, respectively. Remarkably, it reveals excellent OWS catalytic activity with a cell voltage of 1.56 V@10 mA cm-2 and 1.88 V@200 mA cm-2. This strategy of in-situ interface engineering transformation provides new ideas for direct device processing and construction of highly-efficient transition-metal-based OWS electrode materials.
Collapse
Affiliation(s)
- Neng Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Sai Che
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China.
| | - Yu Yuan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Hongchen Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Na Ta
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Guohua Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Feng Jiang Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Guang Ma
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Bo Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Ni Wu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Weiqi Yu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Fan Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China
| | - Yongfeng Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping 102249, China.
| |
Collapse
|
60
|
Yan J, Wang Y, Liu W, Liu P, Chen W. Two-Dimensional Metal Organic Framework derived Nitrogen-doped Graphene-like Carbon Nanomesh toward Efficient Electromagnetic Wave Absorption. J Colloid Interface Sci 2023; 643:318-327. [PMID: 37075540 DOI: 10.1016/j.jcis.2023.04.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
Functional two-dimensional (2D) graphene-like carbon has the potential to be a good electromagnetic wave absorbing material due to its good electronic properties, but the preparation of 2D carbon via metal-organic frameworks (MOFs) derivation method is still a bottleneck. Herein, we fabricated ultrathin nitrogen-doped graphene-like carbon nanomesh (N-GN) via thermal exfoliation of 2D MOF (Zn-ZIF-L) directly. The species of the chloride salt that exfoliated Zn-ZIF-L have an effect on the nitrogen content, graphitization degree, pore size and specific surface area of N-GN. The Zn-ZIF-L derived N-GN exfoliated by KCl and LiCl simultaneously has the optimum reflection loss of -54 dB only with the thickness of 2.1 mm and the filler loading of 3 wt%. The excellent electromagnetic wave absorbing property is attributed to its favorable structure, micro-meso-macropores, N heteroatoms, abundant heterogeneous graphene-like carbon nanomesh interfaces and defects. Our simple and low-cost preparation process facilitates the large-scale production and application for electromagnetic wave absorbing material of functionalized graphene-like carbon.
Collapse
Affiliation(s)
- Jing Yan
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China; Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, Xi'an 710021, China.
| | - Yan Wang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China; Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, Xi'an 710021, China
| | - Wenjie Liu
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China; Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, Xi'an 710021, China
| | - Panbo Liu
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Ministry of Education, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Weixing Chen
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China; Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, Xi'an 710021, China.
| |
Collapse
|
61
|
Abstract
Porous organic cages (POCs) are a relatively new class of low-density crystalline materials that have emerged as a versatile platform for investigating molecular recognition, gas storage and separation, and proton conduction, with potential applications in the fields of porous liquids, highly permeable membranes, heterogeneous catalysis, and microreactors. In common with highly extended porous structures, such as metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and porous organic polymers (POPs), POCs possess all of the advantages of highly specific surface areas, porosities, open pore channels, and tunable structures. In addition, they have discrete molecular structures and exhibit good to excellent solubilities in common solvents, enabling their solution dispersibility and processability─properties that are not readily available in the case of the well-established, insoluble, extended porous frameworks. Here, we present a critical review summarizing in detail recent progress and breakthroughs─especially during the past five years─of all the POCs while taking a close look at their strategic design, precise synthesis, including both irreversible bond-forming chemistry and dynamic covalent chemistry, advanced characterization, and diverse applications. We highlight representative POC examples in an attempt to gain some understanding of their structure-function relationships. We also discuss future challenges and opportunities in the design, synthesis, characterization, and application of POCs. We anticipate that this review will be useful to researchers working in this field when it comes to designing and developing new POCs with desired functions.
Collapse
Affiliation(s)
- Xinchun Yang
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Zakir Ullah
- Convergence Research Center for Insect Vectors, Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, South Korea
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Cafer T Yavuz
- Oxide & Organic Nanomaterials for Energy & Environment Laboratory, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal 23955, Saudi Arabia
- Advanced Membranes & Porous Materials Center, PSE, KAUST, 4700 KAUST, Thuwal 23955, Saudi Arabia
- KAUST Catalysis Center, PSE, KAUST, 4700 KAUST, Thuwal 23955, Saudi Arabia
| |
Collapse
|
62
|
Duan C, Meng M, Huang H, Wang H, Ding H, Zhang Q. Adsorptivity and kinetics for low concentration of gaseous formaldehyde on bamboo-based activated carbon loaded with ammonium acetate particles. ENVIRONMENTAL RESEARCH 2023; 222:115364. [PMID: 36736757 DOI: 10.1016/j.envres.2023.115364] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
The highly promising formaldehyde (HCHO)-removing materials are essential for eliminating interior pollution to safeguard the public's health with increasing indoor HCHO contamination situations being recorded on a global scale. In the paper, bamboo charcoal (BC) was activated with boric acid to prepare bamboo-based activated carbon (BAC), and then impregnated with ammonium acetate solution to successfully develop porous adsorbent with ammonium acetate particles (N/BAC), which was applied to remove low concentration of HCHO at room temperature. The adsorption performance for HCHO was systematically investigated while the surface chemical properties and microstructure of the as-prepared adsorbents were described and analyzed. The specific surface area, total pore volume and microporous volume of N/BAC sample were 240.09 m2/g, 0.27 cm3/g and 0.12 cm3/g, which increased by 42.40 m2/g, 0.15 cm3/g and 0.03 cm3/g compared with BAC sample, respectively. The specific surface area and the microporous volume, as well as the content of oxygen- and nitrogen-containing functional groups of N/BAC sample were augmented by contrast with other samples, and numerous ammonium acetate particles were present on the surface. Precisely because of this, the N/BAC sample exhibited a high removal rate of 98.89%, which was 18.38% greater than that of BAC sample. A superior correlation coefficient (0.9999) from the experimental values of the kinetics and the fitted values of the pseudo-second-order kinetic model demonstrated that the adsorption process of HCHO on N/BAC sample was physical-chemical combined adsorption. The adsorption of HCHO on N/BAC sample was investigated under different humidity, and the results showed that the adsorbent yet had excellent adsorption capacity (87.93%) under RH 75%. Moreover, the N/BAC sample was renewable, and the removal rate still reached 82.81% after five cycles of regeneration. Therefore, the as-prepared adsorbent is an effective, economical and sustainable material, and could be used to remove HCHO from real contaminated indoor air.
Collapse
Affiliation(s)
- Chaomin Duan
- College of Environment and Resources, Guangxi Normal University, Guilin, 541004, China
| | - Mianwu Meng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, China, Guilin, 541004, China; College of Environment and Resources, Guangxi Normal University, Guilin, 541004, China.
| | - Huang Huang
- Guilin Huayue Entech Limited Company, Guilin, Guangxi, 541805, China.
| | - Heng Wang
- Guilin Huayue Entech Limited Company, Guilin, Guangxi, 541805, China.
| | - Hua Ding
- College of Environment and Resources, Guangxi Normal University, Guilin, 541004, China
| | - Qi Zhang
- College of Environment and Resources, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|
63
|
Lamiel C, Hussain I, Rabiee H, Ogunsakin OR, Zhang K. Metal-organic framework-derived transition metal chalcogenides (S, Se, and Te): Challenges, recent progress, and future directions in electrochemical energy storage and conversion systems. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
64
|
Feng X, Ning Y, Wu Z, Li Z, Xu C, Li G, Hu Z. Defect-Enriched Graphene Nanoribbons Tune the Adsorption Behavior of the Mediator to Boost the Lactate/Oxygen Biofuel Cell. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1089. [PMID: 36985983 PMCID: PMC10058110 DOI: 10.3390/nano13061089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Owing to the high efficiency and specificity in moderate conditions, enzymatic biofuel cells (EBFCs) have gained significant interest as a promising energy source for wearable devices. However, the instability of the bioelectrode and the lack of efficient electrical communication between the enzymes and electrodes are the main obstacles. Herein, defect-enriched 3D graphene nanoribbons (GNRs) frameworks are fabricated by unzipping multiwall carbon nanotubes, followed by thermal annealing. It is found that defective carbon shows stronger adsorption energy towards the polar mediators than the pristine carbon, which is beneficial to improving the stability of the bioelectrodes. Consequently, the EBFCs equipped with the GNRs exhibit a significantly enhanced bioelectrocatalytic performance and operational stability, delivering an open-circuit voltage and power density of 0.62 V, 70.7 μW/cm2, and 0.58 V, 18.6 μW/cm2 in phosphate buffer solution and artificial tear, respectively, which represent the high levels among the reported literature. This work provides a design principle according to which defective carbon materials could be more suitable for the immobilization of biocatalytic components in the application of EBFCs.
Collapse
Affiliation(s)
- Xiaoyu Feng
- College of Textiles and Clothing, Xinjiang University, Urumqi 830046, China
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yongyue Ning
- Beijing Institute of Radiation Medicine, Beijing 100850, China
- Key Laboratory of Nanobiosensing and Nanobioanalysis, Universities of Jilin Province, Northeast Normal University, Changchun 130024, China
| | - Zhongdong Wu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zihan Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
- Key Laboratory of Nanobiosensing and Nanobioanalysis, Universities of Jilin Province, Northeast Normal University, Changchun 130024, China
| | - Cuixing Xu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Gangyong Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
- Key Laboratory of Hunan Province for Advanced Carbon-Based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Zongqian Hu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
65
|
Qi J, Liu X, Zhang Y, Zhu G, Tang S, Yu X, Su Y, Chen S, Liang D, Chen G. Adsorption of chloramphenicol from water using Carex meyeriana Kunth-derived hierarchical porous carbon with open channel arrays. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:31060-31076. [PMID: 36441301 DOI: 10.1007/s11356-022-24223-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
A carbon material with both open macrochannel arrays and abundant micro/mesopores was prepared, characterized, and applied for removing chloramphenicol (CAP) from water. In the preparation process, Carex meyeriana Kunth (CM) with natural channel arrays was used as the precursor for producing the biochar, and NaOH was used for removing silicon and formatting micro- and mesopores of the porous carbon. The product (PCCM) exhibited the highest specific surface area (2700.24 m2 g-1) among the reported CM-derived porous carbons. The adsorption performances of PCCM were evaluated through batch adsorption experiments. The maximum adsorption capacity of PCCM toward CAP was 1659.43 mg g-1. The adsorption mechanism was investigated with the aid of theoretical calculations. Moreover, PCCM exhibited better performance than other porous carbon adsorbents in fixed-bed experiments, which may be due to its structural advantages.
Collapse
Affiliation(s)
- Jiaxu Qi
- College of Life Sciences, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Xingyu Liu
- College of Life Sciences, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Yupeng Zhang
- College of Resource and Environmental Science, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Guanya Zhu
- College of Resource and Environmental Science, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Shanshan Tang
- College of Life Sciences, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, Jilin, China.
| | - Xiaoxiao Yu
- College of Life Sciences, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Yingjie Su
- College of Life Sciences, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Siji Chen
- College of Life Sciences, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Dadong Liang
- College of Resource and Environmental Science, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Guang Chen
- College of Life Sciences, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, Jilin, China
| |
Collapse
|
66
|
Liu Y, Li Y, Li A, Gao Y, Wang XF, Fujii R, Sasaki SI. Squaraine dye/Ti 3C 2T x MXene organic-inorganic hybrids for photocatalytic hydrogen evolution. J Colloid Interface Sci 2023; 633:218-225. [PMID: 36446214 DOI: 10.1016/j.jcis.2022.11.096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/02/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
MXenes, a new family of 2D nanostructured materials, have been widely studied in the field of artificial photosynthesis due to their outstanding physicochemical properties. In this work, a series of 2,4-bis[4-(N,N-dibutylamino)phenyl] squaraine (SQ) derivatives with different number of hydroxyl groups were hybridized with Ti3C2Tx MXene nanosheets, and the organic-inorganic hybrid photocatalysts were applied for water-splitting hydrogen evolution. The mass ratios of SQ@Ti3C2Tx were optimized to 4 wt% for each SQ, and the best hydrogen evolution reaction (HER) rate of 28.6 μmol h-1 g-1 was achieved by SQ-3 with four OH groups. The photocatalytic ability of the hybrid comes from the outstanding light harvesting of SQ dye, sufficient active sites of Ti3C2Tx, and efficient separation and transfer of the photogenerated charges via heterojunction between SQ aggregates and Ti3C2Tx. This work firstly demonstrates an example of SQ sensitizer combined with MXene for hydrogen generation, which provides a new insight to further explore the MXene-based hybrid nanomaterials for water splitting hydrogen evolution.
Collapse
Affiliation(s)
- Yanxiang Liu
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, PR China
| | - Yuanlin Li
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, PR China
| | - Aijun Li
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, PR China
| | - Yu Gao
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, PR China.
| | - Xiao-Feng Wang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, PR China.
| | - Ritsuko Fujii
- Graduate School of Science, and Research Center for Artificial Photosynthesis, Osaka Metropolitan University, Sumiyoshi, Osaka 558-8585, Japan
| | - Shin-Ichi Sasaki
- Department of Medical Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan.
| |
Collapse
|
67
|
Zhang W, Li M, Shang W, Wang M, Zhang J, Sun F, Li M, Li X. Singlet oxygen dominated core-shell Co nanoparticle to synergistically degrade methylene blue through efficient activation of peroxymonosulfate. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
68
|
Shi H, He Y, Li Y, Luo P. 2D MOF derived cobalt and nitrogen-doped ultrathin oxygen-rich carbon nanosheets for efficient Fenton-like catalysis: Tuning effect of oxygen functional groups in close vicinity to Co-N sites. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130345. [PMID: 36444076 DOI: 10.1016/j.jhazmat.2022.130345] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/16/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Developing highly efficient catalysts for peroxymonosulfate (PMS) activation is an important issue in advanced oxidation processes (AOPs) technology. In this work, cobalt and nitrogen-doped ultrathin oxygen-rich carbon nanosheets derived from 2D metal-organic framework (MOF) were successfully fabricated. The as-prepared catalyst can effectively degrade tetracycline (TC) with a high reaction constant (0.088 min-1). Quenching test, electron paramagnetic resonance (EPR) technology, and the electrochemical test indicate that the radical pathway plays a minor role in the degradation process, the 1O2 based nonradical pathway dominates the reaction. Experimental and density functional theory (DFT) studies revealed that the Co-N sites on the carbon structure serve as the dominant active sites, and the oxygen functional groups in close vicinity to Co-N sites can dramatically influence local electronic structure and its interaction with PMS molecule, a high correlation between the reaction constant and hydroxy groups content could be due to the Co-N sites close to hydroxyl groups has a moderate PMS adsorption energy. This work provides new insight into the design of highly efficient Fenton-like catalysts.
Collapse
Affiliation(s)
- Heng Shi
- College of Chemistry and Chemical Engineering. Southwest Petroleum University, Sichuan 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Sichuan 610500, PR China
| | - Yi He
- College of Chemistry and Chemical Engineering. Southwest Petroleum University, Sichuan 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Sichuan 610500, PR China; State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, PR China.
| | - Yubin Li
- School of New Energy and Materials, Southwest Petroleum University, Sichuan 610500, PR China
| | - Pingya Luo
- College of Chemistry and Chemical Engineering. Southwest Petroleum University, Sichuan 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Sichuan 610500, PR China
| |
Collapse
|
69
|
Solvent-regulated synthesis and phosphating of nickel-cobalt bimetal organic framework microflowers with hierarchical structure for high-performance supercapacitors. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
70
|
Controllable Preparation of Eucommia Wood-Derived Mesoporous Activated Carbon as Electrode Materials for Supercapacitors. Polymers (Basel) 2023; 15:polym15030663. [PMID: 36771963 PMCID: PMC9920536 DOI: 10.3390/polym15030663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 02/03/2023] Open
Abstract
Activated carbons (ACs) for supercapacitors were synthesized from Eucommia ulmoides Oliver (EUO) wood by H3PO4 with systemic activation processes. The target structure of ACs could be prepared by adjusting the technological parameters. As the H3PO4 concentration was 25%, the mass ratio of feedstocks to activator was 1:4, the activation time was 6 h, and the activation temperature was 400 °C, the obtained AC revealed a high specific surface area (2033.87 m2·g-1) and well-developed mesoporous (the rate of mesoporous was 96.4%) with the best economic feasibility. Besides, it possessed excellent electrochemical performance: the maximum specific capacitance reached up to 252 F·g-1, the charging and discharging period was 3098.2 s at 0.2 A·g-1, and the retention rate of specific capacitance reached 92.3% after 10,000 cycles. This low temperature and convenience technology provide a valuable reference for synthesizing the EUO-based ACs, making high-value utilization on the EUO branches, and owning a broad application prospect in supercapacitors.
Collapse
|
71
|
Sun J, Deng Y, Han Q, Ma D, Chan YK, He S, Zhou X, Wang H, Fu X, Gan X. Photonic double-network hydrogel dressings for antibacterial phototherapy and inflammation regulation in the general management of cutaneous regeneration. NANOSCALE 2023; 15:609-624. [PMID: 36503969 DOI: 10.1039/d2nr03267h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The treatment of festering pathogenic bacteria-induced skin wounds with increased inflammation is an ongoing challenge. The traditional antibacterial photothermal therapy always results in localized hyperthermia (over 50 °C), which inevitably delays tissue recovery. To address this serious issue, we devise a novel photonic hydrogel by integrating urchin-like Bi2S3 nano-heterojunctions (nano-HJs) into double-network hydrogels for infected skin regeneration. The synergy of NIR-triggered heat and ROS enables the hydrogels to achieve a rapid germicidal efficacy against bacteria within 15 min at mild temperature (below 50 °C). In vitro cell analysis results revealed that the photonic hydrogels exhibit superior cytocompatibility even after NIR illumination. More importantly, an in vivo study demonstrated that the photonic hydrogel dressings have a robust ability of accelerating contagious full-thickness wound regeneration through debriding abscesses, eliminating pathogens, improving collagen deposition, promoting angiogenesis, and adjusting the inflammation state. This photonic hydrogel system provides a general management strategy for the remedy of infectious wounds, where the incorporation of nano-HJs endows the hydrogels with the photodisinfection ability; in addition, the multifunctional hydrogels alleviate the damage from overwhelming heat towards surrounding tissues during phototherapy and steer the inflammation during the process of tissue regeneration. Accordingly, this work highlights the promising application of the photonic hydrogels in conquering refractory pathogen-invaded infection.
Collapse
Affiliation(s)
- Jiyu Sun
- School of Chemical Engineering, West China School of Stomatology, Sichuan University, 610065, Chengdu, China.
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yi Deng
- School of Chemical Engineering, West China School of Stomatology, Sichuan University, 610065, Chengdu, China.
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qiuyang Han
- School of Chemical Engineering, West China School of Stomatology, Sichuan University, 610065, Chengdu, China.
| | - Daichuan Ma
- Analytical & Testing Center, Sichuan University, Chengdu, 610065, China
| | - Yau Kei Chan
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Shuai He
- School of Chemical Engineering, West China School of Stomatology, Sichuan University, 610065, Chengdu, China.
| | - Xiong Zhou
- School of Chemical Engineering, West China School of Stomatology, Sichuan University, 610065, Chengdu, China.
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Hao Wang
- School of Chemical Engineering, West China School of Stomatology, Sichuan University, 610065, Chengdu, China.
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xinliang Fu
- School of Chemical Engineering, West China School of Stomatology, Sichuan University, 610065, Chengdu, China.
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xueqi Gan
- School of Chemical Engineering, West China School of Stomatology, Sichuan University, 610065, Chengdu, China.
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
72
|
Wu Y, Zhao S, Dai G, Tao S. Optical Force-Induced Nanowire Cut. J Phys Chem Lett 2022; 13:11899-11904. [PMID: 36524798 DOI: 10.1021/acs.jpclett.2c03562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
One-dimensional nanometer scale-sized materials, such as nanowires, nanotubes, etc., have gradually become new types of structural components, which can be integrated into micro/nano-opto-electromechanical systems. In this paper, optical forces were applied to cut nanowires precisely, which were broken with arbitrary length ratios. The optical force exerted by the optical tweezers proved to be the cause of the fracture of the high-aspect ratio nanowires, and the fracture mechanism of the nanowires was developed. Nanowires of different semiconductor materials were cut with optical tweezers in the experiments. The precise cut with optical tweezers can provide nanowires of appropriate lengths for the construction of nanowire-based structures, which have potential applications for micromachining and microfabrication of micro-electro-mechanical system or semiconductor devices.
Collapse
Affiliation(s)
- Yixuan Wu
- School of Physics and Electronics, Central South University, Changsha410083, China
| | - Shangdong Zhao
- School of Physics and Electronics, Central South University, Changsha410083, China
| | - Guozhang Dai
- School of Physics and Electronics, Central South University, Changsha410083, China
| | - Shaohua Tao
- School of Physics and Electronics, Central South University, Changsha410083, China
- Hunan Key Laboratory of Nanophotonics and Devices, Central South University, Changsha410083, China
| |
Collapse
|
73
|
Cai ZX, Xia Y, Ito Y, Ohtani M, Sakamoto H, Ito A, Bai Y, Wang ZL, Yamauchi Y, Fujita T. General Synthesis of MOF Nanotubes via Hydrogen-Bonded Organic Frameworks toward Efficient Hydrogen Evolution Electrocatalysts. ACS NANO 2022; 16:20851-20864. [PMID: 36458840 DOI: 10.1021/acsnano.2c08245] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The application scope of metal-organic frameworks (MOFs) can be extended by rationally designing the architecture and components of MOFs, which can be achieved via a metal-containing solid templated strategy. However, this strategy suffers from low efficiency and provides only one specific MOF from one template. Herein, we present a versatile templated strategy in which organic ligands are weaved into hydrogen-bonded organic frameworks (HOFs) for the controllable and scalable synthesis of MOF nanotubes. HOF nanowires assembled from benzene-1,3,5-tricarboxylic acid and melamine via a simple sonochemical approach serve as both the template and precursor to produce MOF nanotubes with varied metal compositions. Hybrid nanotubes containing nanometal crystals and N-doped graphene prepared through a carbonization process show that the optimized NiRuIr alloy@NG nanotube exhibits excellent electrocatalytic HER activity and durability in alkaline media, outperforming most reported catalysts. The strategy proposed here demonstrates a pioneering study of combination of HOF and MOF, which shows great potential in the design of other nanosized MOFs with various architectures and compositions for potential applications.
Collapse
Affiliation(s)
- Ze-Xing Cai
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami, Kochi782-8502, Japan
- School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang464000, P.R. China
| | - Yanjie Xia
- School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang464000, P.R. China
| | - Yoshikazu Ito
- Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba305-8573, Japan
| | - Masataka Ohtani
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami, Kochi782-8502, Japan
| | - Hikaru Sakamoto
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami, Kochi782-8502, Japan
| | - Akitaka Ito
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami, Kochi782-8502, Japan
| | - Yijia Bai
- Chemical Engineering College, Inner Mongolia University of Technology, No. 49 Aimin Street, Hohhot010051, P.R. China
- Key Laboratory of CO2 Resource Utilization at Universities of Inner Mongolia Autonomous Region, No. 49 Aimin Street, Hohhot010051, P.R. China
| | - Zhong-Li Wang
- Tianjin Key Laboratory of Applied Catalysis Science & Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, P.R. China
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space Tectonics Project and International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki305-0044, Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland4072, Australia
| | - Takeshi Fujita
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami, Kochi782-8502, Japan
| |
Collapse
|
74
|
Advanced MOF-derived carbon-based non-noble metal oxygen electrocatalyst for next-generation rechargeable Zn-air batteries. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
75
|
Niu L, Wu T, Chen M, Yang L, Yang J, Wang Z, Kornyshev AA, Jiang H, Bi S, Feng G. Conductive Metal-Organic Frameworks for Supercapacitors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200999. [PMID: 35358341 DOI: 10.1002/adma.202200999] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/08/2022] [Indexed: 05/13/2023]
Abstract
As a class of porous materials with crystal lattices, metal-organic frameworks (MOFs), featuring outstanding specific surface area, tunable functionality, and versatile structures, have attracted huge attention in the past two decades. Since the first conductive MOF is successfully synthesized in 2009, considerable progress has been achieved for the development of conductive MOFs, allowing their use in diverse applications for electrochemical energy storage. Among those applications, supercapacitors have received great interest because of their high power density, fast charging ability, and excellent cycling stability. Here, the efforts hitherto devoted to the synthesis and design of conductive MOFs and their auspicious capacitive performance are summarized. Using conductive MOFs as a unique platform medium, the electronic and molecular aspects of the energy storage mechanism in supercapacitors with MOF electrodes are discussed, highlighting the advantages and limitations to inspire new ideas for the development of conductive MOFs for supercapacitors.
Collapse
Affiliation(s)
- Liang Niu
- State Key Laboratory of Coal Combustion and School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Taizheng Wu
- Department of New Energy Science and Engineering and School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ming Chen
- Department of New Energy Science and Engineering and School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Long Yang
- State Key Laboratory of Coal Combustion and School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jingjing Yang
- State Key Laboratory of Coal Combustion and School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhenxiang Wang
- State Key Laboratory of Coal Combustion and School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Alexei A Kornyshev
- Department of Chemistry, Imperial College London and Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - Huili Jiang
- State Key Laboratory of Coal Combustion and School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Sheng Bi
- Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, CNRS 8234, Sorbonne Université, Paris, F-75005, France
| | - Guang Feng
- State Key Laboratory of Coal Combustion and School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
76
|
Facile synthesis of low-cost Co-Cu/C alloy catalysts for hydrogen-rich syngas production from low-temperature steam reforming of biomass tar. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
77
|
Jang M, Cho Y, Kim Y, Hahn M, Jung D, Park SY, Lee W, Piao Y. Redox-active conjugated microporous anthraquinonylamine-based polymer network grafted with activated graphene toward high-performance flexible asymmetric supercapacitor electrodes. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
78
|
Effect of CeO2-x-CNT/S cathode on the electrochemical performance of lithium-sulfur batteries. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
79
|
Bin DS, Zheng ZL, Cao AM, Wan LJ. Template-free synthesis of hollow carbon-based nanostructures from MOFs for rechargeable battery applications. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1398-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
80
|
Ye SY, Wu JQ, Yu BB, Hua YW, Han Z, He ZY, Yan Z, Li ML, Meng Y, Cao X. Highly Stable Two-Dimensional Cluster-Based Ni/Co–Organic Layers for High-Performance Supercapacitors. Inorg Chem 2022; 61:18743-18751. [DOI: 10.1021/acs.inorgchem.2c03226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Si-Yuan Ye
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Jia-Qian Wu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Bin-Bin Yu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Yi-Wei Hua
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Zongsu Han
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zi-Yi He
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Zheng Yan
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Meng-Li Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Yan Meng
- Anhui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes, Anqing Normal University, Anqing 246011, P. R. China
| | - Xuebo Cao
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| |
Collapse
|
81
|
Electrochemical performance and Cu2+ modification of nickel metal organic framework derived tellurides for application in aluminum ion batteries. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
82
|
Mubarak S, Dhamodharan D, Ghoderao PN, Byun HS. A systematic review on recent advances of metal–organic frameworks-based nanomaterials for electrochemical energy storage and conversion. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
83
|
Zhang BH, Wen WX, Wang HY, Hou YL, Chen JZ, Zhao DL. Core-shell structured Si@Cu3Si-Cu nanoparticles coated by N-doped carbon as an enhanced capacity and high-rate anode for lithium-ion batteries. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
84
|
Wang Y, Li T, Li Y, Yang R, Zhang G. 2D-Materials-Based Wearable Biosensor Systems. BIOSENSORS 2022; 12:bios12110936. [PMID: 36354445 PMCID: PMC9687877 DOI: 10.3390/bios12110936] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 05/24/2023]
Abstract
As an evolutionary success in life science, wearable biosensor systems, which can monitor human health information and quantify vital signs in real time, have been actively studied. Research in wearable biosensor systems is mainly focused on the design of sensors with various flexible materials. Among them, 2D materials with excellent mechanical, optical, and electrical properties provide the expected characteristics to address the challenges of developing microminiaturized wearable biosensor systems. This review summarizes the recent research progresses in 2D-materials-based wearable biosensors including e-skin, contact lens sensors, and others. Then, we highlight the challenges of flexible power supply technologies for smart systems. The latest advances in biosensor systems involving wearable wristbands, diabetic patches, and smart contact lenses are also discussed. This review will enable a better understanding of the design principle of 2D biosensors, offering insights into innovative technologies for future biosensor systems toward their practical applications.
Collapse
Affiliation(s)
- Yi Wang
- School of Physics and Electronics, Hunan University, Changsha 410082, China
- College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Tong Li
- School of Physics and Electronics, Hunan University, Changsha 410082, China
- College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Yangfeng Li
- College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Rong Yang
- School of Physics and Electronics, Hunan University, Changsha 410082, China
- College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Guangyu Zhang
- Songshan Lake Materials Laboratory, Dongguan 523808, China
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
85
|
Worsley EA, Margadonna S, Bertoncello P. Application of Graphene Nanoplatelets in Supercapacitor Devices: A Review of Recent Developments. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3600. [PMID: 36296790 PMCID: PMC9609597 DOI: 10.3390/nano12203600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
As worldwide energy consumption continues to increase, so too does the demand for improved energy storage technologies. Supercapacitors are energy storage devices that are receiving considerable interest due to their appealing features such as high power densities and much longer cycle lives than batteries. As such, supercapacitors fill the gaps between conventional capacitors and batteries, which are characterised by high power density and high energy density, respectively. Carbon nanomaterials, such as graphene nanoplatelets, are being widely explored as supercapacitor electrode materials due to their high surface area, low toxicity, and ability to tune properties for the desired application. In this review, we first briefly introduce the theoretical background and basic working principles of supercapacitors and then discuss the effects of electrode material selection and structure of carbon nanomaterials on the performances of supercapacitors. Finally, we highlight the recent advances of graphene nanoplatelets and how chemical functionalisation can affect and improve their supercapacitor performance.
Collapse
|
86
|
Zhou S, Lu C, Zhou W, Bi Y, Zhou C, Zeng A, Wang A, Tan L, Dong L. An efficient NiCu@C/Al 2O 3 catalyst for selective hydrogenation of acetylene. Chem Commun (Camb) 2022; 58:11398-11401. [PMID: 36128916 DOI: 10.1039/d2cc04384j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of non-noble metal catalysts for selective hydrogenation still remains a challenge. Herein, NiCu@carbon core-shell nanoparticles supported on Al2O3 (NiCu@C/Al2O3) were prepared, which showed enhanced catalytic performance of acetylene-selective hydrogenation in comparison with NiCu/Al2O3 without carbon encapsulation. In detail, NiCu@C/Al2O3 displayed high ethylene selectivity (>86%) even at an acetylene conversion of 100% and excellent stability (>90 h). Thus, NiCu@C/Al2O3 exhibited great potential as an alternative to Pd-based catalysts for acetylene-selective hydrogenation.
Collapse
Affiliation(s)
- Shihong Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Chenyang Lu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Wenyu Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Yi Bi
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Cailong Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Aonan Zeng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Anjie Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Luxi Tan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Lichun Dong
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China.
| |
Collapse
|
87
|
Cao Z, Momen R, Tao S, Xiong D, Song Z, Xiao X, Deng W, Hou H, Yasar S, Altin S, Bulut F, Zou G, Ji X. Metal-Organic Framework Materials for Electrochemical Supercapacitors. NANO-MICRO LETTERS 2022; 14:181. [PMID: 36050520 PMCID: PMC9437182 DOI: 10.1007/s40820-022-00910-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Exploring new materials with high stability and capacity is full of challenges in sustainable energy conversion and storage systems. Metal-organic frameworks (MOFs), as a new type of porous material, show the advantages of large specific surface area, high porosity, low density, and adjustable pore size, exhibiting a broad application prospect in the field of electrocatalytic reactions, batteries, particularly in the field of supercapacitors. This comprehensive review outlines the recent progress in synthetic methods and electrochemical performances of MOF materials, as well as their applications in supercapacitors. Additionally, the superiorities of MOFs-related materials are highlighted, while major challenges or opportunities for future research on them for electrochemical supercapacitors have been discussed and displayed, along with extensive experimental experiences.
Collapse
Affiliation(s)
- Ziwei Cao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Roya Momen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Shusheng Tao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Dengyi Xiong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Zirui Song
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Xuhuan Xiao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Wentao Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Hongshuai Hou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Sedat Yasar
- Department of Chemistry, Faculty of Science, Inonu University, 44280, Battalgazi, Malatya, Turkey
| | - Sedar Altin
- Physics Department, Inonu University, 44280, Malatya, Turkey
| | - Faith Bulut
- Physics Department, Inonu University, 44280, Malatya, Turkey
| | - Guoqiang Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China.
| | - Xiaobo Ji
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| |
Collapse
|
88
|
Sakamoto R, Toyoda R, Jingyan G, Nishina Y, Kamiya K, Nishihara H, Ogoshi T. Coordination chemistry for innovative carbon-related materials. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
89
|
Zaman S, Wang M, Liu H, Sun F, Yu Y, Shui J, Chen M, Wang H. Carbon-based catalyst supports for oxygen reduction in proton-exchange membrane fuel cells. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
90
|
Zhang WD, Zhou L, Wang HR, Xu H, Zhu H, Jiang Y, Yan X, Gu ZG. A Hexagonal Nut-Like Metal-Organic Framework and Its Conformal Transformation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203356. [PMID: 35836099 DOI: 10.1002/smll.202203356] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Hollow structured metal-organic frameworks (MOFs) and their derivatives are desired in catalysis, energy storage, etc. However, fabrication of novel hollow MOFs and revelation of their formation mechanisms remain challenging. Herein, open hollow 2D MOFs in the form of hexagonal nut are prepared through self-template method, which can be readily scaled up at gram scale in a one-pot preparation. The evolution from the initial superstructure to the final stable MOFs is tracked by wide-angle X-ray scattering, transforming from solid hexagon to open hollow hexagon. More importantly, this protocol can be extended to synthesizing a series of open hollow structured MOFs with sizes ranging from ≈120 to ≈1200 nm. Further, open hollow structured cobalt/N-doped porous carbon composites are realized through conformal transformation of the as-prepared MOFs, which demonstrates promising applications in sustainable energy conversion technologies. This study sheds light on the kinetically controlled synthesis of novel 2D MOFs for their extended utilizations.
Collapse
Affiliation(s)
- Wen-Da Zhang
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Lang Zhou
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Hao-Ran Wang
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Hanwen Xu
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Haiyan Zhu
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yuqin Jiang
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Xiaodong Yan
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhi-Guo Gu
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
91
|
Qu J, Zhang W, Bi F, Yan S, Miao X, Zhang B, Wang Y, Ge C, Zhang Y. Two-step ball milling-assisted synthesis of N-doped biochar loaded with ferrous sulfide for enhanced adsorptive removal of Cr(Ⅵ) and tetracycline from water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119398. [PMID: 35525521 DOI: 10.1016/j.envpol.2022.119398] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/24/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen-doped biochar loaded with FeS (FeS@NBCBM) was synthesized by two-step ball milling processes. Characterization results revealed that N-doping process successfully introduced pyridinic, pyrrolic, and graphitic N structures, and FeS was subsequently embedded in N-doped biochar (NBCBM). The resultant FeS@NBCBM presented predominant adsorption capacity for Cr(VI) (194.69 mg/g) and tetracycline (TC, 371.29 mg/g) compared with BC (27.28 and 37.89 mg/g) and NBCBM (71.26 and 81.26 mg/g). In addition, the Cr(VI)/TC elimination process by FeS@NBCBM was basically stable with multiple co-existing ions with slight decrease on adsorption performance after three desorption-regeneration cycles. Most importantly, FeS@NBCBM was found to achieve Cr(VI) elimination not only by electrostatic attraction, ion exchange and complexation, but also by electrons-triggered reduction provided by different species of N, Fe2+ as well as S(Ⅱ). Meantime, pore filling, hydrogen bonding, and π-π stacking interactions were demonstrated to contribute to TC adsorption. These results suggested the co-modification of N-doping and FeS loading by ball milling as an innovative decorating method for biochar to adsorptive purification of Cr(VI) and TC-contaminated water.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Weihang Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Fuxuan Bi
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Shaojuan Yan
- Heilongjiang Academy of Land Reclamation Sciences, Harbin, 150030, China
| | - Xuemei Miao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Bo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou, 570228, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou, 570228, China.
| |
Collapse
|
92
|
Xie K, Xia K, Ding X, Fang L, Liu X, Zhang X. Facile preparation of 3D porous agar-based heteroatom-doped carbon aerogels for high-energy density supercapacitors. RSC Adv 2022; 12:20975-20982. [PMID: 35919134 PMCID: PMC9302333 DOI: 10.1039/d2ra03685a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022] Open
Abstract
The fabrication of heteroatom-doped porous carbon materials with high electrical conductivity and large specific surface area via an environmentally friendly route is critical and challenging. Herein, nitrogen and oxygen co-doped agar porous carbon (APC) was developed for supercapacitors via a one-step carbonization method with agar as the raw material and ammonia as the activator and nitrogen source. APC outperformed pectin porous carbon, tamarind porous carbon, and the previously reported carbon-based supercapacitors with a high capacitance retention of 72% even from 0.5 A g-1 to 20 A g-1 and excellent cycling stability in 6 M KOH solution (retained after 10 000 cycles) with a rate of over 98.5%. Furthermore, the APC electrode-based symmetric device exhibited an impressive energy density of 20.4 W h kg-1 and an ultra-high power density of 449 W kg-1 in 1 M Na2SO4 electrolyte together with excellent cycling stability (103.2% primary capacitance retentivity after 10 000 cycles). This study offers a novel method for the synthesis of nitrogen heteroatom-doped hierarchical porous carbon materials for performance-enhanced energy storage devices.
Collapse
Affiliation(s)
- Kaijun Xie
- College of Chemistry and Chemical Engineering, Qingdao University Qingdao 266071 China
| | - Kai Xia
- College of Chemistry and Chemical Engineering, Qingdao University Qingdao 266071 China
| | - Xin Ding
- College of Chemistry and Chemical Engineering, Qingdao University Qingdao 266071 China
| | - Long Fang
- College of Chemistry and Chemical Engineering, Qingdao University Qingdao 266071 China
| | - Xin Liu
- College of Chemistry and Chemical Engineering, Qingdao University Qingdao 266071 China
| | - Xiaodong Zhang
- College of Chemistry and Chemical Engineering, Qingdao University Qingdao 266071 China
| |
Collapse
|
93
|
Liang Y, Song N, Zhang Z, Chen W, Feng J, Xi B, Xiong S. Integrating Bi@C Nanospheres in Porous Hard Carbon Frameworks for Ultrafast Sodium Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202673. [PMID: 35514175 DOI: 10.1002/adma.202202673] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Sodium-ion batteries (SIBs) have emerged as an alternative technology because of their merits in abundance and cost. Realizing their real applications, however, remains a formidable challenge. One is that among the limitations of anode materials, the alloy-type candidates tolerate fast capacity fading during cycling. Here, a 3D framework superstructure assembled with carbon nanobelt arrays decorated with a metallic bismuth (Bi) nanospheres coated carbon layer by thermolysis of Bi-based metal-organic framework nanorods is synthesized as an anode material for SIBs. Due to the unique structural superiority, the anode design promotes excellent sodium-storage performance in terms of high capacity, excellent cycling stability, and ultrahigh rate capability up to 80 A g-1 with a capacity of 308.8 mAh g-1 . The unprecedented sodium-storage ability is not only attributed to the unique hybrid architecture, but also to the production of a homogeneous and thin solid electrolyte interface layer and the formation of uniform porous nanostructures during cycling in the ether-based electrolyte. Importantly, deeper understanding of the underlying cause of the performance improvement is illuminated, which is vital to provide the theoretical basis for application of SIBs.
Collapse
Affiliation(s)
- Yazhan Liang
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, P. R. China
- School of Chemistry and Chemical Engineering, and State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Ning Song
- School of Chemistry and Chemical Engineering, and State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Zhengchunyu Zhang
- School of Chemistry and Chemical Engineering, and State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Weihua Chen
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jinkui Feng
- School of Materials Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Baojuan Xi
- School of Chemistry and Chemical Engineering, and State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Shenglin Xiong
- School of Chemistry and Chemical Engineering, and State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
94
|
Feng Z, Zhai X, Sun T. Sustainable and efficient removal of paraben, oxytetracycline and metronidazole using magnetic porous biochar composite prepared by one step pyrolysis. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
95
|
Hong Z, Chen X, Zhu G, Awais M, Shi Y, Zhu H, Li H, Paramane A. Inhibition of electrical trees degradation of crosslinked polyethylene at high temperatures by electron‐buffering voltage stabilizers. J Appl Polym Sci 2022. [DOI: 10.1002/app.52786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zelin Hong
- College of Electrical Engineering Zhejiang University Hangzhou China
- Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices ZJU‐Hangzhou Global Scientific and Technological Innovation Center Hangzhou China
| | - Xiangrong Chen
- College of Electrical Engineering Zhejiang University Hangzhou China
- Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices ZJU‐Hangzhou Global Scientific and Technological Innovation Center Hangzhou China
- International Research Center for Advanced Electrical Engineering Zhejiang University Haining China
| | - Guangyu Zhu
- College of Electrical Engineering Zhejiang University Hangzhou China
- Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices ZJU‐Hangzhou Global Scientific and Technological Innovation Center Hangzhou China
| | - Muhammad Awais
- College of Electrical Engineering Zhejiang University Hangzhou China
- Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices ZJU‐Hangzhou Global Scientific and Technological Innovation Center Hangzhou China
| | - Yiwen Shi
- College of Electrical Engineering Zhejiang University Hangzhou China
- Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices ZJU‐Hangzhou Global Scientific and Technological Innovation Center Hangzhou China
| | - Hanshan Zhu
- College of Electrical Engineering Zhejiang University Hangzhou China
- Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices ZJU‐Hangzhou Global Scientific and Technological Innovation Center Hangzhou China
| | - Hao Li
- Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices ZJU‐Hangzhou Global Scientific and Technological Innovation Center Hangzhou China
- Department of Chemistry Zhejiang University Hangzhou China
| | - Ashish Paramane
- Electrical Engineering Department National Institute of Technology Silchar India
| |
Collapse
|
96
|
Mustaqeem M, Lin JY, Kamal S, Thakran A, Lu GZ, Naikoo G, Chou PT, Lu KL, Chen YF. Optically Encodable and Erasable Multilevel Nonvolatile Flexible Memory Device Based on Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26895-26903. [PMID: 35658400 DOI: 10.1021/acsami.2c02440] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multilevel and flexible nonvolatile memory (NVM) is a promising candidate for data storage in next-generation devices but its high bias and low mobility of conducting channels are often its drawbacks. In this study, we demonstrate a low bias of smaller than 0.1 V and a high-mobility graphene layer as a conducting channel for flexible optoelectronic NVM based on a composite thin film of indium-based MOF-derived InCl3 and 4,4-oxydiphthalic anhydride (odpta), Na[In3(odpt)2(OH)2(H2O)2](H2O)4, and reduced graphene oxide (rGO). The optoelectronic NVM device can be encoded and erased optically by ultraviolet (UV) light and visible light, respectively. Our device also achieves memory states over 192 (6-bit storage) distinct levels, which can emerge as mass data storage. It also shows an excellent endurance of write-erase cycles under irradiation with a laser of varying wavelengths, the mechanical stability of more than 1000 bending cycles, and stable retention for longer than 10 000 s. These results open an alternative route for developing low bias and innovative optoelectronic technologies.
Collapse
Affiliation(s)
- Mujahid Mustaqeem
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
- Department of Physics, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
- Nano-Science and Technology Program, Taiwan International Graduate Program, Institute of Physics, Academia Sinica, Taipei 106, Taiwan
| | - Jia-Yu Lin
- Department of Physics, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Saqib Kamal
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Anjali Thakran
- Department of Physics, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
- Nano-Science and Technology Program, Taiwan International Graduate Program, Institute of Physics, Academia Sinica, Taipei 106, Taiwan
| | - Guan-Zhang Lu
- Department of Physics, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Gowhar Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah PC 211, Oman
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Kuang-Lieh Lu
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Yang-Fang Chen
- Department of Physics, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
97
|
Jiang K, Peng P, Tranca D, Tong G, Ke C, Lu C, Hu J, Liang H, Li J, Zhou S, Kymakis E, Zhuang X. Covalent Triazine Frameworks and Porous Carbons: Perspective from an Azulene-Based Case. Macromol Rapid Commun 2022; 43:e2200392. [PMID: 35678742 DOI: 10.1002/marc.202200392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/28/2022] [Indexed: 11/06/2022]
Abstract
Covalent triazine frameworks (CTFs) are among the most valuable frameworks owing to many fantastic properties. However, molten salt-involved preparation of CTFs at 400-600 °C causes debate on whether CTFs represent organic frameworks or carbon. Herein, new CTFs based on the 1,3-dicyanoazulene monomer (CTF-Azs) are synthesized using molten ZnCl2 at 400-600 °C. Chemical structure analysis reveals that the CTF-Az prepared at low temperature (400 °C) exhibits polymeric features, whereas those prepared at high temperatures (600 °C) exhibit typical carbon features. Even after being treated at even higher temperatures, the CTF-Azs retain their rich porosity, but the polymeric features vanish. Although structural de-conformation is a widely accepted outcome in polymer-to-carbon rearrangement processes, the study evaluates such processes in the context of CTF systems. A proof-of-concept study is performed, observing that the as-synthesized CTF-Azs exhibit promising performance as cathodes for Li- and K-ion batteries. Moreover, the as-prepared NPCs exhibit excellent catalytic oxygen reduction reaction (ORR) performance; hence, they can be used as air cathodes in Zn-air batteries. This study not only provides new building blocks for novel CTFs with controllable polymer/carbon features but also offers insights into the formation and structure transformation history of CTFs during thermal treatment.
Collapse
Affiliation(s)
- Kaiyue Jiang
- The Meso-Entropy Matter Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peipei Peng
- The Meso-Entropy Matter Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Diana Tranca
- The Meso-Entropy Matter Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Gangsheng Tong
- The Meso-Entropy Matter Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Changchun Ke
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chenbao Lu
- The Meso-Entropy Matter Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.,College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Jun Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Haiwei Liang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jiantong Li
- School of Information and Communication Technology, KTH Royal Institute of Technology, Electrum 229, Kista, 16440, Sweden
| | - Shengqiang Zhou
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Emmanuel Kymakis
- Department of Electrical & Computer Engineering, Hellenic Mediterranean University, Estavromenos, Heraklion, 71410, Greece
| | - Xiaodong Zhuang
- The Meso-Entropy Matter Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
98
|
Wang W, Yang D, Mou L, Wu M, Wang Y, Cai W, Tan F. Preparation of the porous carbon-based solid acid from starch for efficient degradation of chitosan to D-glucosamine. Int J Biol Macromol 2022; 209:1629-1637. [PMID: 35447270 DOI: 10.1016/j.ijbiomac.2022.04.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/11/2022] [Accepted: 04/08/2022] [Indexed: 11/28/2022]
Abstract
Effective degradation of chitosan to D-glucosamine is considered to make a great contribution for the development of the medical industry. To address this issue, a porous carbon-based solid acid catalyst (PCSA) functionalized with -OH, -COOH and -SO3H groups was successfully prepared. Typically, the physicochemical properties of PCSA were deeply determined by a series of characterization technique including FT-IR, TGA, RM, NH3-TPD, SEM and Element Analysis. Moreover, the catalytic performances of PCSA towards to D-glucosamine production from chitosan were evaluated. In particular, the effects of catalyst acid density, ratio of acidic groups, chitosan concentration, reaction temperature, reaction time and catalyst dosage on the yield of D-glucosamine were investigated in detail. Interestingly, the experimental results indicated that a yield of D-glucosamine as high as 90.5% was achieved, and no obvious deactivation occurred even after six consecutive cycles. In light of the advantages of superior activity/recyclability and low cost, the starch-derived solid acid developed in this work might possess the broad industrial application prospects.
Collapse
Affiliation(s)
- Wenfeng Wang
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Di Yang
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Lu Mou
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Ming Wu
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yuanhao Wang
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Weijie Cai
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Fengzhi Tan
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
99
|
Park M, Sharma A, Kang C, Han J, Tripathi KM, Lee HJ. N-Doped Carbon Nanorods from Biomass as a Potential Antidiabetic Nanomedicine. ACS Biomater Sci Eng 2022; 8:2131-2141. [PMID: 35476416 DOI: 10.1021/acsbiomaterials.1c01598] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Insufficient glucose control remains a critical challenge for type 2 diabetes mellitus (T2DM) patients with currently used therapeutic drugs, which can also have detrimental side effects. The facile synthesis of nitrogen-doped carbon nanorods (N-CNRs) as therapeutic agents in a T2DM transgenic db/db mouse model is reported herein. N-CNRs are synthesized from silkworm powder without the assistance of any template and possess a hollow graphitic nature, rough surface, and good aqueous solubility, which make them ideal candidates for fabricating nanomedicines. N-CNRs are employed to reduce fasting blood glucose and ameliorate serum biomarker levels linked to oxidative stress and inflammation. Interestingly, through the downregulation of enhanced expression of glutathione peroxidase, superoxide dismutase, and catalase as well as inflammatory responses, N-CNRs reverse pancreatic dysfunction and normalize the secretory functions of pancreatic cells. Moreover, hepatic steatosis is attenuated by downregulating lipogenesis and increasing fatty acid oxidation. This finding may help in designing novel therapeutics for T2DM treatment.
Collapse
Affiliation(s)
- Miey Park
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Gyeonggi-do 13120, Korea
| | - Anshul Sharma
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Gyeonggi-do 13120, Korea
| | - Chaewon Kang
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Gyeonggi-do 13120, Korea
| | - Jinyoung Han
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Gyeonggi-do 13120, Korea
| | - Kumud Malika Tripathi
- Department of Chemistry, Indian Institute of Petroleum and Energy, Visakhapatnam 530003, Andhra Pradesh, India
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Gyeonggi-do 13120, Korea
| |
Collapse
|
100
|
Ge H, Zhang H. Fungus-Based MnO/Porous Carbon Nanohybrid as Efficient Laccase Mimic for Oxygen Reduction Catalysis and Hydroquinone Detection. NANOMATERIALS 2022; 12:nano12091596. [PMID: 35564305 PMCID: PMC9103193 DOI: 10.3390/nano12091596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 01/27/2023]
Abstract
Developing efficient laccase-mimicking nanozymes via a facile and sustainable strategy is intriguing in environmental sensing and fuel cells. In our work, a MnO/porous carbon (MnO/PC) nanohybrid based on fungus was synthesized via a facile carbonization route. The nanohybrid was found to possess excellent laccase-mimicking activity using 2,2′-azinobis (3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS) as the substrate. Compared with the natural laccase and reported nanozymes, the MnO/PC nanozyme had much lower Km value. Furthermore, the electrochemical results show that the MnO/PC nanozyme had high electrocatalytic activity toward the oxygen reduction reaction (ORR) when it was modified on the electrode. The hybrid nanozyme could catalyze the four-electron ORR, similar to natural laccase. Moreover, hydroquinone (HQ) induced the reduction of oxABTS and caused the green color to fade, which provided colorimetric detection of HQ. A desirable linear relationship (0–50 μM) and detection limit (0.5 μM) were obtained. Our work opens a simple and sustainable avenue to develop a carbon–metal hybrid nanozyme in environment and energy applications.
Collapse
|