51
|
Chaikuad A, Koch P, Laufer SA, Knapp S. Das Cysteinom der Proteinkinasen als Zielstruktur in der Arzneistoffentwicklung. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201707875] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Apirat Chaikuad
- Nuffield Department of Clinical Medicine; Structural Genomics Consortium and Target Discovery Institute; Universität Oxford, Old Road Campus Research Building; Roosevelt Drive Oxford OX3 7DQ Großbritannien
- Institut für pharmazeutische Chemie; Johann Wolfgang Goethe-Universität; Max-von-Laue-Straße 9 60438 Frankfurt am Main Deutschland
| | - Pierre Koch
- Institut für pharmazeutische und medizinische Chemie; Eberhard-Karls-Universität Tübingen; Auf der Morgenstelle 8 72076 Tübingen Deutschland
| | - Stefan A. Laufer
- Institut für pharmazeutische und medizinische Chemie; Eberhard-Karls-Universität Tübingen; Auf der Morgenstelle 8 72076 Tübingen Deutschland
- Deutsches Zentrum für translationale Krebsforschung, Standort; Tübingen Deutschland
| | - Stefan Knapp
- Nuffield Department of Clinical Medicine; Structural Genomics Consortium and Target Discovery Institute; Universität Oxford, Old Road Campus Research Building; Roosevelt Drive Oxford OX3 7DQ Großbritannien
- Deutsches Zentrum für translationale Krebsforschung, Standort Frankfurt/Mainz; Deutschland
- Institut für pharmazeutische Chemie; Johann Wolfgang Goethe-Universität; Max-von-Laue-Straße 9 60438 Frankfurt am Main Deutschland
- Structural Genomics Consortium and Buchmann Institute for Molecular Life Sciences; Johann Wolfgang Goethe-Universität; Max-von-Laue-Straße 15 60438 Frankfurt am Main Deutschland
| |
Collapse
|
52
|
Mehdipour M, Liu Y, Liu C, Kumar B, Kim D, Gathwala R, Conboy IM. Key Age-Imposed Signaling Changes That Are Responsible for the Decline of Stem Cell Function. Subcell Biochem 2018; 90:119-143. [PMID: 30779008 DOI: 10.1007/978-981-13-2835-0_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This chapter analyzes recent developments in the field of signal transduction of ageing with the focus on the age-imposed changes in TGF-beta/pSmad, Notch, Wnt/beta-catenin, and Jak/Stat networks. Specifically, this chapter delineates how the above-mentioned evolutionary-conserved morphogenic signaling pathways operate in young versus aged mammalian tissues, with insights into how the age-specific broad decline of stem cell function is precipitated by the deregulation of these key cell signaling networks. This chapter also provides perspectives onto the development of defined therapeutic approaches that aim to calibrate intensity of the determinant signal transduction to health-youth, thereby rejuvenating multiple tissues in older people.
Collapse
Affiliation(s)
- Melod Mehdipour
- Bioengineering, Univercity of California Berkeley, Berkeley, CA, USA
| | - Yutong Liu
- Bioengineering, Univercity of California Berkeley, Berkeley, CA, USA
| | - Chao Liu
- Bioengineering, Univercity of California Berkeley, Berkeley, CA, USA
| | - Binod Kumar
- Bioengineering, Univercity of California Berkeley, Berkeley, CA, USA
| | - Daehwan Kim
- Bioengineering, Univercity of California Berkeley, Berkeley, CA, USA
| | - Ranveer Gathwala
- Bioengineering, Univercity of California Berkeley, Berkeley, CA, USA
| | - Irina M Conboy
- Bioengineering, Univercity of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
53
|
Schwartz DM, Kanno Y, Villarino A, Ward M, Gadina M, O'Shea JJ. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov 2017; 17:78. [PMID: 29282366 PMCID: PMC6168198 DOI: 10.1038/nrd.2017.267] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This corrects the article DOI: 10.1038/nrd.2017.201.
Collapse
|
54
|
Smith GA, Taunton J, Weiss A. IL-2Rβ abundance differentially tunes IL-2 signaling dynamics in CD4 + and CD8 + T cells. Sci Signal 2017; 10:10/510/eaan4931. [PMID: 29259099 DOI: 10.1126/scisignal.aan4931] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Interleukin-2 (IL-2) stimulates both activated CD4+ and CD8+ T cells to proliferate. IL-2 signals through an identical receptor complex and promotes the same dose-dependent phosphorylation of the canonical transcription factor STAT5 in both cell types. Despite this, CD8+ T cells enter the S phase earlier and proliferate to a greater extent than do CD4+ T cells in response to IL-2. We identified distinct IL-2 signaling dynamics in CD4+ and CD8+ T cells. In IL-2-stimulated CD8+ T cells, STAT5 phosphorylation increased rapidly and was sustained for 6 hours. In contrast, CD4+ T cells had a biphasic response, with maxima at 15 min and 2 to 4 hours after stimulation. Both cell types required vesicular trafficking, but only CD4+ T cells required new protein synthesis to maintain high phosphorylation of STAT5. Two subunits of the IL-2 receptor, IL-2Rβ and IL-2Rγ, were twice as abundant in CD8+ T cells than in CD4+ T cells. Reduction of IL-2Rβ abundance by 50% was sufficient to convert CD8+ T cells to a CD4+ T cell-like signaling pattern and delay S phase entry. These results suggest that the larger pool of IL-2Rβ chains in CD8+ T cells is required to sustain IL-2 signaling and contributes to the quantitatively greater proliferative response to IL-2 relative to that of CD4+ T cells. This cell type-specific difference in IL-2Rβ abundance appears to tune responses, potentially preventing extensive, autoimmune proliferation of CD4+ T cells, while still enabling sufficient proliferation of CD8+ T cells to control viral infections.
Collapse
Affiliation(s)
- Geoffrey A Smith
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA.,Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Arthur Weiss
- Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA. .,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
55
|
JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov 2017; 16:843-862. [PMID: 29104284 DOI: 10.1038/nrd.2017.201] [Citation(s) in RCA: 644] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The discovery of cytokines as key drivers of immune-mediated diseases has spurred efforts to target their associated signalling pathways. Janus kinases (JAKs) are essential signalling mediators downstream of many pro-inflammatory cytokines, and small-molecule inhibitors of JAKs (jakinibs) have gained traction as safe and efficacious options for the treatment of inflammation-driven pathologies such as rheumatoid arthritis, psoriasis and inflammatory bowel disease. Building on the clinical success of first-generation jakinibs, second-generation compounds that claim to be more selective are currently undergoing development and proceeding to clinical trials. However, important questions remain about the advantages and limitations of improved JAK selectivity, optimal routes and dosing regimens and how best to identify patients who will benefit from jakinibs. This Review discusses the biology of jakinibs from a translational perspective, focusing on recent insights from clinical trials, the development of novel agents and the use of jakinibs in a spectrum of immune and inflammatory diseases.
Collapse
|
56
|
Kempson J, Ovalle D, Guo J, Wrobleski ST, Lin S, Spergel SH, Duan JJW, Jiang B, Lu Z, Das J, Yang BV, Hynes J, Wu H, Tokarski J, Sack JS, Khan J, Schieven G, Blatt Y, Chaudhry C, Salter-Cid LM, Fura A, Barrish JC, Carter PH, Pitts WJ. Discovery of highly potent, selective, covalent inhibitors of JAK3. Bioorg Med Chem Lett 2017; 27:4622-4625. [DOI: 10.1016/j.bmcl.2017.09.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 10/18/2022]
|
57
|
He L, Pei H, Lan T, Tang M, Zhang C, Chen L. Design and Synthesis of a Highly Selective JAK3 Inhibitor for the Treatment of Rheumatoid Arthritis. Arch Pharm (Weinheim) 2017; 350. [PMID: 28944566 DOI: 10.1002/ardp.201700194] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 09/02/2017] [Accepted: 09/05/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Linhong He
- Cancer Center; West China Hospital; Sichuan University and Collaborative Innovation Center; Chengdu Sichuan P. R. China
| | - Heying Pei
- Cancer Center; West China Hospital; Sichuan University and Collaborative Innovation Center; Chengdu Sichuan P. R. China
| | - Tingxuan Lan
- Cancer Center; West China Hospital; Sichuan University and Collaborative Innovation Center; Chengdu Sichuan P. R. China
| | - Minghai Tang
- Cancer Center; West China Hospital; Sichuan University and Collaborative Innovation Center; Chengdu Sichuan P. R. China
| | - Chufeng Zhang
- Cancer Center; West China Hospital; Sichuan University and Collaborative Innovation Center; Chengdu Sichuan P. R. China
| | - Lijuan Chen
- Cancer Center; West China Hospital; Sichuan University and Collaborative Innovation Center; Chengdu Sichuan P. R. China
| |
Collapse
|
58
|
Oncogenic role and therapeutic targeting of ABL-class and JAK-STAT activating kinase alterations in Ph-like ALL. Blood Adv 2017; 1:1657-1671. [PMID: 29296813 DOI: 10.1182/bloodadvances.2017011296] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 08/06/2017] [Indexed: 11/20/2022] Open
Abstract
New therapies for Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) patients are urgently needed. The genetic landscape of Ph-like ALL is characterized by a diverse array of kinase-activating alterations (including rearrangements, sequence mutations, and copy number alterations), suggesting that patients with Ph-like ALL are candidates for targeted therapy, similar to BCR-ABL1 ALL. We sought to investigate the functional role and targetability of the spectrum of kinase-activating alterations identified in Ph-like ALL. We demonstrate cytokine-independent growth and activation of JAK-STAT signaling pathways in Ba/F3 cells by all alterations tested. The development of murine Arf-/- pre-B ALL expressing RCSD1-ABL2 or SSBP2-CSF1R was accelerated with the presence of IK6, a dominant negative isoform of Ikaros common in Ph-like ALL, providing evidence that these fusions are leukemogenic. In vitro screening using a panel of tyrosine kinase inhibitors against 14 different kinase alterations identified the ABL1-inhibitor, dasatinib, as a potent inhibitor of ABL-class fusions (ABL1, ABL2, CSF1R, PDGFRB), whereas the JAK1/JAK2 inhibitor ruxolitinib, was most effective against JAK-STAT-activating alterations (JAK1, JAK2, JAK3, IL7R, IL2RB), but not TYK2. Evaluation of dasatinib or ruxolitinib against patient-derived xenograft models demonstrated superior antileukemic efficacy when combined with dexamethasone compared with either agent alone. These data provide the foundation for rationally designed clinical trials that assess the efficacy of targeted therapy in patients with Ph-like ALL.
Collapse
|
59
|
Waldmann TA. JAK/STAT pathway directed therapy of T-cell leukemia/lymphoma: Inspired by functional and structural genomics. Mol Cell Endocrinol 2017; 451:66-70. [PMID: 28214593 PMCID: PMC5469693 DOI: 10.1016/j.mce.2017.02.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 11/28/2022]
Abstract
Abnormal activation of the γc cytokine JAK/STAT signaling pathway assessed by STAT3 or STAT5b phosphorylation was present in a proportion of many T-cell malignancies. Activating mutations of STAT3/STAT5b and JAK1/3 were present in some but not in all cases with constitutive signaling pathway activation. Using shRNA analysis pSTAT malignant T-cell lines were addicted to JAKs/STATs whether they were mutated or not. Activating JAK/STAT mutations were not sufficient to support leukemic cell proliferation but only augmented upstream pathway signals. Functional cytokine receptors were required for pSTAT expression. Combining a JAK1/2 inhibitor with a Bcl-xL inhibitor navitoclax provided additive/synergistic activity with IL-2 dependent ATLL cell lines and in a mouse model of human IL-2 dependent ATLL. The insight that disorders of the γc/JAK/STAT system are pervasive suggests approaches including those that target gamma cytokines, their receptors or that use JAK kinase inhibitors may be of value in multicomponent therapy for T-cell malignancies.
Collapse
Affiliation(s)
- Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
60
|
Jensen H, Potempa M, Gotthardt D, Lanier LL. Cutting Edge: IL-2-Induced Expression of the Amino Acid Transporters SLC1A5 and CD98 Is a Prerequisite for NKG2D-Mediated Activation of Human NK Cells. THE JOURNAL OF IMMUNOLOGY 2017; 199:1967-1972. [PMID: 28784848 DOI: 10.4049/jimmunol.1700497] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/20/2017] [Indexed: 01/03/2023]
Abstract
Priming of human NK cells with IL-2 is necessary to render them functionally competent upon NKG2D engagement. We examined the underlying mechanisms that control NKG2D responsiveness in NK cells and found that IL-2 upregulates expression of the amino acid transporters SLC1A5 and CD98. Using specific inhibitors to block SLC1A5 and CD98 function, we found that production of IFN-γ and degranulation by CD56bright and CD56dim NK cells following NKG2D stimulation were dependent on both transporters. IL-2 priming increased the activity of mTORC1, and inhibition of mTORC1 abrogated the ability of the IL-2-primed NK cells to produce IFN-γ in response to NKG2D-mediated stimulation. This study identifies a series of IL-2-induced cellular changes that regulates the NKG2D responsiveness in human NK cells.
Collapse
Affiliation(s)
- Helle Jensen
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143; and
| | - Marc Potempa
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143; and
| | - Dagmar Gotthardt
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143; and.,Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143; and .,Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143
| |
Collapse
|
61
|
Forster M, Gehringer M, Laufer SA. Recent advances in JAK3 inhibition: Isoform selectivity by covalent cysteine targeting. Bioorg Med Chem Lett 2017; 27:4229-4237. [PMID: 28844493 DOI: 10.1016/j.bmcl.2017.07.079] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 01/01/2023]
Abstract
Janus kinases (JAKs) are a family of four cytosolic protein kinases with a high degree of structural similarity. Due to its very restricted role in immune regulation, JAK3 was promoted as an excellent target for immunosuppression for more than a decade, but clinical validation of this concept is still elusive. During the last years, speculation arose that kinase activity of JAK1, which cooperates with JAK3 in cytokine receptor signaling, may have a dominant role over the one of JAK3. Until recently, however, this issue could not be appropriately addressed due to a lack of highly isoform-selective tool compounds. With the recent resurgence of covalent drugs, targeting of a specific cysteine that distinguishes JAK3 from other JAK family members became an attractive design option. By applying this strategy, a set of JAK3 inhibitors with excellent selectivity against other JAK isoforms and the kinome was developed during the last three years and used to decipher JAK3-dependent signaling. The data obtained with these tool compounds demonstrates that selective JAK3 inhibition is sufficient to block downstream signaling. Since one of these inhibitors is currently under evaluation in phase II clinical studies against several inflammatory disorders, it will soon become apparent whether selective JAK3 inhibition translates into clinical efficacy.
Collapse
Affiliation(s)
- Michael Forster
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard-Karls-University Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard-Karls-University Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany.
| | - Stefan A Laufer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard-Karls-University Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany.
| |
Collapse
|
62
|
Mechanisms and consequences of Jak-STAT signaling in the immune system. Nat Immunol 2017; 18:374-384. [PMID: 28323260 DOI: 10.1038/ni.3691] [Citation(s) in RCA: 766] [Impact Index Per Article: 109.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/23/2017] [Indexed: 12/12/2022]
Abstract
Kinases of the Jak ('Janus kinase') family and transcription factors (TFs) of the STAT ('signal transducer and activator of transcription') family constitute a rapid membrane-to-nucleus signaling module that affects every aspect of the mammalian immune system. Research on this paradigmatic pathway has experienced breakneck growth in the quarter century since its discovery and has yielded a stream of basic and clinical insights that have profoundly influenced modern understanding of human health and disease, exemplified by the bench-to-bedside success of Jak inhibitors ('jakinibs') and pathway-targeting drugs. Here we review recent advances in Jak-STAT biology, focusing on immune cell function, disease etiology and therapeutic intervention, as well as broader principles of gene regulation and signal-dependent TFs.
Collapse
|
63
|
Field SD, Arkin J, Li J, Jones LH. Selective Downregulation of JAK2 and JAK3 by an ATP-Competitive pan-JAK Inhibitor. ACS Chem Biol 2017; 12:1183-1187. [PMID: 28318222 DOI: 10.1021/acschembio.7b00116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PF-956980 has been used previously as a JAK3-selective chemical probe in numerous cell-based experiments. Here, we report that not only is PF-956980 a pan-JAK ATP-competitive inhibitor but it also causes selective reduction of endogenous JAK2 and JAK3 protein levels in human primary immune cells (in a time-dependent manner), leaving the other JAK family members (JAK1 and TYK2) unchanged. We found that PF-956980 selectively downregulated JAK2 and JAK3 mRNA, corresponding to changes observed at the protein level. This work highlights therapeutic opportunities for the development of pharmacological inhibitors that also modulate the expression of their cognate binding proteins.
Collapse
Affiliation(s)
- S. Denise Field
- Medicine
Design, Pfizer, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Jacob Arkin
- Medicine
Design, Pfizer, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Jing Li
- Medicine
Design, Pfizer, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Lyn H. Jones
- Medicine
Design, Pfizer, 610 Main Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
64
|
Delgado-Martin C, Meyer LK, Huang BJ, Shimano KA, Zinter MS, Nguyen JV, Smith GA, Taunton J, Winter SS, Roderick JR, Kelliher MA, Horton TM, Wood BL, Teachey DT, Hermiston ML. JAK/STAT pathway inhibition overcomes IL7-induced glucocorticoid resistance in a subset of human T-cell acute lymphoblastic leukemias. Leukemia 2017; 31:2568-2576. [PMID: 28484265 PMCID: PMC5729333 DOI: 10.1038/leu.2017.136] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 03/09/2017] [Accepted: 04/24/2017] [Indexed: 12/27/2022]
Abstract
While outcomes for children with T-cell acute lymphoblastic leukemia (T-ALL) have improved dramatically, survival rates for patients with relapsed/refractory disease remain dismal. Prior studies indicate that glucocorticoid (GC) resistance is more common than resistance to other chemotherapies at relapse. In addition, failure to clear peripheral blasts during a prednisone prophase correlates with an elevated risk of relapse in newly diagnosed patients. Here we show that intrinsic GC resistance is present at diagnosis in early thymic precursor (ETP) T-ALLs as well as in a subset of non-ETP T-ALLs. GC-resistant non-ETP T-ALLs are characterized by strong induction of JAK/STAT signaling in response to interleukin-7 (IL7) stimulation. Removing IL7 or inhibiting JAK/STAT signaling sensitizes these T-ALLs, and a subset of ETP T-ALLs, to GCs. The combination of the GC dexamethasone and the JAK1/2 inhibitor ruxolitinib altered the balance between pro- and anti-apoptotic factors in samples with IL7-dependent GC resistance, but not in samples with IL7-independent GC resistance. Together, these data suggest that the addition of ruxolitinib or other inhibitors of IL7 receptor/JAK/STAT signaling may enhance the efficacy of GCs in a biologically defined subset of T-ALL.
Collapse
Affiliation(s)
- C Delgado-Martin
- Department of Pediatrics, University of California, San Francisco, Benioff Children's Hospital, San Francisco, CA, USA
| | - L K Meyer
- Department of Pediatrics, University of California, San Francisco, Benioff Children's Hospital, San Francisco, CA, USA
| | - B J Huang
- Department of Pediatrics, University of California, San Francisco, Benioff Children's Hospital, San Francisco, CA, USA
| | - K A Shimano
- Department of Pediatrics, University of California, San Francisco, Benioff Children's Hospital, San Francisco, CA, USA
| | - M S Zinter
- Department of Pediatrics, University of California, San Francisco, Benioff Children's Hospital, San Francisco, CA, USA
| | - J V Nguyen
- Department of Pediatrics, University of California, San Francisco, Benioff Children's Hospital, San Francisco, CA, USA
| | - G A Smith
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - J Taunton
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - S S Winter
- Department of Pediatric Hematology/Oncology, University of New Mexico, Albuquerque, NM, USA
| | - J R Roderick
- Department of Cancer Biology, University of Massachusetts, Worcester, MA, USA
| | - M A Kelliher
- Department of Cancer Biology, University of Massachusetts, Worcester, MA, USA
| | - T M Horton
- Department of Pediatrics, Texas Children's Hospital, Houston, TX, USA
| | - B L Wood
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - D T Teachey
- Department of Pediatrics, Children's Hospital of Pennsylvania, Philadelphia, PA, USA
| | - M L Hermiston
- Department of Pediatrics, University of California, San Francisco, Benioff Children's Hospital, San Francisco, CA, USA
| |
Collapse
|
65
|
Ren W, Liu G, Chen S, Yin J, Wang J, Tan B, Wu G, Bazer FW, Peng Y, Li T, Reiter RJ, Yin Y. Melatonin signaling in T cells: Functions and applications. J Pineal Res 2017; 62. [PMID: 28152213 DOI: 10.1111/jpi.12394] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 01/27/2017] [Indexed: 12/21/2022]
Abstract
Melatonin affects a variety of physiological processes including circadian rhythms, cellular redox status, and immune function. Importantly, melatonin significantly influences T-cell-mediated immune responses, which are crucial to protect mammals against cancers and infections, but are associated with pathogenesis of many autoimmune diseases. This review focuses on our current understanding of the significance of melatonin in T-cell biology and the beneficial effects of melatonin in T-cell response-based diseases. In addition to expressing both membrane and nuclear receptors for melatonin, T cells have the four enzymes required for the synthesis of melatonin and produce high levels of melatonin. Meanwhile, melatonin is highly effective in modulating T-cell activation and differentiation, especially for Th17 and Treg cells, and also memory T cells. Mechanistically, the influence of melatonin in T-cell biology is associated with membrane and nuclear receptors as well as receptor-independent pathways, for example, via calcineurin. Several cell signaling pathways, including ERK1/2-C/EBPα, are involved in the regulatory roles of melatonin in T-cell biology. Through modulation in T-cell responses, melatonin exerts beneficial effects in various inflammatory diseases, such as type 1 diabetes, systemic lupus erythematosus, and multiple sclerosis. These findings highlight the importance of melatonin signaling in T-cell fate determination, and T cell-based immune pathologies.
Collapse
Affiliation(s)
- Wenkai Ren
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Gang Liu
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Shuai Chen
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Jie Yin
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Jing Wang
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Bie Tan
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Yuanyi Peng
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Tiejun Li
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, Hunan, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Yulong Yin
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
- School of Life Science, Hunan Normal University, Changsha, China
| |
Collapse
|
66
|
Elwood F, Witter DJ, Piesvaux J, Kraybill B, Bays N, Alpert C, Goldenblatt P, Qu Y, Ivanovska I, Lee HH, Chiu CS, Tang H, Scott ME, Deshmukh SV, Zielstorff M, Byford A, Chakravarthy K, Dorosh L, Rivkin A, Klappenbach J, Pan BS, Kariv I, Dinsmore C, Slipetz D, Dandliker PJ. Evaluation of JAK3 Biology in Autoimmune Disease Using a Highly Selective, Irreversible JAK3 Inhibitor. J Pharmacol Exp Ther 2017; 361:229-244. [DOI: 10.1124/jpet.116.239723] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/03/2017] [Indexed: 01/01/2023] Open
|
67
|
Waldmann TA, Chen J. Disorders of the JAK/STAT Pathway in T Cell Lymphoma Pathogenesis: Implications for Immunotherapy. Annu Rev Immunol 2017; 35:533-550. [PMID: 28182501 DOI: 10.1146/annurev-immunol-110416-120628] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Common gamma receptor-dependent cytokines and their JAK/STAT pathways play pivotal roles in T cell immunity. Abnormal activation of this system was pervasive in diverse T cell malignancies assessed by pSTAT3/pSTAT5 phosphorylation. Activating mutations were described in some but not all cases. JAK1 and STAT3 were required for proliferation and survival of these T cell lines whether or not JAKs or STATs were mutated. Activating JAK and STAT mutations were not sufficient to initiate leukemic cell proliferation but rather only augmented signals from upstream in the cytokine pathway. Activation required the full pathway, including cytokine receptors acting as scaffolds and docking sites for required downstream JAK/STAT proteins. JAK kinase inhibitors have depressed leukemic T cell line proliferation. The insight that JAK/STAT system activation is pervasive in T cell malignancies suggests novel therapeutic approaches that include antibodies to common gamma cytokines, inhibitors of cytokine-receptor interactions, and JAK kinase inhibitors that may revolutionize therapy for T cell malignancies.
Collapse
Affiliation(s)
- Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892;
| | - Jing Chen
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892;
| |
Collapse
|
68
|
Au-Yeung BB, Smith GA, Mueller JL, Heyn CS, Jaszczak RG, Weiss A, Zikherman J. IL-2 Modulates the TCR Signaling Threshold for CD8 but Not CD4 T Cell Proliferation on a Single-Cell Level. THE JOURNAL OF IMMUNOLOGY 2017; 198:2445-2456. [PMID: 28159902 DOI: 10.4049/jimmunol.1601453] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/12/2017] [Indexed: 11/19/2022]
Abstract
Lymphocytes integrate Ag and cytokine receptor signals to make cell fate decisions. Using a specific reporter of TCR signaling that is insensitive to cytokine signaling, Nur77-eGFP, we identify a sharp, minimal threshold of cumulative TCR signaling required for proliferation in CD4 and CD8 T cells that is independent of both Ag concentration and affinity. Unexpectedly, IL-2 reduces this threshold in CD8 but not CD4 T cells, suggesting that integration of multiple mitogenic inputs may alter the minimal requirement for TCR signaling in CD8 T cells. Neither naive CD4 nor naive CD8 T cells are responsive to low doses of IL-2. We show that activated CD8 T cells become responsive to low doses of IL-2 more quickly than CD4 T cells, and propose that this relative delay in turn accounts for the differential effects of IL-2 on the minimal TCR signaling threshold for proliferation in these populations. In contrast to Nur77-eGFP, c-Myc protein expression integrates mitogenic signals downstream of both IL-2 and the TCR, yet marks an invariant minimal threshold of cumulative mitogenic stimulation required for cell division. Our work provides a conceptual framework for understanding the regulation of clonal expansion of CD8 T cells by subthreshold TCR signaling in the context of mitogenic IL-2 signals, thereby rendering CD8 T cells exquisitely dependent upon environmental cues. Conversely, CD4 T cell proliferation requires an invariant minimal intensity of TCR signaling that is not modulated by IL-2, thereby restricting responses to low-affinity or low-abundance self-antigens even in the context of an inflammatory milieu.
Collapse
Affiliation(s)
- Byron B Au-Yeung
- The Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143;
| | - Geoffrey Alexander Smith
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94143
| | - James L Mueller
- The Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143
| | - Cheryl S Heyn
- The Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143
| | - Rebecca Garrett Jaszczak
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143; and
| | - Arthur Weiss
- The Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143
| | - Julie Zikherman
- The Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143;
| |
Collapse
|
69
|
Ashouri JF, Weiss A. Endogenous Nur77 Is a Specific Indicator of Antigen Receptor Signaling in Human T and B Cells. THE JOURNAL OF IMMUNOLOGY 2016; 198:657-668. [PMID: 27940659 DOI: 10.4049/jimmunol.1601301] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/14/2016] [Indexed: 12/20/2022]
Abstract
Distinguishing true Ag-stimulated lymphocytes from bystanders activated by the inflammatory milieu has been difficult. Nur77 is an immediate early gene whose expression is rapidly upregulated by TCR signaling in murine T cells and human thymocytes. Nur77-GFP transgenes serve as specific TCR and BCR signaling reporters in murine transgenic models. In this study, we demonstrate that endogenous Nur77 protein expression can serve as a reporter of TCR and BCR specific signaling in human PBMCs. Nur77 protein amounts were assessed by immunofluorescence and flow cytometry in T and B cells isolated from human PBMCs obtained from healthy donors that had been stimulated by their respective Ag receptors. We demonstrate that endogenous Nur77 is a more specific reporter of Ag-specific signaling events than the commonly used CD69 activation marker in both human T and B cells. This is reflective of the disparity in signaling pathways that regulate the expression of Nur77 and CD69. Assessing endogenous Nur77 protein expression has great potential to identify Ag-activated lymphocytes in human disease.
Collapse
Affiliation(s)
- Judith F Ashouri
- The Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, and the Howard Hughes Medical Institute at the University of California, San Francisco, San Francisco, CA 94143
| | - Arthur Weiss
- The Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, and the Howard Hughes Medical Institute at the University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
70
|
Forster M, Chaikuad A, Bauer SM, Holstein J, Robers MB, Corona CR, Gehringer M, Pfaffenrot E, Ghoreschi K, Knapp S, Laufer SA. Selective JAK3 Inhibitors with a Covalent Reversible Binding Mode Targeting a New Induced Fit Binding Pocket. Cell Chem Biol 2016; 23:1335-1340. [PMID: 27840070 PMCID: PMC5119931 DOI: 10.1016/j.chembiol.2016.10.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/21/2016] [Accepted: 10/13/2016] [Indexed: 01/01/2023]
Abstract
Janus kinases (JAKs) are a family of cytoplasmatic tyrosine kinases that are attractive targets for the development of anti-inflammatory drugs given their roles in cytokine signaling. One question regarding JAKs and their inhibitors that remains under intensive debate is whether JAK inhibitors should be isoform selective. Since JAK3 functions are restricted to immune cells, an isoform-selective inhibitor for JAK3 could be especially valuable to achieve clinically more useful and precise effects. However, the high degree of structural conservation makes isoform-selective targeting a challenging task. Here, we present picomolar inhibitors with unprecedented kinome-wide selectivity for JAK3. Selectivity was achieved by concurrent covalent reversible targeting of a JAK3-specific cysteine residue and a ligand-induced binding pocket. We confirmed that in vitro activity and selectivity translate well into the cellular environment and suggest that our inhibitors are powerful tools to elucidate JAK3-specific functions. Identification and characterization of novel covalent reversible JAK3 inhibitors Picomolar affinities along with both high isoform and kinome selectivity is achieved Covalent-reversible interaction and a new induced binding pocket confirmed by X-ray structures High potency and selectivity are successfully proven in cellular models
Collapse
Affiliation(s)
- Michael Forster
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard-Karls-University Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Apirat Chaikuad
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium and Target Discovery Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Silke M Bauer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard-Karls-University Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Julia Holstein
- Department of Dermatology, University Medical Center, Eberhard-Karls-University Tuebingen, Liebermeisterstraße 25, 72076 Tuebingen, Germany
| | - Matthew B Robers
- Promega Corporation, 2800 Woods Hollow Road, Madison, WI 53711, USA
| | - Cesear R Corona
- Promega Corporation, 2800 Woods Hollow Road, Madison, WI 53711, USA
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard-Karls-University Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Ellen Pfaffenrot
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard-Karls-University Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Kamran Ghoreschi
- Department of Dermatology, University Medical Center, Eberhard-Karls-University Tuebingen, Liebermeisterstraße 25, 72076 Tuebingen, Germany
| | - Stefan Knapp
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium and Target Discovery Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK.
| | - Stefan A Laufer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard-Karls-University Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany.
| |
Collapse
|
71
|
Kariminik A. IL-2 and polyoma BK virus infection; A systematic review article. Cytokine 2016; 88:276-280. [PMID: 27718431 DOI: 10.1016/j.cyto.2016.09.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/31/2022]
Abstract
It has been demonstrated that IL-2 plays a dual role in induction/suppression of immune responses via activation of conventional and regulatory T lymphocytes, respectively. IL-2 contacts complete IL-2 receptor (IL-2R) which contains CD25 (α chain) on the antigen specific activated T helper and cytotoxic lymphocytes and also T regulatory cells. Additionally, previous investigations revealed that polyoma BK virus (PBK) reactivation and induction of PBK associated nephropathy (PBKAN) is a main complication following renal transplantation. Based on the important dual roles played by IL-2 in the immune responses, it may be hypothesized that IL-2/IL-2R interaction could be considered a potential mechanism against/toward PBK reactivation and also PBKAN. Accordingly, the aim of the current review article is to determine the roles of IL-2 IL-2/IL-2R interaction in PBK reactivation and PBKAN complications.
Collapse
Affiliation(s)
- Ashraf Kariminik
- Department of Microbiology, Kerman Branch, Islamic Azad University, Kerman, Iran.
| |
Collapse
|
72
|
|
73
|
Phosphoproteomic Analyses of Interleukin 2 Signaling Reveal Integrated JAK Kinase-Dependent and -Independent Networks in CD8(+) T Cells. Immunity 2016; 45:685-700. [PMID: 27566939 PMCID: PMC5040828 DOI: 10.1016/j.immuni.2016.07.022] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/03/2016] [Accepted: 07/08/2016] [Indexed: 12/20/2022]
Abstract
Interleukin-2 (IL-2) is a fundamental cytokine that controls proliferation and differentiation of T cells. Here, we used high-resolution mass spectrometry to generate a comprehensive and detailed map of IL-2 protein phosphorylations in cytotoxic T cells (CTL). The data revealed that Janus kinases (JAKs) couple IL-2 receptors to the coordinated phosphorylation of transcription factors, regulators of chromatin, mRNA translation, GTPases, vesicle trafficking, and the actin and microtubule cytoskeleton. We identified an IL-2-JAK-independent SRC family Tyr-kinase-controlled signaling network that regulates ∼10% of the CTL phosphoproteome, the production of phosphatidylinositol (3,4,5)-trisphosphate (PIP3), and the activity of the serine/threonine kinase AKT. These data reveal a signaling framework wherein IL-2-JAK-controlled pathways coordinate with IL-2-independent networks of kinase activity and provide a resource toward the further understanding of the networks of protein phosphorylation that program CTL fate.
Collapse
|