51
|
Kosciuk T, Wang M, Hong JY, Lin H. Updates on the epigenetic roles of sirtuins. Curr Opin Chem Biol 2019; 51:18-29. [PMID: 30875552 DOI: 10.1016/j.cbpa.2019.01.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/09/2019] [Accepted: 01/25/2019] [Indexed: 12/18/2022]
Abstract
Sirtuins are a class of enzyme with NAD+-dependent protein lysine deacylase activities. They were initially discovered to regulate transcription and life span via histone deacetylase activities. Later studies expanded their activities to other proteins and acyl lysine modifications. Through deacylating various substrate proteins, they regulate many biological processes, including transcription, DNA repair and genome stability, metabolism, and signal transduction. Here, we review recent understandings of the epigenetic functions (broadly defined to include transcriptional, post-transcriptional regulation, and DNA repair) of mammalian sirtuins. Because of the important functions of sirtuins, their own regulation is of great interest and is also discussed.
Collapse
Affiliation(s)
- Tatsiana Kosciuk
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Miao Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jun Young Hong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
52
|
Weng X, Zhang Y, Li Z, Yu L, Xu F, Fang M, Hou L, Ge J, Xu Y. Class II transactivator (CIITA) mediates IFN-γ induced eNOS repression by enlisting SUV39H1. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:163-172. [PMID: 30716531 DOI: 10.1016/j.bbagrm.2019.01.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/07/2019] [Accepted: 01/21/2019] [Indexed: 12/20/2022]
Abstract
Endothelial nitric oxide synthase (eNOS), selectively expressed in vascular endothelial cells, plays important roles in a range of biological and pathological processes. eNOS levels can be altered by extrinsic and intrinsic cues at the transcriptional level. Here we examined the epigenetic mechanism whereby the pro-inflammatory cytokine interferon gamma (IFN-γ) represses eNOS transcription. In response to IFN-γ treatment, there was a simultaneous down-regulation of eNOS expression and up-regulation of class II trans-activator (CIITA). Over-expression of CIITA directly repressed eNOS promoter while CIITA knockdown attenuated IFN-γ induced eNOS repression. Chromatin immunoprecipitation (ChIP) assay revealed that IFN-γ stimulation promoted CIITA occupancy on the proximal eNOS (-430/-168). Coincidently, CIITA recruitment to the eNOS promoter was paralleled by the disappearance of trimethylated histone H3K4 (H3K4Me3) and the enrichment of trimethylated H3K9 (H3K9Me3) with no significant changes in the levels of trimethylated H3K27 (H3K27Me3) or trimethylated H4K20 (H4K20Me3). In accordance, CIITA depletion was associated with the normalization of H3K4Me3 and H3K9Me3 on the eNOS promoter. Mechanistically, CIITA interacted with and enlisted the histone H3K9 trimethyltransferase SUV39H1 to the eNOS promoter to repress transcription. IFN-γ treatment augmented SUV39H1 expression and promoted SUV39H1 recruitment to the eNOS promoter in endothelial cells. Silencing of SUV39H1 abrogated eNOS repression by IFN-γ by erasing H3K9Me3 from the eNOS promoter. In conclusion, our data reveal a novel role for CIITA in endothelial cells and present SUV39H1 as a druggable target in the intervention of endothelial dysfunction.
Collapse
Affiliation(s)
- Xinyu Weng
- Institute of Biomedical Sciences, Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanyuan Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Zilong Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Liming Yu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Feng Xu
- Scientific Research Department, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingming Fang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Lei Hou
- Department of Cardiology, Affiliated Tong Ren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Junbo Ge
- Institute of Biomedical Sciences, Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; Institute of Biomedical Research, Liaocheng University, Liaocheng, China.
| |
Collapse
|
53
|
Nicorescu I, Dallinga GM, de Winther MP, Stroes ES, Bahjat M. Potential epigenetic therapeutics for atherosclerosis treatment. Atherosclerosis 2019; 281:189-197. [DOI: 10.1016/j.atherosclerosis.2018.10.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/18/2018] [Accepted: 10/04/2018] [Indexed: 01/03/2023]
|
54
|
Li B, Zheng Y, Yang L. The Oncogenic Potential of SUV39H2: A Comprehensive and Perspective View. J Cancer 2019; 10:721-729. [PMID: 30719171 PMCID: PMC6360419 DOI: 10.7150/jca.28254] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/09/2018] [Indexed: 02/07/2023] Open
Abstract
Epigenetic modifications at the histone level have attracted significant attention because of their roles in tumorigenesis. Suppressor of variegation 3-9 homolog 2 (SUV39H2, also known as KMT1B) is a member of the SUV39 subfamily of lysine methyltransferases (KMTs) that plays a significant role in histone H3-K9 di-/tri-methylation, transcriptional regulation and cell cycle. Overexpressions of SUV39H2 at gene, mRNA and protein levels are known to be associated with a range of cancers: leukemia, lymphomas, lung cancer, breast cancer, colorectal cancer, gastric cancer, hepatocellular cancer and so on. Accumulating evidence indicates that SUV39H2 acts as an oncogene and contributes to the initiation and progression of cancers. It could, therefore, be a promising target for anti-cancer treatment. In this review, we focus on the dysregulation of SUV39H2 in cancers, including its clinical prognostic predictor role, molecular mechanism involved in cancer occurrence and development, relevant inhibitors against cancer, and its epigenetic modification interaction with immunotherapy. A better understanding of the SUV39H2 will be beneficial to the development of molecular-targeted therapies in cancer.
Collapse
Affiliation(s)
- Baihui Li
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Yu Zheng
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Lili Yang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| |
Collapse
|
55
|
Abstract
The dramatic increase in global prevalence of metabolic disease is inexplicable when considering only environmental or only genetic factors, leading to the need to explore the possible roles of epigenetic factors. A great deal of progress has been made in this interdisciplinary field in recent years, with many studies investigating various aspects of the metabolic syndrome and its associated epigenetic changes. Rodent models of metabolic diseases have been particularly illuminating because of the ability to leverage tools such as genetic and environmental modifications. The current review summarizes recent breakthroughs regarding epigenetic markers in studies of obesity, Type II diabetes, and cardiovascular disease, the three major disorders associated with metabolic syndrome. We also discuss open questions and future directions for integrating genomic, epigenomic, and phenotypic big biodata toward understanding metabolic syndrome etiology.
Collapse
Affiliation(s)
- Caryn Carson
- Department of Genetics, Washington University School of Medicine , Saint Louis, Missouri
| | - Heather A Lawson
- Department of Genetics, Washington University School of Medicine , Saint Louis, Missouri
| |
Collapse
|
56
|
Li Z, Zhang X, Liu S, Zeng S, Yu L, Yang G, Guo J, Xu Y. BRG1 regulates NOX gene transcription in endothelial cells and contributes to cardiac ischemia-reperfusion injury. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3477-3486. [DOI: 10.1016/j.bbadis.2018.08.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 07/14/2018] [Accepted: 08/01/2018] [Indexed: 12/24/2022]
|
57
|
Li N, Kong M, Zeng S, Xu Z, Li M, Hong W, Chu X, Sun X, Zhu M, Xu Y. The chromatin remodeling protein BRG1 regulates APAP-induced liver injury by modulating CYP3A11 transcription in hepatocyte. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3487-3495. [PMID: 30293568 DOI: 10.1016/j.bbadis.2018.08.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 07/12/2018] [Accepted: 08/01/2018] [Indexed: 12/22/2022]
Abstract
Acetaminophen (APAP) overdose represents the most frequent cause of acute liver failure. The underlying epigenetic mechanism is not fully understood. In the present study we investigated the mechanism whereby the chromatin remodeling protein brahma related gene 1 (Brg1) regulates APAP induced liver injury in mice. We report that hepatocyte-specific deletion of Brg1 attenuated APAP induced liver injury in mice as evidenced by reduced plasma ALT and AST levels, decreased liver necrosis, amelioration of GSH depletion, and prolonged survival. Brg1 regulated APAP-induced liver injury likely by stimulating the transcription of Cyp3a11, a key cytochrome enzyme involved in APAP metabolism. Immunoprecipitation coupled with DNA affinity microarray identified hepatocyte nuclear factor 4 (HNF4) as a novel binding partner for Brg1. HNF4 recruited Brg1 to the Cyp3a11 promoter and formed a complex with Brg1 to trans-activate Cyp3a11. In contrast, BRG1 deficiency attenuated HNF4 binding to the Cyp3a11 promoter and dampened Cyp3a11 transcription. Therefore, our data suggest that Brg1 might play an essential role mediating APAP induced liver injury in vivo.
Collapse
Affiliation(s)
- Nan Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Ming Kong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Sheng Zeng
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Zheng Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Min Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Wenxuan Hong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xuehui Chu
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Xitai Sun
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Min Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; Department of Anatomy, Nanjing Medical University, Nanjing, China.
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; Institute of Biomedical Research, Liaocheng University, Liaocheng, China.
| |
Collapse
|
58
|
Zhang X, Liu S, Weng X, Zeng S, Yu L, Guo J, Xu Y. Brg1 deficiency in vascular endothelial cells blocks neutrophil recruitment and ameliorates cardiac ischemia-reperfusion injury in mice. Int J Cardiol 2018; 269:250-258. [PMID: 30049497 DOI: 10.1016/j.ijcard.2018.07.105] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 07/14/2018] [Accepted: 07/20/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Increased neutrophil infiltration and the ensuing inflammatory response represent a hallmark event in cardiac ischemia-reperfusion injury (IRI). It remains poorly defined how the epigenetic machinery contributes to this process. METHODS AND RESULTS Here we report that mice with endothelial specific deletion of brahma related gene 1 (BRG1), a chromatin remodeling protein, exhibited amelioration when subjected to cardiac ischemia-reperfusion as evidenced by a reduction in infarct size as well as better recovery of heart function. Endothelial BRG1 deficiency also attenuated cardiac fibrosis following IRI when compared to wild type littermates. Interestingly, ablation of BRG1 in the endothelium suppressed neutrophil infiltration and down-regulated the levels of pro-inflammatory mediators in the heart following IRI. Further studies revealed that BRG1 activated the transcription of PODOCALYXIN (PODXL), an L-SELECTIN ligand crucial for neutrophil adhesion, in vascular endothelial cells in response to hypoxia-reoxygenation (HR). BRG1 knockdown by small interfering RNA abrogated HR-induced PODXL expression and blocked the adhesion of neutrophils to endothelial cells. Mechanistically, BRG1 alters the chromatin structure surrounding the PODXL promoter by interacting with JMJD2B, a histone H3K9 demethylase. Depletion of JMJD2B abrogated PODXL induction by HR and inhibited the adhesion of neutrophils to endothelial cells. CONCLUSION Our data suggest that trans-activation of PODXL by the BRG1-JMJD2B complex in endothelial cells may promote neutrophil infiltration and consequently the pathogenesis of cardiac ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Xinjian Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Shuai Liu
- Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Xinyu Weng
- Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Sheng Zeng
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Liming Yu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Junli Guo
- Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, China.
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
59
|
Li N, Kong M, Zeng S, Hao C, Li M, Li L, Xu Z, Zhu M, Xu Y. Brahma related gene 1 (Brg1) contributes to liver regeneration by epigenetically activating the Wnt/β-catenin pathway in mice. FASEB J 2018; 33:327-338. [PMID: 30001167 DOI: 10.1096/fj.201800197r] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liver regeneration is a complicated pathophysiologic process that is regulated by a myriad of signaling pathways and transcription factors. The interaction among these pathways and factors, either cooperatively or antagonistically, may ultimately lead to recovery and restoration of liver function or permanent loss of liver function and liver failure. In the present study, we investigated the mechanism whereby the chromatin remodeling protein brahma related gene 1 (Brg1) regulates liver regeneration in mice. The Smarca4-Flox strain of mice was crossbred with the Alb-Cre strain to generate hepatocyte-specific Brg1 knockout mice. Liver injury was induced by partial hepatectomy (PHx). We report that Brg1 deletion in hepatocyte compromised liver regeneration and dampened survival after PHx in mice. Brg1 interacted with β-catenin to potentiate Wnt signaling and promote hepatocyte proliferation. Mechanistically, Brg1 recruited lysine demethylase 4 (KDM4) to activate β-catenin target genes. Our data suggest that Brg1 might play an essential role maintaining hepatic homeostasis and contributing to liver repair.-Li, N., Kong, M., Zeng, S., Hao, C., Li, M., Li, L., Xu, Z., Zhu, M., Xu, Y. Brahma related gene 1 (Brg1) contributes to liver regeneration by epigenetically activating the Wnt/β-catenin pathway in mice.
Collapse
Affiliation(s)
- Nan Li
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaboration Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Ming Kong
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaboration Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Sheng Zeng
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaboration Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Chenzhi Hao
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaboration Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Min Li
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaboration Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Luyang Li
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaboration Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Zheng Xu
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaboration Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Min Zhu
- Department of Anatomy, Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaboration Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
60
|
Upregulation of SIRT1 contributes to the cardioprotective effect of Rutin against myocardial ischemia-reperfusion injury in rats. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
61
|
Liraglutide attenuates NLRP3 inflammasome-dependent pyroptosis via regulating SIRT1/NOX4/ROS pathway in H9c2 cells. Biochem Biophys Res Commun 2018; 499:267-272. [PMID: 29571736 DOI: 10.1016/j.bbrc.2018.03.142] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 01/31/2023]
Abstract
The glucagon-like peptide-1 analog liraglutide has been proved to exert cardioprotective role via activating prosurvival pathways and suppressing inflammation. The activation of NLRP3 inflammasome plays an important role in ischemic injury. The effect of liraglutide on NLRP3 inflammasome-dependent pyroptosis remains unclear. In this study, we established a double stimulation model with TNF-α and hypoxia to mimic ischemic environment and to induce NLRP3 inflammasome activation in H9c2 cardiomyoblasts. Pretreatment with 100 nM liraglutide could efficiently inhibit TNF-α and hypoxia-induced inflammasome activation, as evidenced by the decreased expression of NLRP3, caspase-1 p20 and Gasdermin D N-terminal fragment. Meanwhile, the pyroptosis was also demonstrated to be suppressed, indicated by the increased cell viability and decreased lactate dehydrogenase release in the cells. Mechanistically, liraglutide reversed the level of SIRT1 and the selective SIRT1 inhibitor EX 527 significantly abolished the anti-pyroptosis role of liraglutide. Furthermore, liraglutide diminished the levels of ROS generation and NOX4 expression, which could also be blocked by EX 527. Our results uncovered the anti-pyroptosis role of liraglutide in TNF-α and hypoxia-stimulated H9c2 cells, which was associated with SIRT1/NOX4/ROS pathway.
Collapse
|
62
|
Hu J, Cheng P, Huang GY, Cai GW, Lian FZ, Wang XY, Gao S. Effects of Xin-Ji-Er-Kang on heart failure induced by myocardial infarction: Role of inflammation, oxidative stress and endothelial dysfunction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 42:245-257. [PMID: 29655692 DOI: 10.1016/j.phymed.2018.03.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 01/13/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Xin-Ji-Er-Kang (XJEK) is a Chinese herbal formula, which has been reported to exert effective protection on cardiovascular diseases like hypertension and myocarditis. PURPOSE To elucidate the protective effects of XJEK on heart failure (HF) induced by myocardial infarction (MI) through the amelioration of inflammation, oxidative stress (OS) and endothelial dysfunction(ED). MATERIALS AND METHODS Fifty-seven male KM mice were randomized into the following six groups (n = 9-10 for each): control group, model group, MI+XJEK low dose group(XJEKL) group, MI+XJEK middle dose group(XJEKM), MI+XJEK high dose group(XJEKH), and MI+fosinopril group (positive control group). After treatment for four weeks, electrocardiography (ECG) and haemodynamics were recorded. Serum and tissues were collected for further analysis. Endothelium-dependent relaxation induced by acetylcholine was assessed in isolated thoracic aorta ring experiment. Hematoxylin and eosin (HE) and Van Gieson (VG) staining were used to detect the pathological changes of heart and thoracic aorta. Colorimetric analysis was employed to determine serum nitric oxide level (NO), malondialdehyde (MDA) concentration and superoxide dismutase (SOD) activity. ELISA was used to detect serum B-type natriuretic peptide (BNP) and serum inflammatory cytokines, as well as endothelial NO synthetase (eNOS), angiotensinII (Ang II) and endothelin-1(ET-1) concentration in both serum and cardiac tissues. Immunohistochemistry and Western blotting (WB) were employed to detect eNOS and inflammatory cytokine expressions in cardiac tissues. RESULTS XJEK administration markedly ameliorated cardiac dysfunction and abnormal ECG manifested by decreased weight/body weight (HW/BW) ratio, BNP and remedied hypertrophy of cardiomyocytes and deposition of collagen, which might be in part attributed to the increased SOD and decreased MDA in serum. Furthermore, XJEK administration improved ED with boosted eNOS activities in serum and cardiac tissues, as well as up-regulated NO levels in serum, down-regulated Ang II and ET-1 content in serum and cardiac tissues. Lastly, protein expression of pro-inflammation cytokines significantly decreased, and anti-inflammatory cytokine was significantly enhanced in serum and cardiac tissues compared to model group. CONCLUSION XJEK may exert beneficial effects on HF induced by MI in mice, and the underlying mechanism may be attributable to the amelioration of ED, anti-OS and anti-inflammation effects.
Collapse
Affiliation(s)
- Juan Hu
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Pan Cheng
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Guang-Yao Huang
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Guo-Wei Cai
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Feng-Zhen Lian
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Xiao-Yun Wang
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Shan Gao
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
63
|
Wang S, Wang C, Turdi S, Richmond KL, Zhang Y, Ren J. ALDH2 protects against high fat diet-induced obesity cardiomyopathy and defective autophagy: role of CaM kinase II, histone H3K9 methyltransferase SUV39H, Sirt1, and PGC-1α deacetylation. Int J Obes (Lond) 2018. [PMID: 29535452 DOI: 10.1038/s41366-018-0030-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Uncorrected obesity contributes to cardiac remodeling and contractile dysfunction although the underlying mechanism remains poorly understood. Mitochondrial aldehyde dehydrogenase (ALDH2) is a mitochondrial enzyme with some promises in a number of cardiovascular diseases. This study was designed to evaluate the impact of ALDH2 on cardiac remodeling and contractile property in high fat diet-induced obesity. METHODS Wild-type (WT) and ALDH2 transgenic mice were fed low (10% calorie from fat) or high (45% calorie from fat) fat diet for 5 months prior to the assessment of cardiac geometry and function using echocardiography, IonOptix system, Lectin, and Masson Trichrome staining. Western blot analysis was employed to evaluate autophagy, CaM kinase II, PGC-1α, histone H3K9 methyltransferase SUV39H, and Sirt-1. RESULTS Our data revealed that high fat diet intake promoted weight gain, cardiac remodeling (hypertrophy and interstitial fibrosis, p < 0.0001) and contractile dysfunction (reduced fractional shortening (p < 0.0001), cardiomyocyte function (p < 0.0001), and intracellular Ca2+ handling (p = 0.0346)), mitochondrial injury (elevated O2- levels, suppressed PGC-1α, and enhanced PGC-1α acetylation, p < 0.0001), elevated SUV39H, suppressed Sirt1, autophagy and phosphorylation of AMPK and CaM kinase II, the effects of which were negated by ALDH2 (p ≤ 0.0162). In vitro incubation of the ALDH2 activator Alda-1 rescued against palmitic acid-induced changes in cardiomyocyte function, the effect of which was nullified by the Sirt-1 inhibitor nicotinamide and the CaM kinase II inhibitor KN-93 (p < 0.0001). The SUV39H inhibitor chaetocin mimicked Alda-1-induced protection again palmitic acid (p < 0.0001). Examination in overweight human revealed an inverse correlation between diastolic cardiac function and ALDH2 gene mutation (p < 0.05). CONCLUSIONS Taken together, these data suggest that ALDH2 serves as an indispensable factor against cardiac anomalies in diet-induced obesity through a mechanism related to autophagy regulation and facilitation of the SUV39H-Sirt1-dependent PGC-1α deacetylation.
Collapse
Affiliation(s)
- Shuyi Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China.,Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA
| | - Cong Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Subat Turdi
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA
| | - Kacy L Richmond
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA
| | - Yingmei Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China. .,Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032, Shanghai, China. .,Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA.
| |
Collapse
|
64
|
EZH2 Inhibition Ameliorates Transverse Aortic Constriction-Induced Pulmonary Arterial Hypertension in Mice. Can Respir J 2018; 2018:9174926. [PMID: 29854032 PMCID: PMC5960552 DOI: 10.1155/2018/9174926] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/08/2018] [Indexed: 12/30/2022] Open
Abstract
Background EPZ005687 is a selective inhibiter of methyltransferase EZH2. In this article, we investigated the protective role and mechanism of EPZ005687 in transverse aortic constriction-induced pulmonary arterial hypertension in mice. Methods We assigned 15 (6–8 weeks old) male balb/c mice to 3 groups randomly: Sham control + DMSO group, TAC + DMSO group, and TAC + EPZ005687 group (10 mg kg−1, once a week for 4 weeks). On day 28 following TAC operation, the right ventricular systolic blood pressure (RVSBP) was measured, and lung tissues were collected for laboratory examinations (DHE, Western blot, real-time PCR, and ChIP). Results Murine PAH model was successfully created by TAC operation as evidenced by increased RVSBP and hypertrophic right ventricle. Compared with the sham control, TAC-induced PAH markedly upregulated the expression of EZH2 and ROS deposition in lungs in PAH mice. The inhibiter of methyltransferase EZH2, EPZ005687 significantly inhibits the development of TAC-induced PAH in an EZH2-SOD1-ROS dependent manner. Conclusion Our data identified that EZH2 serves a fundamental role in TAC-induced PAH, and administration of EPZ005687 might represent a novel therapeutic target for the treatment of TAC-induced PAH.
Collapse
|
65
|
SUV39H2 promotes colorectal cancer proliferation and metastasis via tri-methylation of the SLIT1 promoter. Cancer Lett 2018; 422:56-69. [PMID: 29458143 DOI: 10.1016/j.canlet.2018.02.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/30/2018] [Accepted: 02/12/2018] [Indexed: 01/01/2023]
Abstract
Suppressor of variegation 3-9 homolog 2 (SUV39H2) is a member of the SUV39H subfamily of lysine methyltransferases. Its role in colorectal cancer (CRC) proliferation and metastasis has remained unexplored. Here, we determined that SUV39H2 was upregulated in CRC tissues compared with that in adjacent non-neoplastic tissues. Further statistical analysis revealed that high SUV39H2 expression was strongly associated with distant metastasis (P = 0.016) and TNM stage (P = 0.038) and predicted a shorter overall survival (OS; P = 0.018) and progression-free survival (PFS; P = 0.018) time for CRC patients. Both in vitro and in vivo assays demonstrated that ectopically expressed SUV39H2 enhanced CRC proliferation and metastasis, while SUV39H2 knockdown inhibited CRC proliferation and metastasis. A molecular screen of SUV39H2 targets found that SUV39H2 negatively regulated the expression of SLIT guidance ligand 1 (SLIT1). Moreover, rescue assays suggested that SLIT1 could antagonize the function of SUV39H2 in CRC. Mechanistic studies indicated that SUV39H2 can directly bind to the SLIT1 promoter, suppressing SLIT1 transcription by catalyzing histone H3 lysine 9 (H3K9) tri-methylation. In summary, we propose that SUV39H2 can predict CRC patient prognosis and stimulate CRC malignant phenotypes via SLIT1 promoter tri-methylation.
Collapse
|
66
|
Liu L, Chen J, Sun L, Xu Y. RhoJ promotes hypoxia induced endothelial‐to‐mesenchymal transition by activating WDR5 expression. J Cell Biochem 2018; 119:3384-3393. [DOI: 10.1002/jcb.26505] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/07/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Li Liu
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine,Department of PathophysiologyNanjing Medical UniversityNanjingChina
| | - Junliang Chen
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine,Department of PathophysiologyNanjing Medical UniversityNanjingChina
- Department of Pathophysiology, Wuxi College of MedicineJiangnan UniversityJiangsuChina
| | - Lina Sun
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine,Department of PathophysiologyNanjing Medical UniversityNanjingChina
- Department of Pathology and PathophysiologySoochow UniversityJiangsuChina
| | - Yong Xu
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine,Department of PathophysiologyNanjing Medical UniversityNanjingChina
| |
Collapse
|
67
|
Hepatic stellate cell-specific deletion of SIRT1 exacerbates liver fibrosis in mice. Biochim Biophys Acta Mol Basis Dis 2017; 1863:3202-3211. [DOI: 10.1016/j.bbadis.2017.09.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/23/2017] [Accepted: 09/08/2017] [Indexed: 01/15/2023]
|
68
|
Zhang X, Chen J, Sun L, Xu Y. SIRT1 deacetylates KLF4 to activate Claudin-5 transcription in ovarian cancer cells. J Cell Biochem 2017; 119:2418-2426. [PMID: 28888043 DOI: 10.1002/jcb.26404] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/30/2017] [Indexed: 12/23/2022]
Abstract
Malignant cancers are distinguished from more benign forms of cancers by enhanced ability to disseminate. A number of factors aid the migration and invasion of malignant cancer cells. Epithelial-to-mesenchymal transition (EMT), which greatly facilitates the dissemination of cancer cells, is characterized by the loss of epithelial markers and the acquisition of mesenchymal markers thereby rendering the cells more migratory and invasive. We have previously shown that the class III lysine deacetylase SIRT1 plays a critical role curbing the metastasis of ovarian cancer cells partly by blocking EMT. Here we investigated the mechanism by which SIRT1 regulates the transcription of Claudin 5 (CLDN5), an epithelial marker gene, in ovarian cancer cells. SIRT1 activation or over-expression up-regulated CLDN5 expression while SIRT1 inhibition or depletion down-regulated CLDN5 expression. SIRT1 interacted with and deacetylated Kruppel-like factor 4 (KLF4), a known transcriptional activator for CLDN5. Deacetylation by SIRT1 promoted nuclear accumulation of KLF4 and enhanced the binding of KLF4 to the CLDN5 promoter in the nucleus. SIRT1-mediated up-regulation of CLDN5 was abrogated in the absence of KLF4. In accordance, KLF4 depletion by siRNA rendered ovarian cancer cells more migratory and invasive despite of SIRT1 activation or over-expression. In conclusion, our data suggest that SIRT1 activates CLDN5 transcription by deacetylating and potentiating KLF4.
Collapse
Affiliation(s)
- Xinjian Zhang
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Junliang Chen
- Department of Pathophysiology, Wuxi College of Medicine, Jiangnan University, Nanjing, Jiangsu, China
| | - Lina Sun
- Department of Pathology and Pathophysiology, Soochow University, Suzhou, Jiangsu, China
| | - Yong Xu
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
69
|
Li M, Hong W, Hao C, Li L, Wu D, Shen A, Lu J, Zheng Y, Li P, Xu Y. SIRT1 antagonizes liver fibrosis by blocking hepatic stellate cell activation in mice. FASEB J 2017; 32:500-511. [PMID: 28970250 DOI: 10.1096/fj.201700612r] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/11/2017] [Indexed: 01/10/2023]
Abstract
Hepatic stellate cells (HSCs) are a major source of fibrogenesis in the liver, contributing to cirrhosis. When activated, HSCs transdifferentiate into myofibroblasts and undergo profound functional alterations paralleling an overhaul of the transcriptome, the mechanism of which remains largely undefined. We investigated the involvement of the class III deacetylase sirtuin [silent information regulator 1 (SIRT1)] in HSC activation and liver fibrosis. SIRT1 levels were down-regulated in the livers in mouse models of liver fibrosis, in patients with cirrhosis, and in activated HSCs as opposed to quiescent HSCs. SIRT1 activation halted, whereas SIRT1 inhibition promoted, HSC transdifferentiation into myofibroblasts. Liver fibrosis was exacerbated in mice with HSC-specific deletion of SIRT1 [conditional knockout (cKO)], receiving CCl4 (1 mg/kg) injection or subjected to bile duct ligation, compared to wild-type littermates. SIRT1 regulated peroxisome proliferator activated receptor γ (PPARγ) transcription by deacetylating enhancer of zeste homolog 2 (EZH2) in quiescent HSCs. Finally, EZH2 inhibition or PPARγ activation ameliorated fibrogenesis in cKO mice. In summary, our data suggest that SIRT1 plays an essential role guiding the transition of HSC phenotypes.-Li, M., Hong, W., Hao, C., Li, L., Wu, D., Shen, A., Lu, J., Zheng, Y., Li, P., Xu, Y. SIRT1 antagonizes liver fibrosis by blocking hepatic stellate cell activation in mice.
Collapse
Affiliation(s)
- Min Li
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Innovative Collaboration Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Wenxuan Hong
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Innovative Collaboration Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Chenzhi Hao
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Innovative Collaboration Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Luyang Li
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Innovative Collaboration Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Dongmei Wu
- Key Laboratory of Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Aiguo Shen
- Key Laboratory of Inflammation and Molecular Targets, Nantong University College of Medicine, Nantong, China
| | - Jun Lu
- Key Laboratory of Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China;
| | - Yuanlin Zheng
- Key Laboratory of Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Ping Li
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Innovative Collaboration Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Innovative Collaboration Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China;
| |
Collapse
|