51
|
Peintner L, Borner C. Role of apoptosis in the development of autosomal dominant polycystic kidney disease (ADPKD). Cell Tissue Res 2017; 369:27-39. [PMID: 28560694 DOI: 10.1007/s00441-017-2628-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/19/2017] [Indexed: 02/06/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a widespread genetic disorder in the Western world and is characterized by cystogenesis that often leads to end-stage renal disease (ESRD). Mutations in the pkd1 gene, encoding for polycystin-1 (PC1) and its interaction partner pkd2, encoding for polycystin-2 (PC2), are the main drivers of this disease. PC1 and PC2 form a multiprotein membrane complex at cilia sites of the plasma membrane and at intracellular membranes. This complex mediates calcium influx and stimulates various signaling pathways regulating cell survival, proliferation and differentiation. The molecular consequences of pkd1 and pkd2 mutations are still a matter of debate. In particular, the ways in which the cysts are initially formed and progress throughout the disease are unknown. The mechanisms proposed to play a role include enhanced cell proliferation, increased apoptotic cell death and diminished autophagy. In this review, we summarize our current understanding about the contribution of apoptosis to cystogenesis and ADPKD. We present the animal models and the tools and methods that have been created to analyze this process. We also critically review the data that are in favor or against the involvement of apoptosis in disease generation. We argue that apoptosis is probably not the sole driver of cystogenesis but that a cooperative action of cell death, compensatory cell proliferation and perturbed autophagy gradually establish the disease. Finally, we propose novel strategies for uncovering the mode of action of PC1 and PC2 and suggest means by which their dysfunction or loss of expression lead to cystogenesis and ADPKD development.
Collapse
Affiliation(s)
- Lukas Peintner
- Institute of Molecular Medicine and Cell Research, Albert Ludwigs University of Freiburg, Stefan Meier Strasse 17, 79104, Freiburg, Germany
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, Albert Ludwigs University of Freiburg, Stefan Meier Strasse 17, 79104, Freiburg, Germany. .,Spemann Graduate School of Biology and Medicine, Albert Ludwigs University of Freiburg, Albertstrasse 19a, 79104, Freiburg, Germany.
| |
Collapse
|
52
|
PI3K Signaling in Tissue Hyper-Proliferation: From Overgrowth Syndromes to Kidney Cysts. Cancers (Basel) 2017; 9:cancers9040030. [PMID: 28353628 PMCID: PMC5406705 DOI: 10.3390/cancers9040030] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 12/19/2022] Open
Abstract
The members of the PhosphoInositide-3 Kinase (PI3K) protein family are well-known regulators of proliferative signals. By the generation of lipid second messengers, they mediate the activation of AKT/PKB (AKT) and mammalian Target Of Rapamycin (mTOR) pathways. Although mutations in the PI3K/AKT/mTOR pathway are highly characterized in cancer, recent evidence indicates that alterations in the proliferative signals are major drivers of other diseases such as overgrowth disorders and polycystic kidney disease. In this review, we briefly summarize the role of the PI3K/AKT/mTOR pathway in cell proliferation by comparing the effect of alterations in PI3K enzymes in different tissues. In particular, we discuss the most recent findings on how the same pathway may lead to different biological effects, due to the convergence and cooperation of different signaling cascades.
Collapse
|
53
|
Li A, Fan S, Xu Y, Meng J, Shen X, Mao J, Zhang L, Zhang X, Moeckel G, Wu D, Wu G, Liang C. Rapamycin treatment dose-dependently improves the cystic kidney in a new ADPKD mouse model via the mTORC1 and cell-cycle-associated CDK1/cyclin axis. J Cell Mol Med 2017; 21:1619-1635. [PMID: 28244683 PMCID: PMC5543471 DOI: 10.1111/jcmm.13091] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/15/2016] [Indexed: 01/10/2023] Open
Abstract
Although translational research into autosomal dominant polycystic kidney disease (ADPKD) and its pathogenesis has made considerable progress, there is presently lack of standardized animal model for preclinical trials. In this study, we developed an orthologous mouse model of human ADPKD by cross‐mating Pkd2 conditional‐knockout mice (Pkd2f3) to Cre transgenic mice in which Cre is driven by a spectrum of kidney‐related promoters. By systematically characterizing the mouse model, we found that Pkd2f3/f3 mice with a Cre transgene driven by the mouse villin‐1 promoter (Vil‐Cre;Pkd2f3/f3) develop overt cysts in the kidney, liver and pancreas and die of end‐stage renal disease (ESRD) at 4–6 months of age. To determine whether these Vil‐Cre;Pkd2f3/f3 mice were suitable for preclinical trials, we treated the mice with the high‐dose mammalian target of rapamycin (mTOR) inhibitor rapamycin. High‐dose rapamycin significantly increased the lifespan, lowered the cystic index and kidney/body weight ratio and improved renal function in Vil‐Cre;Pkd2f3/f3 mice in a time‐ and dose‐dependent manner. In addition, we further found that rapamycin arrested aberrant epithelial‐cell proliferation in the ADPKD kidney by down‐regulating the cell‐cycle‐associated cyclin‐dependent kinase 1 (CDK1) and cyclins, namely cyclin A, cyclin B, cyclin D1 and cyclin E, demonstrating a direct link between mTOR signalling changes and the polycystin‐2 dysfunction in cystogenesis. Our newly developed ADPKD model provides a practical platform for translating in vivo preclinical results into ADPKD therapies. The newly defined molecular mechanism by which rapamycin suppresses proliferation via inhibiting abnormally elevated CDK1 and cyclins offers clues to new molecular targets for ADPKD treatment.
Collapse
Affiliation(s)
- Ao Li
- Department of Urology, PKD Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.,State Key Laboratory of Molecular Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Song Fan
- Department of Urology, PKD Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yuchen Xu
- Department of Urology, PKD Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Jialin Meng
- Department of Urology, PKD Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Xufeng Shen
- Department of Urology, PKD Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Jun Mao
- Department of Urology, PKD Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Li Zhang
- Department of Urology, PKD Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Xiansheng Zhang
- Department of Urology, PKD Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Gilbert Moeckel
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Dianqing Wu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Guanqing Wu
- Department of Urology, PKD Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.,State Key Laboratory of Molecular Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chaozhao Liang
- Department of Urology, PKD Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
54
|
Abstract
Renal anomalies are common birth defects that may manifest as a wide spectrum of anomalies from hydronephrosis (dilation of the renal pelvis and calyces) to renal aplasia (complete absence of the kidney(s)). Aneuploidies and mosaicisms are the most common syndromes associated with CAKUT. Syndromes with single gene and renal developmental defects are less common but have facilitated insight into the mechanism of renal and other organ development. Analysis of underlying genetic mutations with transgenic and mutant mice has also led to advances in our understanding of mechanisms of renal development.
Collapse
|
55
|
Sherpa RT, Atkinson KF, Ferreira VP, Nauli SM. RAPAMYCIN INCREASES LENGTH AND MECHANOSENSORY FUNCTION OF PRIMARY CILIA IN RENAL EPITHELIAL AND VASCULAR ENDOTHELIAL CELLS. INTERNATIONAL EDUCATION AND RESEARCH JOURNAL 2016; 2:91-97. [PMID: 28529994 PMCID: PMC5436805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Primary cilia arebiophysically-sensitive organelles responsible for sensing fluid-flow and transducing this stimulus into intracellular responses. Previous studies have shown that the primary cilia mediate flow-induced calcium influx, and sensitivity of cilia function to flow is correlated to cilia length. Cells with abnormal cilia length or function can lead to a host of diseases that are collectively termed as ciliopathies. Rapamycin, a potent inhibitor of mTOR (mammalian target of rapamycin), has been demonstrated to be a potential pharmacological agent against the aberrant mTOR signaling seen in ciliopathies such as polycystic kidney disease (PKD) and tuberous sclerosis complex (TSC). Here we look at the effects of rapamycin on ciliary length and function for the first time. Compared to controls, primary cilia in rapamycin-treated porcine renal epithelial and mouse vascular endothelial cells showed a significant increase in length. Graded increases in fluid-shear stress further indicates that rapamycin enhances cilia sensitivity to fluid flow. Treatment with rapamycin led to G0 arrest in porcine epithelial cells while no significant change in cell cycle were observed in rapamycin-treated mouse epithelial or endothelial cells, indicating a species-specific effect of rapamycin. Given the previousin vitro and in vivo studies establishing rapamycin as a potential therapeutic agent for ciliopathies, such as PKD and TSC, our studies show that rapamycin enhances ciliary function and sensitivity to fluid flow. The results of our studies suggest a potential ciliotherapeutic effect of rapamycin.
Collapse
Affiliation(s)
- Rinzhin T. Sherpa
- Department of Biomedical & Pharmaceutical Sciences, Chapman University, Irvine, CA
| | - Kimberly F. Atkinson
- Department of Biomedical & Pharmaceutical Sciences, Chapman University, Irvine, CA
| | - Viviana P. Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, OH
| | - Surya M. Nauli
- Department of Biomedical & Pharmaceutical Sciences, Chapman University, Irvine, CA
| |
Collapse
|