51
|
The Epigenetic Landscape of Vascular Calcification: An Integrative Perspective. Int J Mol Sci 2020; 21:ijms21030980. [PMID: 32024140 PMCID: PMC7037112 DOI: 10.3390/ijms21030980] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/26/2022] Open
Abstract
Vascular calcification (VC) is an important complication among patients of advanced age, those with chronic kidney disease, and those with diabetes mellitus. The pathophysiology of VC encompasses passive occurrence of physico-chemical calcium deposition, active cellular secretion of osteoid matrix upon exposure to metabolically noxious stimuli, or a variable combination of both processes. Epigenetic alterations have been shown to participate in this complex environment, through mechanisms including DNA methylation, non-coding RNAs, histone modifications, and chromatin changes. Despite such importance, existing reviews fail to provide a comprehensive view of all relevant reports addressing epigenetic processes in VC, and cross-talk between different epigenetic machineries is rarely examined. We conducted a systematic review based on PUBMED and MEDLINE databases up to 30 September 2019, to identify clinical, translational, and experimental reports addressing epigenetic processes in VC; we retrieved 66 original studies, among which 60.6% looked into the pathogenic role of non-coding RNA, followed by DNA methylation (12.1%), histone modification (9.1%), and chromatin changes (4.5%). Nine (13.6%) reports examined the discrepancy of epigenetic signatures between subjects or tissues with and without VC, supporting their applicability as biomarkers. Assisted by bioinformatic analyses blending in each epigenetic component, we discovered prominent interactions between microRNAs, DNA methylation, and histone modification regarding potential influences on VC risk.
Collapse
|
52
|
Lam B, Roudier E. Considering the Role of Murine Double Minute 2 in the Cardiovascular System? Front Cell Dev Biol 2020; 7:320. [PMID: 31921839 PMCID: PMC6916148 DOI: 10.3389/fcell.2019.00320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/21/2019] [Indexed: 01/26/2023] Open
Abstract
The E3 ubiquitin ligase Murine double minute 2 (MDM2) is the main negative regulator of the tumor protein p53 (TP53). Extensive studies over more than two decades have confirmed MDM2 oncogenic role through mechanisms both TP53-dependent and TP53-independent oncogenic function. These studies have contributed to designate MDM2 as a therapeutic target of choice for cancer treatment and the number of patents for MDM2 antagonists has increased immensely over the last years. However, the question of the physiological functions of MDM2 has not been fully resolved yet, particularly when expressed and regulated physiologically in healthy tissue. Cardiovascular complications are almost an inescapable side-effect of anti-cancer therapies. While several MDM2 antagonists are entering phase I, II and even III of clinical trials, this review proposes to bring awareness on the physiological role of MDM2 in the cardiovascular system.
Collapse
Affiliation(s)
- Brian Lam
- Angiogenesis Research Group, School of Kinesiology and Health Sciences, Muscle Health Research Center, Faculty of Health, York University, Toronto, ON, Canada
| | - Emilie Roudier
- Angiogenesis Research Group, School of Kinesiology and Health Sciences, Muscle Health Research Center, Faculty of Health, York University, Toronto, ON, Canada
| |
Collapse
|
53
|
Yang Y, Yang C, Li T, Yu S, Gan T, Hu J, Cui J, Zheng X. The Deubiquitinase USP38 Promotes NHEJ Repair through Regulation of HDAC1 Activity and Regulates Cancer Cell Response to Genotoxic Insults. Cancer Res 2019; 80:719-731. [PMID: 31874856 DOI: 10.1158/0008-5472.can-19-2149] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/16/2019] [Accepted: 12/13/2019] [Indexed: 11/16/2022]
Abstract
The DNA damage response (DDR) is essential for maintaining genome integrity. Mounting evidence reveals that protein modifications play vital roles in the DDR. Here, we show that USP38 is involved in the DDR by regulating the activity of HDAC1. In response to DNA damage, USP38 interacted with HDAC1 and specifically removed the K63-linked ubiquitin chain promoting the deacetylase activity of HDAC1. As a result, HDAC1 was able to deacetylate H3K56. USP38 deletion resulted in persistent focal accumulation of nonhomologous end joining (NHEJ) factors at DNA damage sites and impaired NHEJ efficiency, causing genome instability and sensitizing cancer cells to genotoxic insults. Knockout of USP38 rendered mice hypersensitive to irradiation and shortened survival. In addition, USP38 was expressed at low levels in certain types of cancers including renal cell carcinoma, indicating dysregulation of USP38 expression contributes to genomic instability and may lead to tumorigenesis. In summary, this study identifies a critical role of USP38 in modulating genome integrity and cancer cell resistance to genotoxic insults by deubiquitinating HDAC1 and regulating its deacetylation activity. SIGNIFICANCE: This study demonstrates that USP38 regulates genome stability and mediates cancer cell resistance to DNA-damaging therapy, providing insight into tumorigenesis and implicating USP38 as a potential target for cancer diagnosis.
Collapse
Affiliation(s)
- Yongfeng Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.,Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Chuanzhen Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.,Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Tingting Li
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Institute of Basic Medical Sciences, Beijing, China
| | - Shuyu Yu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.,Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Tingting Gan
- Department of Cell Biology, School of Life Sciences, Peking University, Beijing, China
| | - Jiazhi Hu
- Department of Cell Biology, School of Life Sciences, Peking University, Beijing, China
| | - Jun Cui
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaofeng Zheng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China. .,Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
54
|
Heart failure with preserved ejection fraction: present status and future directions. Exp Mol Med 2019; 51:1-9. [PMID: 31857581 PMCID: PMC6923411 DOI: 10.1038/s12276-019-0323-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/01/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022] Open
Abstract
The clinical importance of heart failure with preserved ejection fraction (HFpEF) has recently become apparent. HFpEF refers to heart failure (HF) symptoms with normal or near-normal cardiac function on echocardiography. Common clinical features of HFpEF include diastolic dysfunction, reduced compliance, and ventricular hypokinesia. HFpEF differs from the better-known HF with reduced ejection fraction (HFrEF). Despite having a "preserved ejection fraction," patients with HFpEF have symptoms such as shortness of breath, excessive tiredness, and limited exercise capability. Furthermore, the mortality rate and cumulative survival rate are as severe in HFpEF as they are in HFrEF. While beta-blockers and renin-angiotensin-aldosterone system modulators can improve the survival rate in HFrEF, no known therapeutic agents show similar effectiveness in HFpEF. Researchers have examined molecular events in the development of HFpEF using small and middle-sized animal models. This review discusses HFpEF with regard to etiology and clinical features and introduces the use of mouse and other animal models of human HFpEF.
Collapse
|
55
|
Ryu J, Kwon DH, Choe N, Shin S, Jeong G, Lim YH, Kim J, Park WJ, Kook H, Kim YK. Characterization of Circular RNAs in Vascular Smooth Muscle Cells with Vascular Calcification. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 19:31-41. [PMID: 31790973 PMCID: PMC6909180 DOI: 10.1016/j.omtn.2019.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 10/09/2019] [Accepted: 11/05/2019] [Indexed: 02/06/2023]
Abstract
Circular RNAs (circRNAs) are generally formed by back splicing and are expressed in various cells. Vascular calcification (VC), a common complication of chronic kidney disease (CKD), is often associated with cardiovascular disease. The relationship between circRNAs and VC has not yet been studied. Inorganic phosphate (Pi) was used to treat rat vascular smooth muscle cells to induce VC. circRNAs were identified by analyzing RNA sequencing (RNA-seq) data, and their expression change during VC was validated. The selected circRNAs, including circSamd4a, circSmoc1-1, circMettl9, and circUxs1, were resistant to RNase R digestion and mostly localized in the cytoplasm. While silencing circSamd4a promoted VC, overexpressing it reduced VC in calcium assay and Alizarin red S (ARS) staining. In addition, microRNA (miRNA) microarray, luciferase reporter assay, and calcium assay suggested that circSamd4a could act as a miRNA suppressor. Our data show that circSamd4a has an anti-calcification role by functioning as a miRNA sponge. Moreover, mRNAs that can interact with miRNAs were predicted from RNA-seq and bioinformatics analysis, and the circSamd4a-miRNA-mRNA axis involved in VC was verified by luciferase reporter assay and calcium assay. Since circSamd4a is conserved in humans, it can serve as a novel therapeutic target in resolving VC.
Collapse
Affiliation(s)
- Juhee Ryu
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea; Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Pharmacology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
| | - Duk-Hwa Kwon
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Pharmacology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
| | - Nakwon Choe
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Pharmacology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
| | - Sera Shin
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Pharmacology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
| | - Geon Jeong
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea; Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
| | - Yeong-Hwan Lim
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea; Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
| | - Jaetaek Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Woo Jin Park
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; College of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Hyun Kook
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea; Department of Pharmacology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.
| | - Young-Kook Kim
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea; Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.
| |
Collapse
|
56
|
Ji R, Gu Y, Zhang J, Gao C, Gao W, Zang X, Zhao Y. TRIM7 promotes proliferation and migration of vascular smooth muscle cells in atherosclerosis through activating c-Jun/AP-1. IUBMB Life 2019; 72:247-258. [PMID: 31625258 DOI: 10.1002/iub.2181] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/23/2019] [Indexed: 01/04/2023]
Abstract
Atherosclerosis (AS), with associated risk of stroke or cerebrovascular disease, is one of the most common causes of death globally. It has been well established that tripartite motif-containing protein 7 Tripartite Motif-containing 7 (Trim7), as an E3 ubiquitin protein ligase, is involved in protein ubiquitination and thus regulating cellular proliferation. Moreover, TRIM7 is upregulated in advanced carotid AS. However, the detailed mechanism of TRIM7 on regulation of AS remains unclear. In the present study, we firstly discovered that TRIM7 expression was robustly induced in platelet-derived growth factor type BB-treated vascular smooth muscle cells (VSMCs) and human atherosclerotic plaques. Functional approaches established that knockdown of TRIM7 inhibited proliferation and migration of VSMCs, as well as arrested the cell cycle at G1-S, thus suppressing AS progression. Our results also identified that c-Jun/activator protein 1 (AP-1) signaling pathway was activated by TRIM7. Moreover, gain- and loss-of-function studies revealed that TRIM7 could promote proliferation and migration of VSMCs via activation of c-Jun/AP-1 signaling pathway. Finally, by using atherogenic apolipoprotein E-deficient (apoE-/-) C57BL/6 mice with high-fat diet AS model, we demonstrated that interference of TRIM7 could effectively mitigate in vivo AS via inactivation of c-Jun/AP-1 signaling pathway. In general, activation of c-Jun/AP-1 signaling pathway via TRIM7 could be an important mechanism in AS progression, thus shedding light on the development of novel therapeutics to the treatment of the disease.
Collapse
Affiliation(s)
- Rongjing Ji
- Department of Cardiology, FuWai Central China Cardiovascular Hospital, Zhengzhou, China.,Department of Cardiology, Medical School of Jinzhou Medical University, Jinzhou, China.,Department of Cardiology, The People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanyuan Gu
- Department of neurology, The Third People's Hospital of Zhengzhou, Zhengzhou, China
| | - Jing Zhang
- Department of Cardiology, FuWai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Chuanyu Gao
- Department of Cardiology, FuWai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Wanli Gao
- Department of Cardiology, FuWai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Xiaobiao Zang
- Department of Cardiology, FuWai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Yonghui Zhao
- Department of Cardiology, FuWai Central China Cardiovascular Hospital, Zhengzhou, China.,Department of Cardiology, The People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
57
|
Zinc-finger protein p52-ZER6 accelerates colorectal cancer cell proliferation and tumour progression through promoting p53 ubiquitination. EBioMedicine 2019; 48:248-263. [PMID: 31521611 PMCID: PMC6838388 DOI: 10.1016/j.ebiom.2019.08.070] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/20/2019] [Accepted: 08/29/2019] [Indexed: 12/22/2022] Open
Abstract
Background Aberrant expression of p53 and its downstream gene p21 is closely related to alterations in cell cycle and cell proliferation, and is common among cancer patients. However, the underlying molecular mechanism has not been fully unravelled. ZER6 is a zinc-finger protein with two isoforms possessing different amino termini (N-termini) in their proteins, p52-ZER6 and p71-ZER6. The biological function of ZER6 isoforms, as well as their potential involvement in tumourigenesis and the regulation of p53 remain elusive. Methods The effect of ZER6 isoforms on p53 and p21 was determined using specific knockdown and overexpression. p52-ZER6 expression in tumours was analysed using clinical specimens, while gene modulation was used to explore p52-ZER6 roles in regulating cell proliferation and tumourigenesis. The mechanism of p52-ZER6 regulation on the p53/p21 axis was studied using molecular biology and biochemical methods. Findings p52-ZER6 was highly expressed in tumour tissues, and was closely related with tumour progression. Mechanistically, p52-ZER6 bound to p53 through a truncated KRAB (tKRAB) domain in its N-terminus and enhanced MDM2/p53 complex integrity, leading to increased p53 ubiquitination and degradation. p52-ZER6-silencing induced G0-G1 phase arrest, and subsequently reduced cell proliferation and tumourigenesis. Intriguingly, this regulation on p53 was specific to p52-ZER6, whereas p71-ZER6 did not affect p53 stability, most likely due to the presence of a HUB-1 domain. Interpretation We identified p52-ZER6 as a novel oncogene that enhances MDM2/p53 complex integrity, and might be a potential target for anti-cancer therapy.
Collapse
|
58
|
Majolée J, Kovačević I, Hordijk PL. Ubiquitin-based modifications in endothelial cell-cell contact and inflammation. J Cell Sci 2019; 132:132/17/jcs227728. [PMID: 31488505 DOI: 10.1242/jcs.227728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Endothelial cell-cell contacts are essential for vascular integrity and physiology, protecting tissues and organs from edema and uncontrolled invasion of inflammatory cells. The vascular endothelial barrier is dynamic, but its integrity is preserved through a tight control at different levels. Inflammatory cytokines and G-protein-coupled receptor agonists, such as histamine, reduce endothelial integrity and increase vascular leakage. This is due to elevated myosin-based contractility, in conjunction with phosphorylation of proteins at cell-cell contacts. Conversely, reducing contractility stabilizes or even increases endothelial junctional integrity. Rho GTPases are key regulators of such cytoskeletal dynamics and endothelial cell-cell contacts. In addition to signaling-induced regulation, the expression of junctional proteins, such as occludin, claudins and vascular endothelial cadherin, also controls endothelial barrier function. There is increasing evidence that, in addition to protein phosphorylation, ubiquitylation (also known as ubiquitination) is an important and dynamic post-translational modification that regulates Rho GTPases, junctional proteins and, consequently, endothelial barrier function. In this Review, we discuss the emerging role of ubiquitylation and deubiquitylation events in endothelial integrity and inflammation. The picture that emerges is one of increasing complexity, which is both fascinating and promising given the clinical relevance of vascular integrity in the control of inflammation, and of tissue and organ damage.
Collapse
Affiliation(s)
- Jisca Majolée
- Department of Physiology, Amsterdam University Medical Centers, location VUmc, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Igor Kovačević
- Department of Physiology, Amsterdam University Medical Centers, location VUmc, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Peter L Hordijk
- Department of Physiology, Amsterdam University Medical Centers, location VUmc, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
59
|
Lai QY, He YZ, Peng XW, Zhou X, Liang D, Wang L. Histone deacetylase 1 induced by neddylation inhibition contributes to drug resistance in acute myelogenous leukemia. Cell Commun Signal 2019; 17:86. [PMID: 31358016 PMCID: PMC6664585 DOI: 10.1186/s12964-019-0393-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/15/2019] [Indexed: 12/11/2022] Open
Abstract
Objective This study aimed to investigate the function and mechanism of neddylation of HDAC1 underlying drug resistance of AML cells. Methods Evaluation experiments of effects of HDAC1 on drug resistance of AML cells were performed with AML cell transfected with constructs overexpressing HDAC1 or multi-drug resistance AML cells transfected with siRNA for HDAC1 through observing cell viability, percentage of apoptotic cell, doxorubicin-releasing index and multidrug resistance associated protein 1 (MRP1) expression. Neddylation or ubiquitination of HDAC1 was determined by immunoprecipitation or Ni2+ pull down assay followed by western blot. The role of HDAC1 was in vivo confirmed by xenograft in mice. Results HDAC1 was significantly upregulated in refractory AML patients, and in drug-resistant AML cells (HL-60/ADM and K562/A02). Intracellular HDAC1 expression promoted doxorubicin resistance of HL-60, K562, and primary bone marrow cells (BMCs) of remission AML patients as shown by increasing cell viability and doxorubicin-releasing index, inhibiting cell apoptosis. Moreover, HDAC1 protein level in AML cells was regulated by the Nedd8-mediated neddylation and ubiquitination, which further promoted HDAC1 degradation. In vivo, HDAC1 overexpression significantly increased doxorubicin resistance; while HDACs inhibitor Panobinostat markedly improved the inhibitory effect of doxorubicin on tumor growth. Furthermore, HDAC1 silencing by Panobinostat and/or lentivirus mediated RNA interference against HDAC1 effectively reduced doxorubicin resistance, resulting in the inhibition of tumor growth in AML bearing mice. Conclusion Our findings suggested that HDAC1 contributed to the multidrug resistance of AML and its function turnover was regulated, at least in part, by post-translational modifications, including neddylation and ubiquitination. Electronic supplementary material The online version of this article (10.1186/s12964-019-0393-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qiu-Yu Lai
- Department of Hematology, ZhuJiang Hospital of Southern Medical Univeristy, No. 253 GongyeDadaoZhong, 510280, Guangzhou, Guangdong, People's Republic of China
| | - Ying-Zhi He
- Department of Hematology, ZhuJiang Hospital of Southern Medical Univeristy, No. 253 GongyeDadaoZhong, 510280, Guangzhou, Guangdong, People's Republic of China
| | - Xiong-Wen Peng
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xuan Zhou
- Department of Hematology, ZhuJiang Hospital of Southern Medical Univeristy, No. 253 GongyeDadaoZhong, 510280, Guangzhou, Guangdong, People's Republic of China
| | - Dan Liang
- Department of Hematology, ZhuJiang Hospital of Southern Medical Univeristy, No. 253 GongyeDadaoZhong, 510280, Guangzhou, Guangdong, People's Republic of China
| | - Liang Wang
- Department of Hematology, ZhuJiang Hospital of Southern Medical Univeristy, No. 253 GongyeDadaoZhong, 510280, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
60
|
Lysine acetyltransferases and lysine deacetylases as targets for cardiovascular disease. Nat Rev Cardiol 2019; 17:96-115. [DOI: 10.1038/s41569-019-0235-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2019] [Indexed: 12/28/2022]
|
61
|
Choi YM, An S, Bae S, Jung JH. Mdm2 is required for HDAC3 monoubiquitination and stability. Biochem Biophys Res Commun 2019; 517:353-358. [PMID: 31358320 DOI: 10.1016/j.bbrc.2019.07.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 07/17/2019] [Indexed: 01/01/2023]
Abstract
HDAC3, one of the class I histone deacetylase modulates epigenetic landscape through histone modification. HDAC3 also interacts with non-histone proteins including p53 for deacetylation. Moreover, HDAC3 serves as a transcriptional repressor, interacting with NCor1/SMRT complex. Although HDAC3 plays a critical role for cellular homeostasis, regulatory mechanism of HDAC3 have been poorly understood. Here we report a novel regulatory mechanism of HDAC3 about its monoubiquitination and stabilization by Mdm2. HDAC3 levels were increased by ectopic expression of Mdm2 and decreased by Mdm2 ablation in various cell lines. We found that Mdm2 directly interacts with HDAC3 and induces HDAC3 protein levels without alteration of mRNA levels. Ectopic expression of wild type but not RING mutant of Mdm2 increased HDAC3 monoubiquitination. In addition, MdmX is beneficial for mdm2-mediated HDAC3 regulation. Ablation of Mdm2 and Mdm2/MdmX decreased cell migration along with the decrease of HDAC3 levels. These data provide an evidence that Mdm2 positively regulates HDAC3 monoubiquitination and stability.
Collapse
Affiliation(s)
- Yeong Min Choi
- GeneCellPharm Corporation, 375 Munjeong 2(i)-dong, Songpa-gu Seoul, 05836, Republic of Korea
| | - Sungkwan An
- Research Institute for Molecular-Targeted Drugs, Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Seunghee Bae
- Research Institute for Molecular-Targeted Drugs, Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jin Hyuk Jung
- GeneCellPharm Corporation, 375 Munjeong 2(i)-dong, Songpa-gu Seoul, 05836, Republic of Korea.
| |
Collapse
|
62
|
Gu J, Lu Y, Deng M, Qiu M, Tian Y, Ji Y, Zong P, Shao Y, Zheng R, Zhou B, Sun W, Kong X. Inhibition of acetylation of histones 3 and 4 attenuates aortic valve calcification. Exp Mol Med 2019; 51:1-14. [PMID: 31292436 PMCID: PMC6802657 DOI: 10.1038/s12276-019-0272-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/04/2019] [Accepted: 03/06/2019] [Indexed: 02/08/2023] Open
Abstract
Aortic valve calcification develops in patients with chronic kidney disease who have calcium and phosphate metabolic disorders and poor prognoses. There is no effective treatment except valve replacement. However, metabolic disorders put patients at high risk for surgery. Increased acetylation of histones 3 and 4 is present in interstitial cells from human calcific aortic valves, but whether it is involved in aortic valve calcification has not been studied. In this study, we found that treating cultured porcine aortic valve interstitial cells with a high-calcium/high-phosphate medium induced calcium deposition, apoptosis, and expression of osteogenic marker genes, producing a phenotype resembling valve calcification in vivo. These phenotypic changes were attenuated by the histone acetyltransferase inhibitor C646. C646 treatment increased the levels of class I histone deacetylase members and decreased the acetylation of histones 3 and 4 induced by the high-calcium/high-phosphate treatment. Conversely, the histone deacetylase inhibitor suberoylanilide hydroxamic acid promoted valve interstitial cell calcification. In a mouse model of aortic valve calcification induced by adenine and vitamin D treatment, the levels of acetylated histones 3 and 4 were increased in the calcified aortic valves. Treatment of the models with C646 attenuated aortic valve calcification by restoring the levels of acetylated histones 3 and 4. These observations suggest that increased acetylation of histones 3 and 4 is part of the pathogenesis of aortic valve calcification associated with calcium and phosphate metabolic disorders. Targeting acetylated histones 3 and 4 may be a potential therapy for inoperable aortic valve calcification in chronic kidney disease patients.
Collapse
Affiliation(s)
- Jia Gu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, PR China
| | - Yan Lu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, PR China
| | - Menqing Deng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, PR China
| | - Ming Qiu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, PR China
| | - Yunfan Tian
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, PR China
| | - Yue Ji
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, PR China
| | - Pengyu Zong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, PR China
| | - Yongfeng Shao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, PR China
| | - Rui Zheng
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, PR China
| | - Bin Zhou
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), The Wilf Cardiovascular Research Institute, The Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Wei Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, PR China.
| | - Xiangqing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, PR China.
| |
Collapse
|
63
|
Jeong G, Kwon DH, Shin S, Choe N, Ryu J, Lim YH, Kim J, Park WJ, Kook H, Kim YK. Long noncoding RNAs in vascular smooth muscle cells regulate vascular calcification. Sci Rep 2019; 9:5848. [PMID: 30971745 PMCID: PMC6458154 DOI: 10.1038/s41598-019-42283-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/27/2019] [Indexed: 01/10/2023] Open
Abstract
Vascular calcification is characterized by the accumulation of hydroxyapatite crystals, which is a result of aberrant mineral metabolism. Although many clinical studies have reported its adverse effects on cardiovascular morbidity, the molecular mechanism of vascular calcification, especially the involvement of long noncoding RNAs (lncRNAs), is not yet reported. From the transcriptomic analysis, we discovered hundreds of lncRNAs differentially expressed in rat vascular smooth muscle cells (VSMCs) treated with inorganic phosphate, which mimics vascular calcification. We focused on Lrrc75a-as1 and elucidated its transcript structure and confirmed its cytoplasmic localization. Our results showed that calcium deposition was elevated after knockdown of Lrrc75a-as1, while its overexpression inhibited calcium accumulation in A10 cells. In addition, Lrrc75a-as1 attenuated VSMCs calcification by decreasing the expression of osteoblast-related factors. These findings suggest that Lrrc75a-as1 acts as a negative regulator of vascular calcification, and may serve as a possible therapeutic target in vascular calcification.
Collapse
Affiliation(s)
- Geon Jeong
- Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Department of Biochemistry, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea.,Center for Creative Biomedical Scientists, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea
| | - Duk-Hwa Kwon
- Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea
| | - Sera Shin
- Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea
| | - Nakwon Choe
- Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea
| | - Juhee Ryu
- Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Department of Biochemistry, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea.,Center for Creative Biomedical Scientists, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea.,Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea
| | - Yeong-Hwan Lim
- Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Department of Biochemistry, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea.,Center for Creative Biomedical Scientists, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea
| | - Jaetaek Kim
- Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Woo Jin Park
- Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,College of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Hyun Kook
- Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea. .,Center for Creative Biomedical Scientists, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea. .,Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea.
| | - Young-Kook Kim
- Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea. .,Department of Biochemistry, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea. .,Center for Creative Biomedical Scientists, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea.
| |
Collapse
|
64
|
HDAC Inhibitors: Therapeutic Potential in Fibrosis-Associated Human Diseases. Int J Mol Sci 2019; 20:ijms20061329. [PMID: 30884785 PMCID: PMC6471162 DOI: 10.3390/ijms20061329] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/05/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023] Open
Abstract
Fibrosis is characterized by excessive deposition of the extracellular matrix and develops because of fibroblast differentiation during the process of inflammation. Various cytokines stimulate resident fibroblasts, which differentiate into myofibroblasts. Myofibroblasts actively synthesize an excessive amount of extracellular matrix, which indicates pathologic fibrosis. Although initial fibrosis is a physiologic response, the accumulated fibrous material causes failure of normal organ function. Cardiac fibrosis interferes with proper diastole, whereas pulmonary fibrosis results in chronic hypoxia; liver cirrhosis induces portal hypertension, and overgrowth of fibroblasts in the conjunctiva is a major cause of glaucoma surgical failure. Recently, several reports have clearly demonstrated the functional relevance of certain types of histone deacetylases (HDACs) in various kinds of fibrosis and the successful alleviation of the condition in animal models using HDAC inhibitors. In this review, we discuss the therapeutic potential of HDAC inhibitors in fibrosis-associated human diseases using results obtained from animal models.
Collapse
|
65
|
Fu Z, Li F, Jia L, Su S, Wang Y, Cai Z, Xiang M. Histone deacetylase 6 reduction promotes aortic valve calcification via an endoplasmic reticulum stress-mediated osteogenic pathway. J Thorac Cardiovasc Surg 2018; 158:408-417.e2. [PMID: 30579537 DOI: 10.1016/j.jtcvs.2018.10.136] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/09/2018] [Accepted: 10/12/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Aortic valve (AoV) calcification occurs via a pathophysiologic process that includes osteoblastic differentiation of valvular interstitial cells (VICs). Histone deacetylases (HDACs) have been shown to be involved in the pathogenesis of vascular diseases. Here, we investigated the role of HDAC6 in AoV calcification. METHODS AoV cusps from patients with aortic stenosis (n = 7) and normal controls (n = 7) were subjected to determination of calcified nodules and HDAC6 expression. Human VICs were cultured in osteogenic media and treated with 10 uM tubacin or HDAC6 small interfering RNA silencing to inhibit HDAC6. Treatment with 100 uM tauroursodeoxycholic acid was used to suppress endoplasmic reticulum stress. Activating transcription factor 4 (ATF4) small interfering RNA was used to knock down ATF4. Alizarin red staining was used to evaluate calcified nodules formation of VICs cultured with osteogenic media for 14 days. RESULTS HDAC6 expression was significantly reduced in AoV tissue of patients with aortic stenosis compared with controls. Tubacin treatment or HDAC6 silencing markedly promoted osteoblastic differentiation accompanied by endoplasmic reticulum stress activation in VICs. The HDAC6 inhibition-induced osteogenic pathway was mediated by endoplasmic reticulum stress/ATF4 pathway as indicated by tauroursodeoxycholic acid pretreatment or ATF4 silencing. Finally, alizarin red staining showed that HDAC6 inhibition promoted osteoblastic differentiation of VICs, which could be suppressed by tauroursodeoxycholic acid. CONCLUSIONS HDAC6 inhibition promotes AoV calcification via an endoplasmic reticulum stress/ATF4-mediated osteogenic pathway. HDAC6 may be a novel target for AoV calcification prevention and treatment.
Collapse
Affiliation(s)
- Zurong Fu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Key Lab of Cardiovascular Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Fei Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liangliang Jia
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Key Lab of Cardiovascular Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Shengan Su
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Key Lab of Cardiovascular Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yaping Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Key Lab of Cardiovascular Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhejun Cai
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Key Lab of Cardiovascular Disease of Zhejiang Province, Hangzhou, Zhejiang, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Key Lab of Cardiovascular Disease of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
66
|
Wang J, Qiu Z, Wu Y. Ubiquitin Regulation: The Histone Modifying Enzyme's Story. Cells 2018; 7:cells7090118. [PMID: 30150556 PMCID: PMC6162602 DOI: 10.3390/cells7090118] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022] Open
Abstract
Histone post-translational modifications influence many fundamental cellular events by regulating chromatin structure and gene transcriptional activity. These modifications are highly dynamic and tightly controlled, with many enzymes devoted to the addition and removal of these modifications. Interestingly, these modifying enzymes are themselves fine-tuned and precisely regulated at the level of protein turnover by ubiquitin-proteasomal processing. Here, we focus on recent progress centered on the mechanisms regulating ubiquitination of histone modifying enzymes, including ubiquitin proteasomal degradation and the reverse process of deubiquitination. We will also discuss the potential pathophysiological significance of these processes.
Collapse
Affiliation(s)
- Jianlin Wang
- Department of Pharmacology & Nutritional Sciences, University of Kentucky School of Medicine, KY 40506, USA.
- Markey Cancer Center, University of Kentucky School of Medicine, Lexington, KY 40506, USA.
| | - Zhaoping Qiu
- Department of Pharmacology & Nutritional Sciences, University of Kentucky School of Medicine, KY 40506, USA.
- Markey Cancer Center, University of Kentucky School of Medicine, Lexington, KY 40506, USA.
| | - Yadi Wu
- Department of Pharmacology & Nutritional Sciences, University of Kentucky School of Medicine, KY 40506, USA.
- Markey Cancer Center, University of Kentucky School of Medicine, Lexington, KY 40506, USA.
| |
Collapse
|
67
|
Reducing histone acetylation rescues cognitive deficits in a mouse model of Fragile X syndrome. Nat Commun 2018; 9:2494. [PMID: 29950602 PMCID: PMC6021376 DOI: 10.1038/s41467-018-04869-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 05/23/2018] [Indexed: 12/19/2022] Open
Abstract
Fragile X syndrome (FXS) is the most prevalent inherited intellectual disability, resulting from a loss of fragile X mental retardation protein (FMRP). Patients with FXS suffer lifelong cognitive disabilities, but the function of FMRP in the adult brain and the mechanism underlying age-related cognitive decline in FXS is not fully understood. Here, we report that a loss of FMRP results in increased protein synthesis of histone acetyltransferase EP300 and ubiquitination-mediated degradation of histone deacetylase HDAC1 in adult hippocampal neural stem cells (NSCs). Consequently, FMRP-deficient NSCs exhibit elevated histone acetylation and age-related NSC depletion, leading to cognitive impairment in mature adult mice. Reducing histone acetylation rescues both neurogenesis and cognitive deficits in mature adult FMRP-deficient mice. Our work reveals a role for FMRP and histone acetylation in cognition and presents a potential novel therapeutic strategy for treating adult FXS patients. Loss of fragile X mental retardation protein (FMRP) leads to fragile X syndrome, associated with cognitive dysfunction. Here the authors show that mice lacking FMRP show reduced hippocampal neurogenesis and cognitive deficits, which can be rescued by reducing histone acetylation.
Collapse
|
68
|
Cheng X, Zheng J, Li G, Göbel V, Zhang H. Degradation for better survival? Role of ubiquitination in epithelial morphogenesis. Biol Rev Camb Philos Soc 2018; 93:1438-1460. [PMID: 29493067 DOI: 10.1111/brv.12404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/31/2018] [Accepted: 02/05/2018] [Indexed: 02/06/2023]
Abstract
As a prevalent post-translational modification, ubiquitination is essential for many developmental processes. Once covalently attached to the small and conserved polypeptide ubiquitin (Ub), a substrate protein can be directed to perform specific biological functions via its Ub-modified form. Three sequential catalytic reactions contribute to this process, among which E3 ligases serve to identify target substrates and promote the activated Ub to conjugate to substrate proteins. Ubiquitination has great plasticity, with diverse numbers, topologies and modifications of Ub chains conjugated at different substrate residues adding a layer of complexity that facilitates a huge range of cellular functions. Herein, we highlight key advances in the understanding of ubiquitination in epithelial morphogenesis, with an emphasis on the latest insights into its roles in cellular events involved in polarized epithelial tissue, including cell adhesion, asymmetric localization of polarity determinants and cytoskeletal organization. In addition, the physiological roles of ubiquitination are discussed for typical examples of epithelial morphogenesis, such as lung branching, vascular development and synaptic formation and plasticity. Our increased understanding of ubiquitination in epithelial morphogenesis may provide novel insights into the molecular mechanisms underlying epithelial regeneration and maintenance.
Collapse
Affiliation(s)
- Xiaoxiang Cheng
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Gang Li
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Verena Göbel
- Department of Pediatrics, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114,, U.S.A
| | - Hongjie Zhang
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| |
Collapse
|
69
|
Ma Y, Yuan S, Tian X, Lin S, Wei S, Hu T, Chen S, Li X, Chen S, Wu D, Wang M, Guo D. ABIN1 inhibits HDAC1 ubiquitination and protects it from both proteasome- and lysozyme-dependent degradation. J Cell Biochem 2017; 119:3030-3043. [PMID: 29058807 DOI: 10.1002/jcb.26428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022]
Abstract
ABIN1, an important immune regulator, has been shown to be involved in various cellular functions, such as immunity, development, tissue homeostasis, and tumor progression. It inhibits TNF- and TLR-induced NF-κB signaling activation and the consequent gene expression. Despite its functional significance, the mechanism of ABIN1 in the regulation of various cellular functions remains unclear. In this study, we identified HDAC1, a key regulator of eukaryotic gene expression and many important cellular events, including cell proliferation, differentiation, cancer and immunity, as an interacting partner of ABIN1. The results showed that ABIN1 acted as a modulator to down-regulate HDAC1 ubiquitination via three different linkages, thereby stabilizing HDAC1 by inhibiting its lysosomal and proteasomal degradation. Interestingly, the inhibitory function of ABIN1 required direct binding with HDAC1. Moreover, the level of p53, which was a tumor suppressor and a well-studied substrate of HDAC1, was under the regulation of ABIN1 via the modulation of HDAC1 levels, suggesting that ABIN1 was physiologically significant in tumor progression. This study has revealed a new function of ABIN1 in mediating HDAC1 modification and stability.
Collapse
Affiliation(s)
- Yuhong Ma
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Sen Yuan
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Xuezhang Tian
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Shanchuan Lin
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Shangmou Wei
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Tongtong Hu
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Shiyou Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, PR China
| | - Xueqing Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Shuliang Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Dongcheng Wu
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Min Wang
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Deyin Guo
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, PR China.,School of Basic Medicine (Shenzhen), Sun Yat-Sen University, Guangzhou, PR China
| |
Collapse
|
70
|
Kwon DH, Kim YK, Kook H. New Aspects of Vascular Calcification: Histone Deacetylases and Beyond. J Korean Med Sci 2017; 32:1738-1748. [PMID: 28960024 PMCID: PMC5639052 DOI: 10.3346/jkms.2017.32.11.1738] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/19/2017] [Indexed: 11/20/2022] Open
Abstract
Vascular calcification is a pathologic phenomenon in which calcium phosphate is ectopically deposited in the arteries. Previously, calcification was considered to be a passive process in response to metabolic diseases, vascular or valvular diseases, or even aging. However, now calcification is recognized as a highly-regulated consequence, like bone formation, and many clinical trials have been carried out to elucidate the correlation between vascular calcification and cardiovascular events and mortality. As a result, vascular calcification has been implicated as an independent risk factor in cardiovascular diseases. Many molecules are now known to be actively associated with this process. Recently, our laboratory found that posttranslational modification of histone deacetylase (HDAC) 1 is actively involved in the development of vascular calcification. In addition, we found that modulation of the activity of HDAC as well as its protein stability by MDM2, an HDAC1-E3 ligase, may be a therapeutic target in vascular calcification. In the present review, we overview the pathomechanism of vascular calcification and the involvement of posttranslational modification of epigenetic regulators.
Collapse
Affiliation(s)
- Duk Hwa Kwon
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea
- Basic Research Laboratory for Cardiac Remodeling, Chonnam National University Medical School, Gwangju, Korea
| | - Young Kook Kim
- Basic Research Laboratory for Cardiac Remodeling, Chonnam National University Medical School, Gwangju, Korea
- Center for Creative Biomedical Scientists at Chonnam National University, Gwangju, Korea
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Korea
| | - Hyun Kook
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea
- Basic Research Laboratory for Cardiac Remodeling, Chonnam National University Medical School, Gwangju, Korea.
| |
Collapse
|
71
|
Gošev I, Zeljko M, Đurić Ž, Nikolić I, Gošev M, Ivčević S, Bešić D, Legčević Z, Paić F. Epigenome alterations in aortic valve stenosis and its related left ventricular hypertrophy. Clin Epigenetics 2017; 9:106. [PMID: 29026447 PMCID: PMC5627415 DOI: 10.1186/s13148-017-0406-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022] Open
Abstract
Aortic valve stenosis is the most common cardiac valve disease, and with current trends in the population demographics, its prevalence is likely to rise, thus posing a major health and economic burden facing the worldwide societies. Over the past decade, it has become more than clear that our traditional genetic views do not sufficiently explain the well-known link between AS, proatherogenic risk factors, flow-induced mechanical forces, and disease-prone environmental influences. Recent breakthroughs in the field of epigenetics offer us a new perspective on gene regulation, which has broadened our perspective on etiology of aortic stenosis and other aortic valve diseases. Since all known epigenetic marks are potentially reversible this perspective is especially exciting given the potential for development of successful and non-invasive therapeutic intervention and reprogramming of cells at the epigenetic level even in the early stages of disease progression. This review will examine the known relationships between four major epigenetic mechanisms: DNA methylation, posttranslational histone modification, ATP-dependent chromatin remodeling, and non-coding regulatory RNAs, and initiation and progression of AS. Numerous profiling and functional studies indicate that they could contribute to endothelial dysfunctions, disease-prone activation of monocyte-macrophage and circulatory osteoprogenitor cells and activation and osteogenic transdifferentiation of aortic valve interstitial cells, thus leading to valvular inflammation, fibrosis, and calcification, and to pressure overload-induced maladaptive myocardial remodeling and left ventricular hypertrophy. This is especcialy the case for small non-coding microRNAs but was also, although in a smaller scale, convincingly demonstrated for other members of cellular epigenome landscape. Equally important, and clinically most relevant, the reported data indicate that epigenetic marks, particularly certain microRNA signatures, could represent useful non-invasive biomarkers that reflect the disease progression and patients prognosis for recovery after the valve replacement surgery.
Collapse
Affiliation(s)
- Igor Gošev
- Department of Surgery, University of Rochester Medical center, Rochester, NY USA
| | - Martina Zeljko
- Department of Cardiology, Clinical Unit of Internal Medicine, Clinical Hospital Merkur, Zajćeva 19, 10 000 Zagreb, Croatia
| | - Željko Đurić
- Department of Cardiac Surgery, University Hospital Center Zagreb, Kišpatićeva 12, 10 000 Zagreb, Croatia
| | - Ivana Nikolić
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115 USA
| | - Milorad Gošev
- School of Medicine, University of Josip Juraj Strossmayer, Trg Svetog trojstva 3, 31 000 Osijek, Croatia
| | - Sanja Ivčević
- Department of Physiology, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| | - Dino Bešić
- Laboratory for Epigenetics and Molecular Medicine, Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| | - Zoran Legčević
- Laboratory for Epigenetics and Molecular Medicine, Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| | - Frane Paić
- Laboratory for Epigenetics and Molecular Medicine, Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| |
Collapse
|
72
|
Huang C, Wu S, Ji H, Yan X, Xie Y, Murai S, Zhao H, Miyagishi M, Kasim V. Identification of XBP1-u as a novel regulator of the MDM2/p53 axis using an shRNA library. SCIENCE ADVANCES 2017; 3:e1701383. [PMID: 29057323 PMCID: PMC5647124 DOI: 10.1126/sciadv.1701383] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/13/2017] [Indexed: 05/06/2023]
Abstract
Cell cycle progression is a tightly controlled fundamental process in living cells, with any defects being closely linked to various abnormalities. The tumor suppressor p53/p21 axis is a core pathway controlling cell cycle progression; however, its regulatory mechanism has not been fully elucidated. In an effort to unravel this crucial network, we screened a short hairpin RNA expression vector library and identified unspliced X-box binding protein 1 (XBP1-u) as a novel and critical regulator of the p53/p21 axis. Specifically, XBP1-u negatively regulates the p53/p21 axis by enhancing p53 ubiquitination, which in turn down-regulates p21 expression. We show that XBP1-u suppression induces G0-G1 phase arrest and represses cell proliferation. We further report that the carboxyl terminus of XBP1-u, which differs from that of its spliced form (XBP1-s) due to a codon shift, binds and stabilizes mouse double minute homolog 2 (MDM2) protein, a negative regulator of p53, by inhibiting its self-ubiquitination. Concomitantly, XBP-u overexpression enhances tumorigenesis by positively regulating MDM2. Together, our findings suggest that XBP1-u functions far beyond being merely a precursor of XBP1-s and, instead, is involved in fundamental biological processes. Furthermore, this study provides new insights regarding the regulation of the MDM2/p53/p21 axis.
Collapse
Affiliation(s)
- Can Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Corresponding author. (V.K.); (S.W.)
| | - Hong Ji
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Xuesong Yan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yudan Xie
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Saomi Murai
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Hezhao Zhao
- Chongqing Cancer Institute, Chongqing 400030, China
| | - Makoto Miyagishi
- Molecular Composite Medicine Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Corresponding author. (V.K.); (S.W.)
| |
Collapse
|
73
|
Nagesh PT, Hussain M, Galvin HD, Husain M. Histone Deacetylase 2 Is a Component of Influenza A Virus-Induced Host Antiviral Response. Front Microbiol 2017; 8:1315. [PMID: 28769891 PMCID: PMC5511851 DOI: 10.3389/fmicb.2017.01315] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 06/29/2017] [Indexed: 11/13/2022] Open
Abstract
Host cells produce variety of antiviral factors that create an antiviral state and target various stages of influenza A virus (IAV) life cycle to inhibit infection. However, IAV has evolved various strategies to antagonize those antiviral factors. Recently, we reported that a member of class I host histone deacetylases (HDACs), HDAC1 possesses an anti-IAV function. Herein, we provide evidence that HDAC2, another class I member and closely related to HDAC1 in structure and function, also possesses anti-IAV properties. In turn, IAV, like HDAC1, dysregulates HDAC2, mainly at the polypeptide level through proteasomal degradation to potentially minimize its antiviral effect. We found that IAV downregulated the HDAC2 polypeptide level in A549 cells in an H1N1 strain-independent manner by up to 47%, which was recovered to almost 100% level in the presence of proteasome-inhibitor MG132. A further knockdown in HDAC2 expression by up to 90% via RNA interference augmented the growth kinetics of IAV in A549 cells by more than four-fold after 24 h of infection. Furthermore, the knockdown of HDAC2 expression decreased the IAV-induced phosphorylation of the transcription factor, Signal Transducer and Activator of Transcription I (STAT1) and the expression of interferon-stimulated gene, viperin in infected cells by 41 and 53%, respectively. The role of HDAC2 in viperin expression was analogous to that of HDAC1, but it was not in the phosphorylation of STAT1. This indicated that, like HDAC1, HDAC2 is a component of IAV-induced host innate antiviral response and performs both redundant and non-redundant functions vis-a-vis HDAC1; however, IAV dysregulates them both in a redundant manner.
Collapse
Affiliation(s)
- Prashanth T Nagesh
- Department of Microbiology and Immunology, University of OtagoDunedin, New Zealand.,Department of Microbiology, New York University School of Medicine, New YorkNY, United States
| | - Mazhar Hussain
- Department of Microbiology and Immunology, University of OtagoDunedin, New Zealand
| | - Henry D Galvin
- Department of Microbiology and Immunology, University of OtagoDunedin, New Zealand
| | - Matloob Husain
- Department of Microbiology and Immunology, University of OtagoDunedin, New Zealand
| |
Collapse
|
74
|
Brown DI, Parry TL, Willis MS. Ubiquitin Ligases and Posttranslational Regulation of Energy in the Heart: The Hand that Feeds. Compr Physiol 2017. [PMID: 28640445 DOI: 10.1002/cphy.c160024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Heart failure (HF) is a costly and deadly syndrome characterized by the reduced capacity of the heart to adequately provide systemic blood flow. Mounting evidence implicates pathological changes in cardiac energy metabolism as a contributing factor in the development of HF. While the main source of fuel in the healthy heart is the oxidation of fatty acids, in the failing heart the less energy efficient glucose and glycogen metabolism are upregulated. The ubiquitin proteasome system plays a key role in regulating metabolism via protein-degradation/regulation of autophagy and regulating metabolism-related transcription and cell signaling processes. In this review, we discuss recent research that describes the role of the ubiquitin-proteasome system (UPS) in regulating metabolism in the context of HF. We focus on ubiquitin ligases (E3s), the component of the UPS that confers substrate specificity, and detail the current understanding of how these E3s contribute to cardiac pathology and metabolism. © 2017 American Physiological Society. Compr Physiol 7:841-862, 2017.
Collapse
Affiliation(s)
- David I Brown
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Traci L Parry
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Monte S Willis
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
75
|
Influenza A Virus Dysregulates Host Histone Deacetylase 1 That Inhibits Viral Infection in Lung Epithelial Cells. J Virol 2016; 90:4614-4625. [PMID: 26912629 DOI: 10.1128/jvi.00126-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/16/2016] [Indexed: 01/17/2023] Open
Abstract
UNLABELLED Viruses dysregulate the host factors that inhibit virus infection. Here, we demonstrate that human enzyme, histone deacetylase 1 (HDAC1) is a new class of host factor that inhibits influenza A virus (IAV) infection, and IAV dysregulates HDAC1 to efficiently replicate in epithelial cells. A time-dependent decrease in HDAC1 polypeptide level was observed in IAV-infected cells, reducing to <50% by 24 h of infection. A further depletion (97%) of HDAC1 expression by RNA interference increased the IAV growth kinetics, increasing it by >3-fold by 24 h and by >6-fold by 48 h of infection. Conversely, overexpression of HDAC1 decreased the IAV infection by >2-fold. Likewise, a time-dependent decrease in HDAC1 activity, albeit with slightly different kinetics to HDAC1 polypeptide reduction, was observed in infected cells. Nevertheless, a further inhibition of deacetylase activity increased IAV infection in a dose-dependent manner. HDAC1 is an important host deacetylase and, in addition to its role as a transcription repressor, HDAC1 has been lately described as a coactivator of type I interferon response. Consistent with this property, we found that inhibition of deacetylase activity either decreased or abolished the phosphorylation of signal transducer and activator of transcription I (STAT1) and expression of interferon-stimulated genes, IFITM3, ISG15, and viperin in IAV-infected cells. Furthermore, the knockdown of HDAC1 expression in infected cells decreased viperin expression by 58% and, conversely, the overexpression of HDAC1 increased it by 55%, indicating that HDAC1 is a component of IAV-induced host type I interferon antiviral response. IMPORTANCE Influenza A virus (IAV) continues to significantly impact global public health by causing regular seasonal epidemics, occasional pandemics, and zoonotic outbreaks. IAV is among the successful human viral pathogens that has evolved various strategies to evade host defenses, prevent the development of a universal vaccine, and acquire antiviral drug resistance. A comprehensive knowledge of IAV-host interactions is needed to develop a novel and alternative anti-IAV strategy. Host produces a variety of factors that are able to fight IAV infection by employing various mechanisms. However, the full repertoire of anti-IAV host factors and their antiviral mechanisms has yet to be identified. We have identified here a new host factor, histone deacetylase 1 (HDAC1) that inhibits IAV infection. We demonstrate that HDAC1 is a component of host innate antiviral response against IAV, and IAV undermines HDAC1 to limit its role in antiviral response.
Collapse
|