51
|
Gao G, McClellan J, Barbeira AN, Fiorica PN, Li JL, Mu Z, Olopade OI, Huo D, Im HK. A multi-tissue, splicing-based joint transcriptome-wide association study identifies susceptibility genes for breast cancer. Am J Hum Genet 2024; 111:1100-1113. [PMID: 38733992 PMCID: PMC11179262 DOI: 10.1016/j.ajhg.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 05/13/2024] Open
Abstract
Splicing-based transcriptome-wide association studies (splicing-TWASs) of breast cancer have the potential to identify susceptibility genes. However, existing splicing-TWASs test the association of individual excised introns in breast tissue only and thus have limited power to detect susceptibility genes. In this study, we performed a multi-tissue joint splicing-TWAS that integrated splicing-TWAS signals of multiple excised introns in each gene across 11 tissues that are potentially relevant to breast cancer risk. We utilized summary statistics from a meta-analysis that combined genome-wide association study (GWAS) results of 424,650 women of European ancestry. Splicing-level prediction models were trained in GTEx (v.8) data. We identified 240 genes by the multi-tissue joint splicing-TWAS at the Bonferroni-corrected significance level; in the tissue-specific splicing-TWAS that combined TWAS signals of excised introns in genes in breast tissue only, we identified nine additional significant genes. Of these 249 genes, 88 genes in 62 loci have not been reported by previous TWASs, and 17 genes in seven loci are at least 1 Mb away from published GWAS index variants. By comparing the results of our splicing-TWASs with previous gene-expression-based TWASs that used the same summary statistics and expression prediction models trained in the same reference panel, we found that 110 genes in 70 loci that are identified only by the splicing-TWASs. Our results showed that for many genes, expression quantitative trait loci (eQTL) did not show a significant impact on breast cancer risk, whereas splicing quantitative trait loci (sQTL) showed a strong impact through intron excision events.
Collapse
Affiliation(s)
- Guimin Gao
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Julian McClellan
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Alvaro N Barbeira
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Peter N Fiorica
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - James L Li
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Zepeng Mu
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Olufunmilayo I Olopade
- Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Dezheng Huo
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA; Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| | - Hae Kyung Im
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
52
|
Head ST, Dezem F, Todor A, Yang J, Plummer J, Gayther S, Kar S, Schildkraut J, Epstein MP. Cis- and trans-eQTL TWASs of breast and ovarian cancer identify more than 100 susceptibility genes in the BCAC and OCAC consortia. Am J Hum Genet 2024; 111:1084-1099. [PMID: 38723630 PMCID: PMC11179407 DOI: 10.1016/j.ajhg.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/21/2024] Open
Abstract
Transcriptome-wide association studies (TWASs) have investigated the role of genetically regulated transcriptional activity in the etiologies of breast and ovarian cancer. However, methods performed to date have focused on the regulatory effects of risk-associated SNPs thought to act in cis on a nearby target gene. With growing evidence for distal (trans) regulatory effects of variants on gene expression, we performed TWASs of breast and ovarian cancer using a Bayesian genome-wide TWAS method (BGW-TWAS) that considers effects of both cis- and trans-expression quantitative trait loci (eQTLs). We applied BGW-TWAS to whole-genome and RNA sequencing data in breast and ovarian tissues from the Genotype-Tissue Expression project to train expression imputation models. We applied these models to large-scale GWAS summary statistic data from the Breast Cancer and Ovarian Cancer Association Consortia to identify genes associated with risk of overall breast cancer, non-mucinous epithelial ovarian cancer, and 10 cancer subtypes. We identified 101 genes significantly associated with risk with breast cancer phenotypes and 8 with ovarian phenotypes. These loci include established risk genes and several novel candidate risk loci, such as ACAP3, whose associations are predominantly driven by trans-eQTLs. We replicated several associations using summary statistics from an independent GWAS of these cancer phenotypes. We further used genotype and expression data in normal and tumor breast tissue from the Cancer Genome Atlas to examine the performance of our trained expression imputation models. This work represents an in-depth look into the role of trans eQTLs in the complex molecular mechanisms underlying these diseases.
Collapse
Affiliation(s)
- S Taylor Head
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Felipe Dezem
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Andrei Todor
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Jingjing Yang
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Jasmine Plummer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Simon Gayther
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Siddhartha Kar
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Joellen Schildkraut
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Michael P Epstein
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
53
|
Xie W, Kong C, Luo W, Zheng J, Zhou Y. C-reactive protein and cognitive impairment: A bidirectional Mendelian randomization study. Arch Gerontol Geriatr 2024; 121:105359. [PMID: 38412560 DOI: 10.1016/j.archger.2024.105359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
OBJECTIVES While C-reactive protein (CRP) has been solidly linked as a risk factor for cognitive impairment, observational research alone cannot definitively demonstrate a causal relationship. This study therefore sought to determine whether there was an association between CRP and the development of cognitive impairment. METHODS This study employed bidirectional Mendelian randomization (MR) to investigate the genetic association between CRP and cognitive impairment. genome-wide association studies (GWAS) summary statistics for both were sourced from IEU Open GWAS or prior reports. Cognitive GWAS's used were on tests designed to assess cognitive performance, fluid intelligence, prospective memory, and reaction time. The MR analysis applied several methods, including inverse variance-weighted (IVW), MR Egger, weighted median, simple mode, and weighted mode approaches, then use of MR sensitivity analyses to interrogate findings. RESULTS Forward MR analysis showed that genetically proxied CRP was associated with prospective memory (P = 0.009), whereas there is little evidence to support an association between CRP and other cognitive tests. Reverse MR analysis indicated a potential association between genetic proxy cognitive performance (P = 0.002) and fluid intelligence score (P = 0.019) with CRP levels. For genetically proxied CRP on prospective memory, the level of pleiotropy (P > 0.05) and no genetic variant heterogeneity (P > 0.05) made bias unlikely, and leave-one-out tests also confirmed robust associations. CONCLUSIONS The effect of genetically proxied CRP on prospective memory, with little evidence on other cognitive tests. The reverse MR shows some evidence of genetically proxied cognition (cognitive performance and fluid intelligence) on CRP levels.
Collapse
Affiliation(s)
- Wenhuo Xie
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Chenghua Kong
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Wei Luo
- Department of Rehabilitation Medicine, School of Health, Fujian Medical University, Fuzhou, China
| | - Jiaping Zheng
- Department of Rehabilitation Medicine, School of Health, Fujian Medical University, Fuzhou, China.
| | - Yu Zhou
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
54
|
Gholami M. Common and novel haplotype structures between different types of cancer. Cancer Rep (Hoboken) 2024; 7:e2107. [PMID: 39031745 PMCID: PMC11190585 DOI: 10.1002/cnr2.2107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/03/2024] [Accepted: 05/07/2024] [Indexed: 07/22/2024] Open
Abstract
BACKGROUND Background: Genome-wide association studies (GWAS) have identified hundreds of genetic variants associated with cancer risk. GWAS data are important for cancer prevention and understanding the underlying mechanisms of cancer. AIMS This study aimed to investigate the genetic association between different types of cancer using GWAS data and a bioinformatics approach. METHODS AND RESULTS The significant GWAS variants associated with more than one cancer type were identified. Common linkage disequilibrium (LD) variants between different types of cancer were identified by 1000 genomes phase 3 LD data. Haplotype blocks were identified by analyzing 1000 Genomes phase 3 genotyping data in the GWAS populations. Subsequent analyses included functional SNP analyses and TCGA gene expression. The results associated with significant GWAS variants (P<5E-8) showed the following haplotype associations in European population: GT rs4808075-rs8170 haplotype on BABAM1 with breast and ovarian cancers, GC rs16857609-rs11693806 haplotype on DIRC3 with breast and thyroid cancers, GCG rs380286-rs401681-rs31487 haplotype on CLPTM1L with skin and lung cancers, GGG rs4430796-rs11651052-rs11263763 haplotype on HNF1B with prostate and endometrial cancers, and GT rs10505477-rs6983267 haplotype on CASC8 associated with colorectal and prostate cancers. All these genes had significantly different expressions in tumor tissues (P<1E-3). In addition, the rs11693806 variant is located in the hsa-miR-873-5p binding site and has an enhancing effect on the hsa-miR-873-5p:DIRC3 interaction. CONCLUSION These novel haplotype structures and miRNA:lncRNA interactions are important for understanding the common genetic link between cancers. These results can potentially be used in genetic panels.
Collapse
Affiliation(s)
- Morteza Gholami
- Department of Paramedicine, Amol School of Paramedical SciencesMazandaran University of Medical SciencesSariIran
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular‐Cellular Sciences InstituteTehran University of Medical SciencesTehranIran
| |
Collapse
|
55
|
Cheng X, Chen J, Liu S, Bu S. Assessing Causal Relationships Between Periodontitis and Non-alcoholic Fatty Liver Disease: A Two-Sample Bidirectional Mendelian Randomisation Study. ORAL HEALTH & PREVENTIVE DENTISTRY 2024; 22:189-202. [PMID: 38803319 PMCID: PMC11619849 DOI: 10.3290/j.ohpd.b5395053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/04/2024] [Indexed: 05/29/2024]
Abstract
PURPOSE To investigate the causality between periodontitis and non-alcoholic fatty liver disease (NAFLD) using a two-sample bidirectional Mendelian randomisation (MR) analysis. MATERIALS AND METHODS Genetic variations in periodontitis and NAFLD were acquired from genome-wide association studies (GWAS) using the Gene-Lifestyle Interaction in Dental Endpoints, a large-scale meta-analysis, and FinnGen consortia. Data from the first two databases were used to explore the causal relationship between periodontitis and NAFLD ("discovery stage"), and the data from FinnGen was used to validate our results ("validation stage"). We initially performed MR analysis using 5 single nucleotide polymorphisms (SNPs) in the discovery samples and 18 in the replicate samples as genetic instruments for periodontitis to investigate the causative impact of periodontitis on NAFLD. We then conducted a reverse MR analysis using 6 SNPs in the discovery samples and 4 in the replicate samples as genetic instruments for NAFLD to assess the causative impact of NAFLD on periodontitis. We further implemented heterogeneity and sensitivity analyses to assess the reliability of the MR results. RESULTS Periodontitis was not causally related to NAFLD (odds ratio [OR] = 1.036, 95% CI: 0.914-1.175, p = 0.578 in the discovery stage; OR = 1.070, 95% CI: 0.935-1.224, p = 0.327 in the validation stage), and NAFLD was not causally linked with periodontitis (OR = 1.059, 95% CI: 0.916-1.225, p = 0.439 in the discovery stage; OR = 0.993, 95% CI: 0.896-1.102, p = 0.901 in the validation stage). No heterogeneity was observed among the selected SNPs. Sensitivity analyses demonstrated the absence of pleiotropy and the reliability of our MR results. CONCLUSION The present MR analysis showed no genetic evidence for a cause-and-effect relationship between periodontitis and NAFLD. Periodontitis may not directly influence the development of NAFLD and vice versa.
Collapse
Affiliation(s)
- Xiaofan Cheng
- Dentist, Department of Stomatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China. Study design, collected and analyzed the data, wrote the manuscript, reviewed and approved the final manuscript
| | - Jialu Chen
- Dentist, Department of Stomatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China. Collected and analysed the data, reviewed and approved the final manuscript
| | - Siliang Liu
- Postgraduate Student, Department of Stomatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China. Plotted the figures, reviewed and approved the final manuscript
| | - Shoushan Bu
- Professor, Department of Stomatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China. Study design, revised the manuscript, reviewed and approved the final manuscript
| |
Collapse
|
56
|
Shi L, Wei X, Luo J, Tu L. SGLT2 inhibition, venous thrombolism, and death due to cardiac causes: a mediation Mendelian randomization study. Front Cardiovasc Med 2024; 11:1339094. [PMID: 38803667 PMCID: PMC11128626 DOI: 10.3389/fcvm.2024.1339094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
Objective To investigate the causal role of venous thrombolism mediating sodium-glucose cotransporter 2 (SGLT2) inhibition in death due to cardiac causes using Mendelian randomization (MR). Methods A two-sample two-step MR was used to determine (1) the causal effects of SGLT2 inhibition on death due to cardiac causes; (2) the causal effects of venous thrombolism on death due to cardiac causes; and (3) the mediation effects of venous thrombolism. Genetic proxies for SGLT2 inhibition were identified as variants in the SLC5A2 gene that were associated with both levels of gene expression and hemoglobin A1c. Additionally, employing MR to investigate the causal association between SGLT2 inhibition and cardiac arrest as well as coronary heart disease (CHD). Results SGLT2 inhibition was associated with a lower risk of death due to cardiac causes (odds ratio [OR] = 0.983, [95% CI = 0.972, 0.993], P = 0.0016). Venous thrombolism was associated with death due to cardiac causes ([OR] = 1.031, [95% CI = 1.005, 1.057], P = 0.0199). Mediation analysis showed evidence of indirect effect of SGLT2 inhibition on death due to cardiac causes through venous thrombolism [β = -0.0015, (95% CI = -0.0032 -0.0002), P = 0.042], with a mediated proportion of 8.9% (95% CI = 1.2%, 18.7%) of the total. Furthermore, SGLT2 inhibition was linked to a lower risk of cardiac arrest ([OR] = 0.097, [95% CI = 0.013, 0.742], P = 0.025). SGLT2 inhibition was linked to a lower risk of CHD ([OR] = 0.957, [95% CI = 0.932, 0.982], P = 0.0009). Conclusions Our study identified the causal roles of SGLT2 inhibition in venous thrombolism. SGLT2 inhibition may influence death due to cardiac causes through venous thrombolism. Additionally, SGLT2 inhibition was associated with reduced risk of cardiac arrest and CHD.
Collapse
Affiliation(s)
- Lili Shi
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Xiupan Wei
- Department of Rehabilitation Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Jinlan Luo
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Ling Tu
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| |
Collapse
|
57
|
Shi L, Liu X, Zhang S, Zhou A. Association of gut microbiota with cerebral cortical thickness: A Mendelian randomization study. J Affect Disord 2024; 352:312-320. [PMID: 38382814 DOI: 10.1016/j.jad.2024.02.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND The causal relationship between gut microbiota and cerebral cortex development remains unclear. We aimed to scrutinize the plausible causal impact of gut microbiota on cortical thickness via Mendelian randomization (MR) study. METHODS Genome-wide association study (GWAS) data for 196 gut microbiota phenotypes (N = 18,340) were obtained as exposures, and GWAS data for cortical thickness-related traits (N = 51,665) were selected as outcomes. Inverse variance weighted was used as the main estimate method. A series of sensitivity analyses was used to test the robustness of the estimates including Cochran's Q test, MR-Egger intercept analysis, Steiger filtering, scatter plot funnel plot and leave-one-out analysis. RESULTS Genetic prediction of high Bacillales (β = 0.005, P = 0.032) and Lactobacillales (β = 0.010, P = 0.012) abundance was associated with a potential increase in global cortical thickness. For specific functional brain subdivisions, genetically predicted order Lactobacillales would potentially increase the thickness of the fusiform (β = 0.014, P = 0.016) and supramarginal (β = 0.017, P = 0.003). Meanwhile, order Bacillales would increase the thickness of fusiform (β = 0.007, P = 0.039), insula (β = 0.011, P = 0.003), rostralanteriorcingulate (β = 0.014, P = 0.002) and supramarginal (β = 0.006, P = 0.043). No significant estimates of heterogeneity or pleiotropy were found. CONCLUSIONS Through MR studies, we discovered genetic prediction of the Lactobacillales and Bacillales orders potentially linked to cortical thickness, affirming gut microbiota may enhance brain structure. Genetically predicted supramarginal and fusiform may be potential targets.
Collapse
Affiliation(s)
- Lubo Shi
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center Beijing, China
| | - Xiaoduo Liu
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center Beijing, China.
| | - Anni Zhou
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center Beijing, China.
| |
Collapse
|
58
|
Zheng G, Chattopadhyay S, Sundquist J, Sundquist K, Ji J. Antihypertensive drug targets and breast cancer risk: a two-sample Mendelian randomization study. Eur J Epidemiol 2024; 39:535-548. [PMID: 38396187 PMCID: PMC11219410 DOI: 10.1007/s10654-024-01103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/15/2024] [Indexed: 02/25/2024]
Abstract
Findings on the correlation between the use of antihypertensive medication and the risk of breast cancer (BC) have been inconsistent. We performed a two-sample Mendelian randomization (MR) using instrumental variables to proxy changes in gene expressions of antihypertensive medication targets to interrogate this. Genetic instruments for expression of antihypertensive drug target genes were identified with expression quantitative trait loci in blood, which should be associated with systolic blood pressure to proxy for the effect of antihypertensive drug. The association between genetic variants and BC risk were obtained from genome-wide association study summary statistics. The summary-based MR was employed to estimate the drug effects on BC risk. We further performed sensitivity analyses to confirm the discovered MR associations such as assessment of horizontal pleiotropy, colocalization, and multiple tissue enrichment analyses. The overall BC risk was only associated with SLC12A2 gene expression at a Bonferroni-corrected threshold. One standard deviation (SD) decrease of SLC12A2 gene expression in blood was associated with a decrease of 1.12 (95%CI, 0.80-1.58) mmHg of systolic blood pressure, but a 16% increased BC risk (odds ratio, 1.16, 95% confidential interval, 1.06-1.28). This signal was further observed for estrogen receptor positive (ER +) BC (1.17, 1.06-1.28). In addition, one SD decrease in expression of PDE1B in blood was associated with 7% decreased risk of ER + BC (0.93, 0.90-0.97). We detected no evidence of horizontal pleiotropy for these associations and the probability of the causal variants being shared between the gene expression and BC risk was 81.5, 40.5 and 66.8%, respectively. No significant association was observed between other target gene expressions and BC risk. Changes in expression of SLC12A2 and PDE1B mediated possibly via antihypertensive drugs may result in increased and decreased BC risk, respectively.
Collapse
Affiliation(s)
- Guoqiao Zheng
- Center for Primary Health Care Research, Lund University/Region Skåne, Jan Waldenströms Gata 35, 205 02, Malmö, Sweden.
| | - Subhayan Chattopadhyay
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Jan Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Jan Waldenströms Gata 35, 205 02, Malmö, Sweden
- Department of Family Medicine and Community Health, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Community-Based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Matsue, Japan
| | - Kristina Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Jan Waldenströms Gata 35, 205 02, Malmö, Sweden
- Department of Family Medicine and Community Health, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Community-Based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Matsue, Japan
| | - Jianguang Ji
- Center for Primary Health Care Research, Lund University/Region Skåne, Jan Waldenströms Gata 35, 205 02, Malmö, Sweden.
| |
Collapse
|
59
|
Yu L, Guo Z, Long Q, Zhao X, Liu Y, Cao X, Zhang Y, Yan W, Qian QQ, Chen J, Teng Z, Zeng Y. Modifiable Lifestyle, Sedentary Behaviors and the Risk of Frailty: A Univariate and Multivariate Mendelian Randomization Study. Adv Biol (Weinh) 2024; 8:e2400052. [PMID: 38532244 DOI: 10.1002/adbi.202400052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/11/2024] [Indexed: 03/28/2024]
Abstract
This research conducted a two-sample univariate and multivariate Mendelian Randomization (MR) analysis to explore the causal link between different types of leisure sedentary behavior (LSB) and frailty. Independent instrumental variables significantly associated with sedentary behaviors (p < 5 × 10-8) are obtained from a genome-wide association study (GWAS) of 422,218 individuals, and Frailty Index (FI) are derived from the latest GWAS dataset of 175,226 individuals. MR analysis is conducted using inverse variance weighting, MR-Egger, weighted median, simple mode, and weighted mode, supplemented by MRAPSS. Univariate MR revealed that sedentary behaviors such as watching television increased the risk of frailty (OR, 1.271; 95% CI: 1.202-1.345; p = 6.952 × 10-17), as sedentary driving behaviors are done (OR, 1.436; 95% CI: 1.026-2.011; p = 0.035). Further validation through APSS, taking into account cryptic relatedness, stratification, and sample overlap, maintained the association between television viewing and increased frailty risk (OR, 1.394; 95% CI: 1.266-1.534; p = 1.143 × 10-11), while the association with driving dissipated. In multivariate inverse variance weighted (IVW) analysis, after adjusting for C-reactive protein (CRP) levels, television Sedentary behavior (SB) inversely affected frailty (OR, 0.782; 95% CI: 0.724-0.845; p = 4.820 × 10-10). This study indicates that televisio SB significantly increases the risk of frailty, suggesting potential biological heterogeneity behind specific sedentary activities. This process may interact with inflammation, influencing the development of frailty.
Collapse
Affiliation(s)
- Ling Yu
- Department of Psychiatry, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650101, China
| | - Zeyi Guo
- Department of Psychiatry, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650101, China
| | - Qing Long
- Department of Psychiatry, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650101, China
| | - Xinling Zhao
- Department of Psychiatry, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650101, China
| | - Yilin Liu
- Department of Psychiatry, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650101, China
| | - Xiang Cao
- Department of Psychiatry, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650101, China
| | - Yunqiao Zhang
- Department of Psychiatry, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650101, China
| | - Weimin Yan
- Department of Psychiatry, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650101, China
| | - Qing Qing Qian
- Department of Psychiatry, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650101, China
| | - Jian Chen
- Department of Gastroenterology, Nanchong Central Hospital, Nanchong, Sichuan Province, 637000, China
| | - Zhaowei Teng
- Department of Psychiatry, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650101, China
| | - Yong Zeng
- Department of Psychiatry, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650101, China
| |
Collapse
|
60
|
Schneeweiss A, Brucker SY, Huebner H, Volmer LL, Hack CC, Seitz K, Ruebner M, Heublein S, Thewes V, Lüftner D, Lux MP, Jurhasz-Böss I, Taran FA, Wimberger P, Anetsberger D, Beierlein M, Schmidt M, Radosa J, Müller V, Janni W, Rack B, Belleville E, Untch M, Thill M, Ditsch N, Aktas B, Nel I, Kolberg HC, Engerle T, Tesch H, Roos C, Budden C, Neubauer H, Hartkopf AD, Fehm TN, Fasching PA. CDK4/6 Inhibition - Therapy Sequences and the Quest to Find the Best Biomarkers - an Overview of Current Programs. Geburtshilfe Frauenheilkd 2024; 84:443-458. [PMID: 38817598 PMCID: PMC11136530 DOI: 10.1055/a-2286-6066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/12/2024] [Indexed: 06/01/2024] Open
Abstract
In recent years, new targeted therapies have been developed to treat patients with hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) breast cancer. Some of these therapies have not just become the new therapy standard but also led to significantly longer overall survival rates. The cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6i) have become the therapeutic standard for first-line therapy. Around 70 - 80% of patients are treated with a CDK4/6i. In recent years, a number of biomarkers associated with progression, clonal selection or evolution have been reported for CDK4/6i and their endocrine combination partners. Understanding the mechanisms behind treatment efficacy and resistance is important. A better understanding could contribute to planning the most effective therapeutic sequences and utilizing basic molecular information to overcome endocrine resistance. One study with large numbers of patients which aims to elucidate these mechanisms is the Comprehensive Analysis of sPatial, TempORal and molecular patterns of ribociclib efficacy and resistance in advanced Breast Cancer patients (CAPTOR BC) trial. This overview summarizes the latest clinical research on resistance to endocrine therapies, focusing on CDK4/6 inhibitors and discussing current study concepts.
Collapse
Affiliation(s)
- Andreas Schneeweiss
- National Center for Tumor Diseases, University Hospital and German Cancer Research Center, Heidelberg, Germany
| | - Sara Y. Brucker
- Department of Gynecology and Obstetrics, Tübingen University Hospital, Tübingen, Germany
| | - Hanna Huebner
- Department of Gynecology and Obstetrics, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN) Friedrich-Alexander-Universität Erlangen Nürnberg, Erlangen, Germany
| | - Lea L. Volmer
- Department of Gynecology and Obstetrics, Tübingen University Hospital, Tübingen, Germany
| | - Carolin C. Hack
- Department of Gynecology and Obstetrics, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN) Friedrich-Alexander-Universität Erlangen Nürnberg, Erlangen, Germany
| | - Katharina Seitz
- Department of Gynecology and Obstetrics, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN) Friedrich-Alexander-Universität Erlangen Nürnberg, Erlangen, Germany
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN) Friedrich-Alexander-Universität Erlangen Nürnberg, Erlangen, Germany
| | - Sabine Heublein
- National Center for Tumor Diseases, University Hospital and German Cancer Research Center, Heidelberg, Germany
| | - Verena Thewes
- National Center for Tumor Diseases, University Hospital and German Cancer Research Center, Heidelberg, Germany
| | - Diana Lüftner
- Immanuel Hospital Märkische Schweiz & Immanuel Campus Rüdersdorf, Medical University of Brandenburg Theodor-Fontane, Rüdersdorf bei Berlin, Germany
| | - Michael P. Lux
- Department of Gynecology and Obstetrics, Frauenklinik St. Louise, Paderborn, St. Josefs-Krankenhaus, Salzkotten, Germany; St. Vincenz Kliniken Salzkotten + Paderborn, Paderborn, Germany
| | - Ingolf Jurhasz-Böss
- Department of Obstetrics and Gynecology, University Medical Center Freiburg, Freiburg, Germany
| | - Florin-Andrei Taran
- Department of Obstetrics and Gynecology, University Medical Center Freiburg, Freiburg, Germany
| | - Pauline Wimberger
- Department of Gynecology and Obstetrics, Carl Gustav Carus Faculty of Medicine and University Hospital, TU Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Carl Gustav Carus Faculty of Medicine and University Hospital, TU Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Anetsberger
- Department of Gynecology and Obstetrics, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN) Friedrich-Alexander-Universität Erlangen Nürnberg, Erlangen, Germany
| | - Milena Beierlein
- Department of Gynecology and Obstetrics, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN) Friedrich-Alexander-Universität Erlangen Nürnberg, Erlangen, Germany
| | - Marcus Schmidt
- Department of Gynecology and Obstetrics, University Hospital Mainz, Mainz, Germany
| | - Julia Radosa
- Department of Gynecology and Obstetrics, University Hospital Saarland, Homburg, Germany
| | - Volkmar Müller
- Department of Gynecology, Hamburg-Eppendorf University Medical Center, Hamburg, Germany
| | - Wolfgang Janni
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | - Brigitte Rack
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | | | - Michael Untch
- Clinic for Gynecology and Obstetrics, Breast Cancer Center, Gynecologic Oncology Center, Helios Klinikum Berlin Buch, Berlin, Germany
| | - Marc Thill
- Agaplesion Markus Krankenhaus, Department of Gynecology and Gynecological Oncology, Frankfurt, Germany
| | - Nina Ditsch
- Department of Gynecology and Obstetrics, University Hospital Augsburg, Augsburg, Germany
| | - Bahriye Aktas
- Department of Gynecology, University Hospital Leipzig, Leipzig, Germany
| | - Ivonne Nel
- Department of Gynecology, University Hospital Leipzig, Leipzig, Germany
| | | | - Tobias Engerle
- Department of Gynecology and Obstetrics, Tübingen University Hospital, Tübingen, Germany
| | - Hans Tesch
- Oncology Practice at Bethanien Hospital, Frankfurt am Main, Germany
| | | | | | - Hans Neubauer
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Andreas D. Hartkopf
- Department of Gynecology and Obstetrics, Tübingen University Hospital, Tübingen, Germany
| | - Tanja N. Fehm
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Düsseldorf, Germany
- Centrum für Integrierte Onkologie, Aachen Bonn Köln Düsseldorf, Düsseldorf, Germany
| | - Peter A. Fasching
- Department of Gynecology and Obstetrics, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN) Friedrich-Alexander-Universität Erlangen Nürnberg, Erlangen, Germany
| |
Collapse
|
61
|
Pan JW, Ragu M, Chan WQ, Hasan SN, Islam T, Teoh LY, Jamaris S, See MH, Yip CH, Rajadurai P, Looi LM, Taib NAM, Rueda OM, Caldas C, Chin SF, Lim J, Teo SH. Clustering of HR + /HER2- breast cancer in an Asian cohort is driven by immune phenotypes. Breast Cancer Res 2024; 26:67. [PMID: 38649964 PMCID: PMC11035138 DOI: 10.1186/s13058-024-01826-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
Breast cancer exhibits significant heterogeneity, manifesting in various subtypes that are critical in guiding treatment decisions. This study aimed to investigate the existence of distinct subtypes of breast cancer within the Asian population, by analysing the transcriptomic profiles of 934 breast cancer patients from a Malaysian cohort. Our findings reveal that the HR + /HER2- breast cancer samples display a distinct clustering pattern based on immune phenotypes, rather than conforming to the conventional luminal A-luminal B paradigm previously reported in breast cancers from women of European descent. This suggests that the activation of the immune system may play a more important role in Asian HR + /HER2- breast cancer than has been previously recognized. Analysis of somatic mutations by whole exome sequencing showed that counter-intuitively, the cluster of HR + /HER2- samples exhibiting higher immune scores was associated with lower tumour mutational burden, lower homologous recombination deficiency scores, and fewer copy number aberrations, implicating the involvement of non-canonical tumour immune pathways. Further investigations are warranted to determine the underlying mechanisms of these pathways, with the potential to develop innovative immunotherapeutic approaches tailored to this specific patient population.
Collapse
Affiliation(s)
- Jia-Wern Pan
- Cancer Research Malaysia, No. 1, Jalan SS12/1A, 47500, Subang Jaya, Malaysia.
| | - Mohana Ragu
- Cancer Research Malaysia, No. 1, Jalan SS12/1A, 47500, Subang Jaya, Malaysia
| | - Wei-Qin Chan
- Cancer Research Malaysia, No. 1, Jalan SS12/1A, 47500, Subang Jaya, Malaysia
| | | | - Tania Islam
- Department of Surgery, Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia
| | - Li-Ying Teoh
- Department of Surgery, Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia
| | - Suniza Jamaris
- Department of Surgery, Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mee-Hoong See
- Department of Surgery, Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia
| | - Cheng-Har Yip
- Subang Jaya Medical Centre, No. 1, Jalan SS12/1A, 47500, Subang Jaya, Malaysia
| | - Pathmanathan Rajadurai
- Subang Jaya Medical Centre, No. 1, Jalan SS12/1A, 47500, Subang Jaya, Malaysia
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Malaysia
| | - Lai-Meng Looi
- Department of Pathology, Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nur Aishah Mohd Taib
- Department of Surgery, Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia
| | - Oscar M Rueda
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Carlos Caldas
- Department of Oncology, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- NIHR Cambridge Biomedical Research Centre and Cambridge Experimental Cancer Medicine Centre, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Suet-Feung Chin
- Department of Oncology, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Joanna Lim
- Cancer Research Malaysia, No. 1, Jalan SS12/1A, 47500, Subang Jaya, Malaysia
| | - Soo-Hwang Teo
- Cancer Research Malaysia, No. 1, Jalan SS12/1A, 47500, Subang Jaya, Malaysia
- Faculty of Medicine, University Malaya Cancer Research Institute, University Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
62
|
Shi X, Bu A, Yang Y, Wang Y, Zhao C, Fan J, Yang C, Jia X. Investigating the shared genetic architecture between breast and ovarian cancers. Genet Mol Biol 2024; 47:e20230181. [PMID: 38626574 PMCID: PMC11021043 DOI: 10.1590/1678-4685-gmb-2023-0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 12/27/2023] [Indexed: 04/18/2024] Open
Abstract
High heritability and strong correlation have been observed in breast and ovarian cancers. However, their shared genetic architecture remained unclear. Linkage disequilibrium score regression (LDSC) and heritability estimation from summary statistics (ρ-HESS) were applied to estimate heritability and genetic correlations. Bivariate causal mixture model (MiXeR) was used to qualify the polygenic overlap. Then, stratified-LDSC (S-LDSC) was used to identify tissue and cell type specificity. Meanwhile, the adaptive association test called MTaSPUsSet was performed to identify potential pleiotropic genes. The Single Nucleotide Polymorphisms (SNP) heritability was 13% for breast cancer and 5% for ovarian cancer. There was a significant genetic correlation between breast and ovarian cancers (rg=0.21). Breast and ovarian cancers exhibited polygenic overlap, sharing 0.4 K out 2.8 K of causal variants. Tissue and cell type specificity displayed significant enrichment in female breast mammary, uterus, kidney tissues, and adipose cell. Moreover, the 74 potential pleiotropic genes were identified between breast and ovarian cancers, which were related to the regulation of cell cycle and cell death. We quantified the shared genetic architecture between breast and ovarian cancers and shed light on the biological basis of the co-morbidity. Ultimately, these findings facilitated the understanding of disease etiology.
Collapse
Affiliation(s)
- Xuezhong Shi
- Zhengzhou University, College of Public Health, Department of Epidemiology and Biostatistics, Zhengzhou, Henan, China
| | - Anqi Bu
- Zhengzhou University, College of Public Health, Department of Epidemiology and Biostatistics, Zhengzhou, Henan, China
| | - Yongli Yang
- Zhengzhou University, College of Public Health, Department of Epidemiology and Biostatistics, Zhengzhou, Henan, China
| | - Yuping Wang
- Zhengzhou University, College of Public Health, Department of Epidemiology and Biostatistics, Zhengzhou, Henan, China
| | - Chenyu Zhao
- Zhengzhou University, College of Public Health, Department of Epidemiology and Biostatistics, Zhengzhou, Henan, China
| | - Jingwen Fan
- Zhengzhou University, College of Public Health, Department of Epidemiology and Biostatistics, Zhengzhou, Henan, China
| | - Chaojun Yang
- Zhengzhou University, College of Public Health, Department of Epidemiology and Biostatistics, Zhengzhou, Henan, China
| | - Xiaocan Jia
- Zhengzhou University, College of Public Health, Department of Epidemiology and Biostatistics, Zhengzhou, Henan, China
| |
Collapse
|
63
|
Ochs-Balcom HM, Preus L, Du Z, Elston RC, Teerlink CC, Jia G, Guo X, Cai Q, Long J, Ping J, Li B, Stram DO, Shu XO, Sanderson M, Gao G, Ahearn T, Lunetta KL, Zirpoli G, Troester MA, Ruiz-Narváez EA, Haddad SA, Figueroa J, John EM, Bernstein L, Hu JJ, Ziegler RG, Nyante S, Bandera EV, Ingles SA, Mancuso N, Press MF, Deming SL, Rodriguez-Gil JL, Yao S, Ogundiran TO, Ojengbede O, Bolla MK, Dennis J, Dunning AM, Easton DF, Michailidou K, Pharoah PDP, Sandler DP, Taylor JA, Wang Q, O’Brien KM, Weinberg CR, Kitahara CM, Blot W, Nathanson KL, Hennis A, Nemesure B, Ambs S, Sucheston-Campbell LE, Bensen JT, Chanock SJ, Olshan AF, Ambrosone CB, Olopade OI, the Ghana Breast Health Study Team, Conti DV, Palmer J, García-Closas M, Huo D, Zheng W, Haiman C. Novel breast cancer susceptibility loci under linkage peaks identified in African ancestry consortia. Hum Mol Genet 2024; 33:687-697. [PMID: 38263910 PMCID: PMC11000665 DOI: 10.1093/hmg/ddae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Expansion of genome-wide association studies across population groups is needed to improve our understanding of shared and unique genetic contributions to breast cancer. We performed association and replication studies guided by a priori linkage findings from African ancestry (AA) relative pairs. METHODS We performed fixed-effect inverse-variance weighted meta-analysis under three significant AA breast cancer linkage peaks (3q26-27, 12q22-23, and 16q21-22) in 9241 AA cases and 10 193 AA controls. We examined associations with overall breast cancer as well as estrogen receptor (ER)-positive and negative subtypes (193,132 SNPs). We replicated associations in the African-ancestry Breast Cancer Genetic Consortium (AABCG). RESULTS In AA women, we identified two associations on chr12q for overall breast cancer (rs1420647, OR = 1.15, p = 2.50×10-6; rs12322371, OR = 1.14, p = 3.15×10-6), and one for ER-negative breast cancer (rs77006600, OR = 1.67, p = 3.51×10-6). On chr3, we identified two associations with ER-negative disease (rs184090918, OR = 3.70, p = 1.23×10-5; rs76959804, OR = 3.57, p = 1.77×10-5) and on chr16q we identified an association with ER-negative disease (rs34147411, OR = 1.62, p = 8.82×10-6). In the replication study, the chr3 associations were significant and effect sizes were larger (rs184090918, OR: 6.66, 95% CI: 1.43, 31.01; rs76959804, OR: 5.24, 95% CI: 1.70, 16.16). CONCLUSION The two chr3 SNPs are upstream to open chromatin ENSR00000710716, a regulatory feature that is actively regulated in mammary tissues, providing evidence that variants in this chr3 region may have a regulatory role in our target organ. Our study provides support for breast cancer variant discovery using prioritization based on linkage evidence.
Collapse
Affiliation(s)
- Heather M Ochs-Balcom
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, 270 Farber Hall, Buffalo, NY 14214, United States
| | - Leah Preus
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, 270 Farber Hall, Buffalo, NY 14214, United States
| | - Zhaohui Du
- Department of Preventive Population and Public Health Sciences, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, 1450 Biggy Street, Los Angeles, CA 90033, United States
- Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, N. Seattle, WA 98109, United States
| | - Robert C Elston
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States
| | - Craig C Teerlink
- Department of Internal Medicine, University of Utah School of Medicine, 30 North Mario Capecchi Dr, 3rd Floor North, Salt Lake City, UT 84112, United States
| | - Guochong Jia
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Avenue, Nashville, TN 37203, United States
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Avenue, Nashville, TN 37203, United States
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Avenue, Nashville, TN 37203, United States
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Avenue, Nashville, TN 37203, United States
| | - Jie Ping
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Avenue, Nashville, TN 37203, United States
| | - Bingshan Li
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 707 Light Hall 2215 Garland Avenue, Nashville, TN 37232, United States
| | - Daniel O Stram
- Department of Preventive Population and Public Health Sciences, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, 1450 Biggy Street, Los Angeles, CA 90033, United States
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Avenue, Nashville, TN 37203, United States
| | - Maureen Sanderson
- Department of Family and Community Medicine, Meharry Medical College, 1005 Dr. DB Todd Jr, Blvd. Nashville, TN 37208, United States
| | - Guimin Gao
- Department of Public Health Sciences, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, United States
| | - Thomas Ahearn
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Bethesda, MD 20892, United States
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University, 715 Albany St, Boston, MA 02118, United States
| | - Gary Zirpoli
- Slone Epidemiology Center, Boston University, L-7, 72 East Concord Street, Boston, MA 02118, United States
| | - Melissa A Troester
- Department of Epidemiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 135 Dauer Drive, CB 7435, Chapel Hill, NC 27599, United States
| | - Edward A Ruiz-Narváez
- Department of Nutritional Sciences, University of Michigan School of Public Health, 1860 SPH I, 1415 Washington Heights, Ann Arbor, MI 48109, United States
| | - Stephen A Haddad
- Slone Epidemiology Center, Boston University, L-7, 72 East Concord Street, Boston, MA 02118, United States
| | - Jonine Figueroa
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Bethesda, MD 20892, United States
- Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh Medical School, 9 Little France Road, Edinburgh, EH16 4UX, United Kingdom
- Cancer Research UK Edinburgh Centre, Crewe Rd S, Edinburgh, EH4 2XR, United Kingdom
| | - Esther M John
- Department of Epidemiology & Population Health, Stanford University School of Medicine, 3145 Porter Dr, Suite E223, MC 5393, Palo Alto, CA 94304, United States
- Department of Medicine (Oncology), Stanford University School of Medicine, 291 Campus Drive Li Ka Shing Building, Stanford, CA 94305, United States
| | - Leslie Bernstein
- Division of Biomarkers of Early Detection and Prevention Department of Population Sciences, Beckman Research Institute of the City of Hope, City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA 91010, United States
| | - Jennifer J Hu
- Sylvester Comprehensive Cancer Center and Department of Public Health Sciences, University of Miami Miller School of Medicine, 1120 NW 14th St, CRB 1511, Miami, FL 33136, United States
| | - Regina G Ziegler
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Bethesda, MD 20892, United States
| | - Sarah Nyante
- Department of Radiology, School of Medicine, University of North Carolina at Chapel Hill, 130 Mason Farm Rd., Chapel Hill, NC 27599, United States
| | - Elisa V Bandera
- Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, 120 Albany Street, Tower 2, 8th Floor, New Brunswick, NJ 08903, United States
| | - Sue A Ingles
- Department of Preventive Population and Public Health Sciences, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, 1450 Biggy Street, Los Angeles, CA 90033, United States
| | - Nicholas Mancuso
- Department of Preventive Population and Public Health Sciences, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, 1450 Biggy Street, Los Angeles, CA 90033, United States
| | - Michael F Press
- Department of Pathology, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Ave., Los Angeles, CA 90033, United States
| | - Sandra L Deming
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Avenue, Nashville, TN 37203, United States
| | - Jorge L Rodriguez-Gil
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, 31 Center Dr, Bethesda, MD 20894, United States
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, 750 Highland Ave., Madison, WI 53705, United States
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Temidayo O Ogundiran
- Department of Surgery, College of Medicine, University of Ibadan, Queen Elizabeth II Road, Ibadan, 200285, Nigeria
| | - Oladosu Ojengbede
- Center for Population and Reproductive Health, College of Medicine, University of Ibadan, UCH, Queen Elizabeth II Road, Ibadan, 200285, Nigeria
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, 2 Worts Causeway, Cambridge, CB1 8RN, United Kingdom
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, 2 Worts Causeway, Cambridge, CB1 8RN, United Kingdom
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Worts Causeway, Cambridge, CB1 8RN, United Kingdom
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Worts Causeway, Cambridge, CB1 8RN, United Kingdom
| | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology & Genetics, Iroon Avenue 6, 2371 Ayius Dometios, Nicosia, Cyprus
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Worts Causeway, Cambridge, CB1 8RN, United Kingdom
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, PO Box 12233, Research Triangle Park, NC 27709, United States
| | - Jack A Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, PO Box 12233, Research Triangle Park, NC 27709, United States
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, 2 Worts Causeway, Cambridge, CB1 8RN, United Kingdom
| | - Katie M O’Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, PO Box 12233, Research Triangle Park, NC 27709, United States
| | - Clarice R Weinberg
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, PO Box 12233, Research Triangle Park, NC 27709, United States
| | - Cari M Kitahara
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Bethesda, MD 20892, United States
| | - William Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Avenue, Nashville, TN 37203, United States
- International Epidemiology Institute, 1455 Research Boulevard, Rockville, MD 20850, United States
| | - Katherine L Nathanson
- Department of Medicine, Abramson Cancer Center, The Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19140, United States
| | - Anselm Hennis
- Chronic Disease Research Centre and Faculty of Medical Sciences, University of the West Indies, Jemmotts Lane, Avalon, Bridgetown, Barbados
| | - Barbara Nemesure
- Department of Family, Population and Preventive Medicine, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, United States
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, National Cancer Institute, 37 Convent Drive, Bethesda, MD 20892, United States
| | - Lara E Sucheston-Campbell
- College of Pharmacy, The Ohio State University, 217 Lloyd M. Parks Hall, 500 West 12th Ave., Columbus, OH 43210, United States
- College of Veterinary Medicine, The Ohio State University, 1900 Coffey Road, Columbus, OH 43210, United States
| | - Jeannette T Bensen
- Department of Epidemiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 135 Dauer Drive, CB 7435, Chapel Hill, NC 27599, United States
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Bethesda, MD 20892, United States
| | - Andrew F Olshan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, 170 Rosenau Hall, CB #7400, 135 Dauer Drive, Chapel Hill, NC 27599, United States
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Olufunmilayo I Olopade
- Center for Clinical Cancer Genetics and Global Health, Department of Medicine, University of Chicago, 5841 S Maryland Avenue, Chicago, IL 60637, United States
| | | | - David V Conti
- Department of Preventive Population and Public Health Sciences, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, 1450 Biggy Street, Los Angeles, CA 90033, United States
| | - Julie Palmer
- Slone Epidemiology Center, Boston University, L-7, 72 East Concord Street, Boston, MA 02118, United States
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Bethesda, MD 20892, United States
| | - Dezheng Huo
- Department of Public Health Sciences, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, United States
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Avenue, Nashville, TN 37203, United States
| | - Christopher Haiman
- Department of Preventive Population and Public Health Sciences, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, 1450 Biggy Street, Los Angeles, CA 90033, United States
| |
Collapse
|
64
|
Bao L, Wang Z, Wu L, Luo Z, Wang Y. Gut microbiota's influence on erysipelas: evidence from a two-sample Mendelian randomization analysis. Front Cell Infect Microbiol 2024; 14:1371591. [PMID: 38638831 PMCID: PMC11024262 DOI: 10.3389/fcimb.2024.1371591] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
Background Previous studies have suggested a link between gut microbiota and skin diseases, including erysipelas, an inflammatory skin condition. Despite this, the precise nature of the relationship between erysipelas and gut microbiota remains unclear and subject to debate. Methods We conducted a Mendelian Randomization (MR) analysis using publicly available summary data from genome-wide association studies (GWAS) to explore the potential causal relationship between gut microbiota and erysipelas. Instrumental variables (IVs) were identified using a comprehensive set of screening methods. We then performed MR analyses primarily using the Inverse Variance Weighted (IVW) method, complemented by alternative approaches such as MR Egger, weighted median, simple mode, and weighted mode. A series of sensitivity analyses, including Cochran's Q test, MR-Egger intercept test, Mendelian Randomization Pleiotropy RESidual Sum and Outlier (MR-PRESSO) test, and a leave-one-out test, were executed to ensure the robustness and validity of our findings. Results We identified potential associations between erysipelas and various gut microbiota, including Alcaligenaceae (OR 1.23; 95% CI 1.06-1.43; p=0.006), Rikenellaceae (OR 0.77; 95% CI 0.67-0.90; p=0.001), and others. Notably, associations with Actinomyces, Lachnospiraceae NC2004 group, Ruminiclostridium 9, Ruminococcaceae UCG014, Odoribacter, and Actinobacteria were also observed. Sensitivity analyses confirmed the robustness of these associations. Conclusion Our MR analysis suggests both potentially beneficial and harmful causal relationships between various gut microbiota and the incidence of erysipelas. This study provides new theoretical and empirical insights into the pathogenesis of erysipelas and underscores the potential for innovative preventive and therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | - Yibing Wang
- Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
65
|
Liu P, Lv M, Rong Y, Yu S, Wu R. No genetic causal association between iron status and pulmonary artery hypertension: Insights from a two-sample Mendelian randomization. Pulm Circ 2024; 14:e12370. [PMID: 38774814 PMCID: PMC11108639 DOI: 10.1002/pul2.12370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 05/24/2024] Open
Abstract
To explore the genetic causal association between pulmonary artery hypertension (PAH) and iron status through Mendelian randomization (MR), we conducted MR analysis using publicly available genome-wide association study (GWAS) summary data. Five indicators related to iron status (serum iron, ferritin, total iron binding capacity (TIBC), soluble transferrin receptor (sTfR), and transferrin saturation) served as exposures, while PAH was the outcome. The genetic causal association between these iron status indicators and PAH was assessed using the inverse variance weighted (IVW) method. Cochran's Q statistic was employed to evaluate heterogeneity. We assessed pleiotropy using MR-Egger regression and MR-Presso test. Additionally, we validated our results using the Weighted median, Simple mode, and Weighted mode methods. Based on the IVW method, we found no causal association between iron status (serum iron, ferritin, TIBC, sTfR, and transferrin saturation) and PAH (p β > 0.05). The Weighted median, Simple mode, and Weighted mode methods showed no potential genetic causal association (p β > 0.05 in the three analyses). Additionally, no heterogeneity or horizontal pleiotropy was detected in any of the analyses. Our results show that there are no genetic causal association between iron status and PAH.
Collapse
Affiliation(s)
- Peng‐Cheng Liu
- Department of Rheumatology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Meng‐Na Lv
- The First Clinical Medical College of Nanchang UniversityNanchangChina
| | - Yan‐Yan Rong
- Department of Hematology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Shu‐Jiao Yu
- Department of Rheumatology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Rui Wu
- Department of Rheumatology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| |
Collapse
|
66
|
Chen Y, Yu J, Li W, Wang L, Zhou X, Zhuang C, Guo W, Tian K, Zhuang R. Potential causal association between leisure sedentary behaviors and osteoporosis: A two-sample Mendelian randomization analysis. Medicine (Baltimore) 2024; 103:e37467. [PMID: 38518020 PMCID: PMC10956994 DOI: 10.1097/md.0000000000037467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/12/2024] [Indexed: 03/24/2024] Open
Abstract
Previous observational studies have observed a correlation between sedentary behavior and osteoporosis. However, conclusions from these studies have been contradictory. To explore the potential causal relationship between sedentary behavior and osteoporosis, we conducted a Mendelian randomization analysis. A two-sample Mendelian randomization was adopted to explore the causal relationship of leisure sedentary behavior with osteoporosis. We employed 5 methods to estimate the causal associations between leisure sedentary behavior and osteoporosis. Univariable Mendelian randomization results provided evidence for the causal relationship of the time spent on computer-use with the bone mineral density estimated by heel quantitative ultrasound (eBMD) (inverse variance weighted [IVW]: β (95% confidence interval [CI]) - 0.150 (-0.270 to -0.031), P = .013; weighted median: β (95%CI) - 0.195 (-0.336 to -0.055), P = .006). Similar associations were observed in the driving forearm bone mineral density (FABMD) (IVW: β (95%CI) - 0.933 (-1.860 to -0.007), P = .048) and driving lumbar spine bone mineral density (IVW: β (95%CI) - 0.649 (-1.175 to -0.124), P = .015). However, we did not find a significant causal relationship between the time spent on watching TV and bone mineral density. Research showed that there was a causal relationship between the time spent on computer use and driving time and eBMD, FABMD, and lumbar spine bone mineral density.
Collapse
Affiliation(s)
- Yixuan Chen
- Zhejiang Chinese Medical University, Hangzhou, China
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Jinsheng Yu
- Zhejiang Chinese Medical University, Hangzhou, China
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Wenkai Li
- Zhejiang Chinese Medical University, Hangzhou, China
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Likang Wang
- Zhejiang Chinese Medical University, Hangzhou, China
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Xing Zhou
- Zhejiang Chinese Medical University, Hangzhou, China
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | | | - Wenxuan Guo
- Zhejiang Chinese Medical University, Hangzhou, China
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Kun Tian
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Rujie Zhuang
- Zhejiang Chinese Medical University, Hangzhou, China
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- Quzhou Traditional Chinese Medicine (TCM) Hospital at the Junction of Four Provinces, Affiliated to Zhejiang Chinese Medical University, Quzhou, China
| |
Collapse
|
67
|
McClellan JC, Li JL, Gao G, Huo D. Expression- and splicing-based multi-tissue transcriptome-wide association studies identified multiple genes for breast cancer by estrogen-receptor status. Breast Cancer Res 2024; 26:51. [PMID: 38515142 PMCID: PMC10958972 DOI: 10.1186/s13058-024-01809-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Although several transcriptome-wide association studies (TWASs) have been performed to identify genes associated with overall breast cancer (BC) risk, only a few TWAS have explored the differences in estrogen receptor-positive (ER+) and estrogen receptor-negative (ER-) breast cancer. Additionally, these studies were based on gene expression prediction models trained primarily in breast tissue, and they did not account for alternative splicing of genes. METHODS In this study, we utilized two approaches to perform multi-tissue TWASs of breast cancer by ER subtype: (1) an expression-based TWAS that combined TWAS signals for each gene across multiple tissues and (2) a splicing-based TWAS that combined TWAS signals of all excised introns for each gene across tissues. To perform this TWAS, we utilized summary statistics for ER + BC from the Breast Cancer Association Consortium (BCAC) and for ER- BC from a meta-analysis of BCAC and the Consortium of Investigators of Modifiers of BRCA1 and BRCA2 (CIMBA). RESULTS In total, we identified 230 genes in 86 loci that were associated with ER + BC and 66 genes in 29 loci that were associated with ER- BC at a Bonferroni threshold of significance. Of these genes, 2 genes associated with ER + BC at the 1q21.1 locus were located at least 1 Mb from published GWAS hits. For several well-studied tumor suppressor genes such as TP53 and CHEK2 which have historically been thought to impact BC risk through rare, penetrant mutations, we discovered that common variants, which modulate gene expression, may additionally contribute to ER + or ER- etiology. CONCLUSIONS Our study comprehensively examined how differences in common variation contribute to molecular differences between ER + and ER- BC and introduces a novel, splicing-based framework that can be used in future TWAS studies.
Collapse
Affiliation(s)
- Julian C McClellan
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - James L Li
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Guimin Gao
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA.
| | - Dezheng Huo
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA.
- Section of Hematology & Oncology, Department of Medicine, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
68
|
He Z, Wang R, Song C, Liu J, Chen R, Zheng M, Liu W, Jiang G, Mao W. Exploring the causal relationship between immune cells and idiopathic pulmonary fibrosis: a bi-directional Mendelian randomization study. BMC Pulm Med 2024; 24:145. [PMID: 38509507 PMCID: PMC10956372 DOI: 10.1186/s12890-024-02942-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/01/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND The potential pathogenic mechanism of idiopathic pulmonary fibrosis is widely recognized to involve immune dysregulation. However, the current pool of studies has yet to establish a unanimous agreement regarding the correlation between various types of immune cells and IPF. METHODS By conducting a two-sample Mendelian randomization analysis using publicly available genetic data, the study examined the causal relationship between IPF and 731 immune cells. To ensure the reliability of the results, combined sensitivity analyses and inverse Mendelian analyses were conducted. Moreover, within subgroups, multivariate Mendelian randomization analyses were utilized to investigate the autonomous causal connection between immune cell characteristics and IPF. RESULTS After adjusting for false discovery rate, it was discovered that 20 immunophenotypes exhibited a significant association with IPF. After subgrouping for multivariate Mendelian randomization analysis, there were six immunophenotypes that remained significantly associated with IPF. These included CD33 + HLA DR + CD14dim (OR = 0.96, 95% CI 0.93-0.99, P = 0.033), HLA DR + NK (OR = 0.92, 95% CI 0.85-0.98, P = 0.017), CD39 + CD8 + T cell %T cell (OR = 0.93, 95% CI 0.88-0.99, P = 0.024), CD3 on activated & secreting Treg (OR = 0.91, 95% CI 0.84-0.98, P = 0.026), PDL-1 on CD14- CD16 + monocyte (OR = 0.89, 95% CI 0.84-0.95, P = 8 × 10-4), and CD45 on CD33 + HLA DR + CD14- (OR = 1.08, 95% CI 1.01-1.15, P = 0.011). CONCLUSION Our study reveals a noteworthy association between IPF and various immune cells, providing valuable insights for clinical research and aiding the advancement of immunologically-based therapeutic strategies.
Collapse
Affiliation(s)
- Zhao He
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, No. 299 Qingyang Rd, Wuxi, 214023, China
| | - Ruixin Wang
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, No. 299 Qingyang Rd, Wuxi, 214023, China
| | - Chenghu Song
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, No. 299 Qingyang Rd, Wuxi, 214023, China
| | - Jiwei Liu
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, No. 299 Qingyang Rd, Wuxi, 214023, China
| | - Ruo Chen
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, No. 299 Qingyang Rd, Wuxi, 214023, China
| | - Mingfeng Zheng
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, No. 299 Qingyang Rd, Wuxi, 214023, China
| | - Weici Liu
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, No. 299 Qingyang Rd, Wuxi, 214023, China.
| | - Guanyu Jiang
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, No. 299 Qingyang Rd, Wuxi, 214023, China.
| | - Wenjun Mao
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, No. 299 Qingyang Rd, Wuxi, 214023, China.
| |
Collapse
|
69
|
Yang X, Wang S, Sun C, Xia Y. Causal effect of porphyria biomarkers on alcohol-related hepatocellular carcinoma through Mendelian Randomization. PLoS One 2024; 19:e0299536. [PMID: 38507434 PMCID: PMC10954128 DOI: 10.1371/journal.pone.0299536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/12/2024] [Indexed: 03/22/2024] Open
Abstract
PURPOSE According to some cohort studies, an association exists between acute intermittent porphyria (AIP) and liver cancer. However, establishing a definitive causal relationship between porphyria and hepatocellular carcinoma (HCC) remains challenging. Prexisting studies regarding porphyria biomarkers and alcohol-related hepatocellular carcinoma (AR-HCC) make possible an entry point. In this study, we aimed to investigate the causal relationships between biomarkers of two types of porphyria, AIP and congenital erythropoietic porphyria (CEP), and AR-HCC. METHODS Single-nucleotide polymorphisms (SNPs) associated with porphobilinogen deaminase (PBGD) and uroporphyrinogen-III synthase (UROS), along with outcome data on AR-HCC, were extracted from public genome-wide association studies (GWAS). The GWAS data were then used to explore the potential causal relationships via a two-sample Mendelian randomization (MR) analysis. The effect estimates were calculated using the random-effect inverse-variance-weighted (IVW) method. Additionally, the Cochrane's Q test, MR-Egger test, and leave-one-out analysis were conducted to detect heterogeneity and pleiotropy in the MR results. RESULTS Using the IVW method as the primary causal effects model in the MR analyses, we found that both PBGD (effect estimate = 1.51; 95% CI, from 1.08 to 2.11, p = 0.016) and UROS (effect estimate = 1.53; 95% CI, from 1.08 to 2.18, p = 0.018) have a significant causal effect on AR-HCC. CONCLUSION Our findings revealed a causal effect of both PBGD and UROS on AR-HCC, suggesting that both AIP and CEP have a causal association with AR-HCC.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Oncology, Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Shuomin Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Oncology, Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Chen Sun
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Oncology, Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Yunhong Xia
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Oncology, Anhui Public Health Clinical Center, Hefei, Anhui, China
| |
Collapse
|
70
|
Wang Y, Yao T, Lin Y, Ge H, Huang B, Gao Y, Wu J. Association between gut microbiota and pan-dermatological diseases: a bidirectional Mendelian randomization research. Front Cell Infect Microbiol 2024; 14:1327083. [PMID: 38562964 PMCID: PMC10982508 DOI: 10.3389/fcimb.2024.1327083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Background Gut microbiota has been associated with dermatological problems in earlier observational studies. However, it is unclear whether gut microbiota has a causal function in dermatological diseases. Methods Thirteen dermatological diseases were the subject of bidirectional Mendelian randomization (MR) research aimed at identifying potential causal links between gut microbiota and these diseases. Summary statistics for the Genome-Wide Association Study (GWAS) of gut microbiota and dermatological diseases were obtained from public datasets. With the goal of evaluating the causal estimates, five acknowledged MR approaches were utilized along with multiple testing corrections, with inverse variance weighted (IVW) regression serving as the main methodology. Regarding the taxa that were causally linked with dermatological diseases in the forward MR analysis, reverse MR was performed. A series of sensitivity analyses were conducted to test the robustness of the causal estimates. Results The combined results of the five MR methods and sensitivity analysis showed 94 suggestive and five significant causal relationships. In particular, the genus Eubacterium_fissicatena_group increased the risk of developing psoriasis vulgaris (odds ratio [OR] = 1.32, pFDR = 4.36 × 10-3), family Bacteroidaceae (OR = 2.25, pFDR = 4.39 × 10-3), genus Allisonella (OR = 1.42, pFDR = 1.29 × 10-2), and genus Bacteroides (OR = 2.25, pFDR = 1.29 × 10-2) increased the risk of developing acne; and the genus Intestinibacter increased the risk of urticaria (OR = 1.30, pFDR = 9.13 × 10-3). A reverse MR study revealed insufficient evidence for a significant causal relationship. In addition, there was no discernible horizontal pleiotropy or heterogeneity. Conclusion This study provides novel insights into the causality of gut microbiota in dermatological diseases and therapeutic or preventive paradigms for cutaneous conditions.
Collapse
Affiliation(s)
- Yingwei Wang
- Department of Dermatology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tao Yao
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yunlu Lin
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongping Ge
- Department of Dermatology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bixin Huang
- Department of Dermatology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu Gao
- Department of Dermatology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianming Wu
- Department of Dermatology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
71
|
Wang J, Liu J, Shao J, Chen H, Cui L, Zhang P, Yao Y, Zhou J, Bao Z. Cigarette smoking inhibits myoblast regeneration by promoting proteasomal degradation of NPAT protein and hindering cell cycle progression. Curr Res Toxicol 2024; 6:100161. [PMID: 38496008 PMCID: PMC10940918 DOI: 10.1016/j.crtox.2024.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 02/16/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024] Open
Abstract
Cigarette smoking (CS) causes skeletal muscle dysfunction, leading to sarcopenia and worse prognosis of patients with diverse systemic diseases. Here, we found that CS exposure prevented C2C12 myoblasts proliferation in a dose-dependent manner. Immunoblotting assays verified that CS exposure promoted the expression of cell cycle suppressor protein p21. Furthermore, CS exposure significantly inhibited replication-dependent (RD) histone transcription and caused S phase arrest in the cell cycle during C2C12 proliferation. Mechanistically, CS deregulated the expression levels of Nuclear Protein Ataxia-Telangiectasia Locus (NPAT/p220). Notably, the proteasome inhibitor MG132 was able to reverse the expression of NPAT in myoblasts, implying that the degradation of CS-mediated NPAT is proteasome-dependent. Overexpression of NPAT also rescued the defective proliferation phenotype induced by CS in C2C12 myoblasts. Taken together, we suggest that CS exposure induces NPAT degradation in C2C12 myoblasts and impairs myogenic proliferation through NPAT associated proteasomal-dependent mechanisms. As an application of the proteasome inhibitor MG132 or overexpression of NPAT could reverse the impaired proliferation of myoblasts induced by CS, the recovery of myoblast proliferation may be potential strategies to treat CS-related skeletal muscle dysfunction.
Collapse
Affiliation(s)
- Jianfeng Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jinling Liu
- Department of Pulmonology, the Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310058 China
| | - Jingjing Shao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hongyu Chen
- School of Medicine, Hangzhou City University, Hangzhou 310015, China
- Institute of Bioinformatics and James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, China
| | - Luyun Cui
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Pei Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yinan Yao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jianying Zhou
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhang Bao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
72
|
Lee SH, Brianna. Association of microRNA-21 expression with breast cancer subtypes and its potential as an early biomarker. Pathol Res Pract 2024; 254:155073. [PMID: 38218039 DOI: 10.1016/j.prp.2023.155073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/29/2023] [Indexed: 01/15/2024]
Abstract
Breast cancer has become the most diagnosed cancer worldwide in 2020 with high morbidity and mortality rates. The alarming increase in breast cancer incidence has sprung many researchers to focus on developing novel screening tests to identify early breast cancer which will allow clinicians to provide timely and effective treatments. With much evidence supporting the notion that the deregulation of miRNAs (a class of non-coding RNA) greatly contributes to cancer initiation and progression, the promising role of miRNAs as cancer biomarkers is gaining traction in the research world. Among the upregulated miRNAs identified in breast carcinogenesis, miR-21 was shown to be significantly expressed in breast cancer tissues and bodily fluids of breast cancer patients. Therein, this review paper aims to provide an overview of breast cancer, the role and significance of miR-21 in breast cancer pathogenesis, and its potential as a breast cancer biomarker. The paper also discusses the current types of tumor biomarkers and their limitations, the presence of miR-21 in extracellular vesicles and plasma, screening methods available for miRNA detection along with some challenges faced in developing diagnostic miR-21 testing for breast cancer to provide readers with a comprehensive outlook based on using miR-21 in clinical settings.
Collapse
Affiliation(s)
- Sau Har Lee
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia; Digital Health and Medical Advancements Impact Lab, Taylor's University, Subang Jaya 47500, Malaysia.
| | - Brianna
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Jalan Universiti, Bandar Sunway, Darul Ehsan, Selangor 47500, Malaysia
| |
Collapse
|
73
|
Valentini V, Bucalo A, Conti G, Celli L, Porzio V, Capalbo C, Silvestri V, Ottini L. Gender-Specific Genetic Predisposition to Breast Cancer: BRCA Genes and Beyond. Cancers (Basel) 2024; 16:579. [PMID: 38339330 PMCID: PMC10854694 DOI: 10.3390/cancers16030579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Among neoplastic diseases, breast cancer (BC) is one of the most influenced by gender. Despite common misconceptions associating BC as a women-only disease, BC can also occur in men. Additionally, transgender individuals may also experience BC. Genetic risk factors play a relevant role in BC predisposition, with important implications in precision prevention and treatment. The genetic architecture of BC susceptibility is similar in women and men, with high-, moderate-, and low-penetrance risk variants; however, some sex-specific features have emerged. Inherited high-penetrance pathogenic variants (PVs) in BRCA1 and BRCA2 genes are the strongest BC genetic risk factor. BRCA1 and BRCA2 PVs are more commonly associated with increased risk of female and male BC, respectively. Notably, BRCA-associated BCs are characterized by sex-specific pathologic features. Recently, next-generation sequencing technologies have helped to provide more insights on the role of moderate-penetrance BC risk variants, particularly in PALB2, CHEK2, and ATM genes, while international collaborative genome-wide association studies have contributed evidence on common low-penetrance BC risk variants, on their combined effect in polygenic models, and on their role as risk modulators in BRCA1/2 PV carriers. Overall, all these studies suggested that the genetic basis of male BC, although similar, may differ from female BC. Evaluating the genetic component of male BC as a distinct entity from female BC is the first step to improve both personalized risk assessment and therapeutic choices of patients of both sexes in order to reach gender equality in BC care. In this review, we summarize the latest research in the field of BC genetic predisposition with a particular focus on similarities and differences in male and female BC, and we also discuss the implications, challenges, and open issues that surround the establishment of a gender-oriented clinical management for BC.
Collapse
Affiliation(s)
- Virginia Valentini
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| | - Agostino Bucalo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| | - Giulia Conti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| | - Ludovica Celli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| | - Virginia Porzio
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| | - Carlo Capalbo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
- Medical Oncology Unit, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Valentina Silvestri
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| | - Laura Ottini
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| |
Collapse
|
74
|
Wu Y, Li Z, Chen X, Wu S, Zhong X, Zheng A, Li L, Chen H, Li J, Lu Y, Chen J, Gan K. Assessing the causal associations of sleep apnea with mental health and socioeconomic status: a bidirectional two-sample Mendelian randomization. BMC Med Genomics 2024; 17:27. [PMID: 38254193 PMCID: PMC10804749 DOI: 10.1186/s12920-023-01783-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
OBJECTIVE Traditional observational research has suggested a connection between socioeconomic position, mental health, and sleep apnea (SA), but the specifics of this connection are still unclear. Using the Mendelian randomization approach, we intended to evaluate the potential causal link between mental health, socioeconomic status, and SA. METHODS Our research employed summary statistics data from large-scale genome-wide association studies (GWAS) on mental health, socioeconomic status, and SA. In the main study, the connection between mental health, socioeconomic status, and SA was examined using the inverse variance weighted approach. In addition, as a supplement, we also used other Mendelian randomization methods, including MR Egger, weighted median, simple mode, and weighted mode. RESULTS The primary analysis showed that educational attainment, including longer years of schooling, college or university degree, and higher intelligence was associated with a lower risk of SA (OR = 0.750, 95%CI = 0.653-0.862; OR = 0.558, 95%CI = 0.423-0.735; OR = 0.871, 95%CI = 0.760-0.999, respectively), while social deprivation was associated with a higher risk of SA (OR = 1.821, 95%CI = 1.075-3.085). And the income was not associated with the risk of sleep apnea (OR = 0.877, 95%CI = 0.682-1.129). In mental health exposure, major depressive disorder was associated with a higher risk of sleep apnea (OR = 1.196, 95%CI = 1.015-1.409), while attention-deficit hyperactivity disorder, bipolar disorder, and schizophrenia were not associated with the risk of sleep apnea (OR = 1.064, 95%CI = 0.958-1.181; OR = 1.030, 95%CI = 0.942-1.127; OR = 0.990, 95%CI = 0.957-1.025, respectively). Reverse MR analysis failed to find a causal effect from SA on mental health and socioeconomic status. CONCLUSIONS This MR investigation offers proof of a possible causal relationship between SA, socioeconomic level, and mental health.
Collapse
Affiliation(s)
- Yuan Wu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zuming Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xueru Chen
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Siyi Wu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuemei Zhong
- Kashgar First People's Hospital, The Xinjiang Uygur Autonomous Region, Kashgar, China
| | - Aifang Zheng
- Kashgar First People's Hospital, The Xinjiang Uygur Autonomous Region, Kashgar, China
| | - Li Li
- Kashgar First People's Hospital, The Xinjiang Uygur Autonomous Region, Kashgar, China.
| | - Hai Chen
- The Second Affiliated Hospital of Guangzhou, University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China.
| | - Jiqiang Li
- The Second Affiliated Hospital of Guangzhou, University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China.
| | - Yue Lu
- The Second Affiliated Hospital of Guangzhou, University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China.
| | - Jiankun Chen
- The Second Affiliated Hospital of Guangzhou, University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China.
| | - Kao Gan
- The Second Affiliated Hospital of Guangzhou, University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China.
| |
Collapse
|
75
|
Tan Z, Mao M, Jiang Z, Hu H, He C, Zhai C, Qian G. Causal Relationship between Gut Microbiota and Aneurysm: A Mendelian Randomization Study. Cerebrovasc Dis 2024; 54:59-69. [PMID: 38228101 DOI: 10.1159/000536177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/29/2023] [Indexed: 01/18/2024] Open
Abstract
INTRODUCTION Observational studies have suggested a possible relationship between gut microbiota (GM) and aneurysm development. However, the nature of this association remains unclear due to the inherent limitations of observational research, such as reverse causation and confounding factors. To address this knowledge deficit, this study aimed to investigate and establish a causal link between GM and aneurysm development. METHODS Summary statistics regarding GM and aneurysms were collected from relevant genome-wide association studies. Two samples were used in mendelian randomization (MR). The principal MR technique utilized was inverse-variance weighting, a technique renowned for producing reliable causal effect estimations. Additional MR methods, including weighted median (WM), MR-Egger, MR-PRESSO, and simple mode methods, were employed to ensure the robustness of the aforementioned association and investigate potential biases. Sensitivity analyses were performed to determine the consistency of the MR findings. RESULTS Varying associations were observed between specific microbial taxa and the different aneurysms analyzed. A negative correlation was observed between aortic aneurysm (AA) and Lentisphaerae, Lentisphaeria, and Victivallales. Conversely, the genus FamilyXIIIUCG001 exhibited an increased risk association. Regarding abdominal AA, Victivallaceae showed a reduced risk, and Bilophila and Catenibacterium were associated with an increased risk. For thoracic AA, negative and positive correlations were observed with Lentisphaerae and Turicibacter, respectively. Lastly, in the case of cerebral aneurysm (CA), Firmicutes and Haemophilus were associated with a decreased risk, and Lachnoclostridium demonstrated an increased risk of association. CONCLUSION Our research has established causal relationships between specific GM components and various aneurysms. The obtained knowledge may aid in the development of microbiome-based interventions and the identification of novel biomarkers for targeted prevention strategies.
Collapse
Affiliation(s)
- Zhentao Tan
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Jiaxing, China,
- Department of Cardiology, The Affiliated Hospital of Jiaxing University, Jiaxing, China,
| | - Menghui Mao
- Department of Cardiology, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Zhe Jiang
- Department of Cardiology, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Huilin Hu
- Department of Cardiology, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Chaojie He
- Department of Cardiology, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Changlin Zhai
- Department of Cardiology, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Gang Qian
- Department of Cardiology, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
76
|
Tao Y, Luo J, Xu Y, Wang H, Tian J, Yang S, Yu K, Peng S, Zhang X. Narcolepsy and cardiovascular disease: A two-sample Mendelian randomization study. Sleep Med 2024; 113:6-12. [PMID: 37976908 DOI: 10.1016/j.sleep.2023.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Observational findings suggest that patients with narcolepsy are at higher risk for cardiovascular diseases (CVDs), but the potential causal relationship between narcolepsy and CVDs is unclear. Therefore, Mendelian randomization (MR) was used to explore the association between narcolepsy and CVDs. METHODS Summary statistics related to narcolepsy, coronary artery disease (CAD), myocardial infarction (MI), heart failure (HF), any stroke (AS), and any ischemic stroke (AIS) were extracted from the public database of relevant published genome-wide association studies (GWAS). Independent single nucleotide polymorphisms were selected as instrumental variables under strict quality control criteria. Inverse variance-weighted (IVW) was the main analytical method to assess causal effects. In addition, we conducted MR pleiotropy residual sum and outlier (MR-PRESSO), weighted median, MR-Egger, and leave-one-out sensitivity analysis to verify the robustness and reliability of the results. RESULTS The results of the MR study revealed that narcolepsy was significantly associated with an increased risk of HF (OR = 1.714; 95%CI [1.031-2.849]; P = 0.037), CAD (OR = 1.702; 95%CI [1.011-2.864]; P = 0.045). There was no statistically significant causal association between narcolepsy and MI, AS, and AIS. In addition, further sensitivity analysis showed robust results. CONCLUSIONS The results of the two-sample MR study reveal a potential causal relationship between the increased risk of HF and CAD in narcolepsy. These findings emphasize the importance of early monitoring and assessment of cardiovascular risk in patients with narcolepsy.
Collapse
Affiliation(s)
- Yanmin Tao
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jingsong Luo
- Jockey Club School of Public Health and Primary Care School, The Chinese University of Hong Kong, Hong Kong
| | - Yaxin Xu
- School of Medicine, Tongji University, Shanghai, 200092, China
| | - Hongyan Wang
- Sichuan Nursing Vocational College, No.173 Longdu South Road, Longquanyi District, Chengdu, Sichuan, 610100, China
| | - Jing Tian
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Shenbi Yang
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Kexin Yu
- Jockey Club School of Public Health and Primary Care School, The Chinese University of Hong Kong, Hong Kong
| | - Sihan Peng
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610032, China.
| | - Xiangeng Zhang
- Sichuan Nursing Vocational College, No.173 Longdu South Road, Longquanyi District, Chengdu, Sichuan, 610100, China.
| |
Collapse
|
77
|
Wang Z, Bao L, Wu L, Zeng Q, Feng Q, Zhou J, Luo Z, Wang Y. Causal effects of gut microbiota on appendicitis: a two-sample Mendelian randomization study. Front Cell Infect Microbiol 2023; 13:1320992. [PMID: 38162578 PMCID: PMC10757326 DOI: 10.3389/fcimb.2023.1320992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Background Previous research has posited a potential correlation between the gut microbiota and the onset of appendicitis; however, the precise causal connection between appendicitis and the gut microbiota remains an unresolved and contentious issue. Methods In this investigation, we performed a Mendelian randomization (MR) analysis employing publicly accessible summary data extracted from genome-wide association studies (GWAS) to elucidate the potential causal nexus between the gut microbiota and the development of appendicitis. We initially identified instrumental variables (IVs) through a comprehensive array of screening methodologies, subsequently executing MR analyses using the Inverse Variance Weighted (IVW) technique as our primary approach, supplemented by several alternative methods such as MR Egger, weighted median, simple mode, and weighted mode. Additionally, we implemented a series of sensitivity analysis procedures, encompassing Cochran's Q test, MR-Egger intercept test, Mendelian Randomized Polymorphism Residual and Outlier (MR-PRESSO) test, and a leave-one-out test, to affirm the robustness and validity of our findings. Results Our investigation indicates that an elevated prevalence of Deltaproteobacteria, Christensenellaceae, Desulfovibrionaceae, Eubacterium ruminantium group, Lachnospiraceae NK4A136 group, Methanobrevibacter, Desulfovibrionales, and Euryarchaeota is inversely associated with the risk of appendicitis. Conversely, we observed a positive correlation between an increased abundance of Family XIII, Howardella, and Veillonella and the susceptibility to appendicitis. Sensitivity analyses have corroborated the robustness of these findings, and Mendelian randomization analyses provided no indications of reverse causality. Conclusion Our Mendelian randomization (MR) analysis has unveiled potential advantageous or detrimental causal associations between the gut microbiota and the occurrence of appendicitis. This study offers novel theoretical and empirical insights into the understanding of appendicitis pathogenesis, along with its implications for preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Zehui Wang
- Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Lijie Bao
- Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Lidong Wu
- Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qi Zeng
- Queen Mary University of London, Nanchang University, Nanchang, Jiangxi, China
| | - Qian Feng
- Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jinchuan Zhou
- Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhiqiang Luo
- Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yibing Wang
- Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
78
|
Lucotte EA, Asgari Y, Sugier PE, Karimi M, Domenighetti C, Lesueur F, Boland-Augé A, Ostroumova E, de Vathaire F, Zidane M, Guénel P, Deleuze JF, Boutron-Ruault MC, Severi G, Liquet B, Truong T. Investigation of common genetic risk factors between thyroid traits and breast cancer. Hum Mol Genet 2023; 33:38-47. [PMID: 37740403 PMCID: PMC10729861 DOI: 10.1093/hmg/ddad159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023] Open
Abstract
Breast cancer (BC) risk is suspected to be linked to thyroid disorders, however observational studies exploring the association between BC and thyroid disorders gave conflicting results. We proposed an alternative approach by investigating the shared genetic risk factors between BC and several thyroid traits. We report a positive genetic correlation between BC and thyroxine (FT4) levels (corr = 0.13, p-value = 2.0 × 10-4) and a negative genetic correlation between BC and thyroid-stimulating hormone (TSH) levels (corr = -0.09, p-value = 0.03). These associations are more striking when restricting the analysis to estrogen receptor-positive BC. Moreover, the polygenic risk scores (PRS) for FT4 and hyperthyroidism are positively associated to BC risk (OR = 1.07, 95%CI: 1.00-1.13, p-value = 2.8 × 10-2 and OR = 1.04, 95%CI: 1.00-1.08, p-value = 3.8 × 10-2, respectively), while the PRS for TSH is inversely associated to BC risk (OR = 0.93, 95%CI: 0.89-0.97, p-value = 2.0 × 10-3). Using the PLACO method, we detected 49 loci associated to both BC and thyroid traits (p-value < 5 × 10-8), in the vicinity of 130 genes. An additional colocalization and gene-set enrichment analyses showed a convincing causal role for a known pleiotropic locus at 2q35 and revealed an additional one at 8q22.1 associated to both BC and thyroid cancer. We also found two new pleiotropic loci at 14q32.33 and 17q21.31 that were associated to both TSH levels and BC risk. Enrichment analyses and evidence of regulatory signals also highlighted brain tissues and immune system as candidates for obtaining associations between BC and TSH levels. Overall, our study sheds light on the complex interplay between BC and thyroid traits and provides evidence of shared genetic risk between those conditions.
Collapse
Affiliation(s)
- Elise A Lucotte
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team “Exposome and Heredity”, 94807 Villejuif, France
| | - Yazdan Asgari
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team “Exposome and Heredity”, 94807 Villejuif, France
| | - Pierre-Emmanuel Sugier
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team “Exposome and Heredity”, 94807 Villejuif, France
- Laboratoire de Mathématiques et de leurs Applications de Pau, Université de Pau et des Pays de l’Adour, UMR CNRS 5142, E2S-UPPA, 64013 Pau, France
| | - Mojgan Karimi
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team “Exposome and Heredity”, 94807 Villejuif, France
| | - Cloé Domenighetti
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team “Exposome and Heredity”, 94807 Villejuif, France
| | - Fabienne Lesueur
- Inserm, U900, Institut Curie, PSL University, Mines ParisTech, 75006 Paris, France
| | - Anne Boland-Augé
- National Centre of Human Genomics Research, François Jacob Institute of Biology, Commissariat à l’Energie Atomique, Paris-Saclay University, 91000 Evry, France
| | | | - Florent de Vathaire
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team of Epidemiology of radiations, 94807 Villejuif, France
| | - Monia Zidane
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team of Epidemiology of radiations, 94807 Villejuif, France
| | - Pascal Guénel
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team “Exposome and Heredity”, 94807 Villejuif, France
| | - Jean-François Deleuze
- National Centre of Human Genomics Research, François Jacob Institute of Biology, Commissariat à l’Energie Atomique, Paris-Saclay University, 91000 Evry, France
| | | | - Gianluca Severi
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team “Exposome and Heredity”, 94807 Villejuif, France
- Department of Statistics, Computer Science, Applications “G. Parenti”, University of Florence, 50121 Florence, Italy
| | - Benoît Liquet
- Laboratoire de Mathématiques et de leurs Applications de Pau, Université de Pau et des Pays de l’Adour, UMR CNRS 5142, E2S-UPPA, 64013 Pau, France
- School of Mathematical and Physical Sciences, Macquarie University, 2109 Sydney, Australia
| | - Thérèse Truong
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team “Exposome and Heredity”, 94807 Villejuif, France
| |
Collapse
|
79
|
Zhang J, Hu Y, Wu L, Zeng Q, Hu B, Luo Z, Wang Y. Causal effect of gut microbiota on Gastroduodenal ulcer: a two-sample Mendelian randomization study. Front Cell Infect Microbiol 2023; 13:1322537. [PMID: 38156322 PMCID: PMC10753992 DOI: 10.3389/fcimb.2023.1322537] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
Background Gastroduodenal ulcers are associated with Helicobacter pylori infection and the use of nonsteroidal anti-inflammatory drugs (NSAIDs). However, the causal relationship between gastroduodenal ulcers and gut microbiota, especially specific gut microbiota, remains unclear. Methods We conducted an analysis of published data on the gut microbiota and Gastroduodenal ulcer using genome-wide association studies (GWAS). Two-sample Mendelian randomization (MR) analysis was performed to determine the causal relationship between gut microbiota and Gastroduodenal ulcer. Sensitivity, heterogeneity, and pleiotropy analyses were conducted to confirm the accuracy of the research findings. Results Our study showed that the abundance of Enterobacteriaceae, Butyricicoccus, Candidatus Soleaferrea, Lachnospiraceae NC2004 group, Peptococcus, and Enterobacteriales was negatively correlated with the risk of Gastroduodenal ulcer. Conversely, the abundance of Streptococcaceae, Lachnospiraceae UCG010, Marvinbryantia, Roseburia, Streptococcus, Mollicutes RF9, and NB1n was positively correlated with the risk of Gastroduodenal ulcer. MR analysis revealed causal relationships between 13 bacterial genera and Gastroduodenal ulcer. Conclusion This study represents a groundbreaking endeavor by furnishing preliminary evidence regarding the potentially advantageous or detrimental causal link between the gut microbiota and Gastroduodenal ulcer, employing Mendelian Randomization (MR) analysis for the first time. These discoveries have the potential to yield fresh perspectives on the prevention and therapeutic approaches concerning Gastroduodenal ulcer, with a specific focus on the modulation of the gut microbiota.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Province, China
| | - Yingqiu Hu
- Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Province, China
| | - Lidong Wu
- Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Province, China
| | - Qi Zeng
- Queen Mary University of London, Nanchang University, Jiangxi Province, China
| | - Bin Hu
- Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Province, China
| | - Zhiqiang Luo
- Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Province, China
| | - Yibing Wang
- Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Province, China
| |
Collapse
|
80
|
Tjader NP, Beer AJ, Ramroop J, Tai MC, Ping J, Gandhi T, Dauch C, Neuhausen SL, Ziv E, Sotelo N, Ghanekar S, Meadows O, Paredes M, Gillespie J, Aeilts A, Hampel H, Zheng W, Jia G, Hu Q, Wei L, Liu S, Ambrosone CB, Palmer JR, Carpten JD, Yao S, Stevens P, Ho WK, Pan JW, Fadda P, Huo D, Teo SH, McElroy JP, Toland AE. Association of ESR1 germline variants with TP53 somatic variants in breast tumors in a genome-wide study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.06.23299442. [PMID: 38106140 PMCID: PMC10723566 DOI: 10.1101/2023.12.06.23299442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Background In breast tumors, somatic mutation frequencies in TP53 and PIK3CA vary by tumor subtype and ancestry. HER2 positive and triple negative breast cancers (TNBC) have a higher frequency of TP53 somatic mutations than other subtypes. PIK3CA mutations are more frequently observed in hormone receptor positive tumors. Emerging data suggest tumor mutation status is associated with germline variants and genetic ancestry. We aimed to identify germline variants that are associated with somatic TP53 or PIK3CA mutation status in breast tumors. Methods A genome-wide association study was conducted using breast cancer mutation status of TP53 and PIK3CA and functional mutation categories including TP53 gain of function (GOF) and loss of function mutations and PIK3CA activating/hotspot mutations. The discovery analysis consisted of 2850 European ancestry women from three datasets. Germline variants showing evidence of association with somatic mutations were selected for validation analyses based on predicted function, allele frequency, and proximity to known cancer genes or risk loci. Candidate variants were assessed for association with mutation status in a multi-ancestry validation study, a Malaysian study, and a study of African American/Black women with TNBC. Results The discovery Germline x Mutation (GxM) association study found five variants associated with one or more TP53 phenotypes with P values <1×10-6, 33 variants associated with one or more TP53 phenotypes with P values <1×10-5, and 44 variants associated with one or more PIK3CA phenotypes with P values <1×10-5. In the multi-ancestry and Malaysian validation studies, germline ESR1 locus variant, rs9383938, was associated with the presence of TP53 mutations overall (P values 6.8×10-5 and 9.8×10-8, respectively) and TP53 GOF mutations (P value 8.4×10-6). Multiple variants showed suggestive evidence of association with PIK3CA mutation status in the validation studies, but none were significant after correction for multiple comparisons. Conclusions We found evidence that germline variants were associated with TP53 and PIK3CA mutation status in breast cancers. Variants near the estrogen receptor alpha gene, ESR1, were significantly associated with overall TP53 mutations and GOF mutations. Larger multi-ancestry studies are needed to confirm these findings and determine if these variants contribute to ancestry-specific differences in mutation frequency.
Collapse
Affiliation(s)
- Nijole P. Tjader
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Abigail J. Beer
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Johnny Ramroop
- The City College of New York, City University of New York, New York, NY, USA
| | - Mei-Chee Tai
- Cancer Research Malaysia, Subang Jaya, Selangor 47500, Malaysia
| | - Jie Ping
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, TN 37203
| | - Tanish Gandhi
- Biomedical Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- The Ohio State University Medical School, Columbus, OH, 43210, USA
| | - Cara Dauch
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- The Ohio State University Wexner Medical Center, Clinical Trials Office, Columbus, OH 43210, USA
| | - Susan L. Neuhausen
- Beckman Research Institute of City of Hope, Department of Population Sciences, Duarte, CA, USA
| | - Elad Ziv
- University of California, Helen Diller Family Comprehensive Cancer Center, San Francisco, San Francisco, CA, USA
- University of California, Department of Medicine, San Francisco, San Francisco, CA, USA
- University of California San Francisco, Institute for Human Genetics, San Francisco, CA, USA
| | - Nereida Sotelo
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Shreya Ghanekar
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Owen Meadows
- Biomedical Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Monica Paredes
- Biomedical Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Jessica Gillespie
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Amber Aeilts
- Department of Internal Medicine, Division of Human Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Heather Hampel
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Wei Zheng
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, TN 37203
| | - Guochong Jia
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, TN 37203
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Lei Wei
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Christine B. Ambrosone
- Department of Cancer Control and Prevention, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Julie R. Palmer
- Slone Epidemiology Center at Boston University, Boston, MA, USA
| | - John D. Carpten
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Department of Integrative Translational Sciences, City of Hope, Duarte, CA
| | - Song Yao
- Department of Cancer Control and Prevention, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Patrick Stevens
- The Ohio State University Comprehensive Cancer Center, Bioinformatics Shared Resource, Columbus, OH, USA
| | - Weang-Kee Ho
- Cancer Research Malaysia, Subang Jaya, Selangor 47500, Malaysia
- School of Mathematical Sciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor 43500, Malaysia
| | - Jia Wern Pan
- Cancer Research Malaysia, Subang Jaya, Selangor 47500, Malaysia
| | - Paolo Fadda
- The Ohio State University Comprehensive Cancer Center, Genomics Shared Resource, Columbus, OH, USA
| | - Dezheng Huo
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Soo-Hwang Teo
- Cancer Research Malaysia, Subang Jaya, Selangor 47500, Malaysia
- Faculty of Medicine, University Malaya Cancer Research Institute, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Joseph Paul McElroy
- The Ohio State University Center for Biostatistics, Department of Biomedical Informatics, Columbus, OH, USA
| | - Amanda Ewart Toland
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Department of Internal Medicine, Division of Human Genetics, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
81
|
Wang Y, Armendariz D, Wang L, Zhao H, Xie S, Hon GC. Enhancer regulatory networks globally connect non-coding breast cancer loci to cancer genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567880. [PMID: 38045327 PMCID: PMC10690208 DOI: 10.1101/2023.11.20.567880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Genetic studies have associated thousands of enhancers with breast cancer. However, the vast majority have not been functionally characterized. Thus, it remains unclear how variant-associated enhancers contribute to cancer. Here, we perform single-cell CRISPRi screens of 3,512 regulatory elements associated with breast cancer to measure the impact of these regions on transcriptional phenotypes. Analysis of >500,000 single-cell transcriptomes in two breast cancer cell lines shows that perturbation of variant-associated enhancers disrupts breast cancer gene programs. We observe variant-associated enhancers that directly or indirectly regulate the expression of cancer genes. We also find one-to-multiple and multiple-to-one network motifs where enhancers indirectly regulate cancer genes. Notably, multiple variant-associated enhancers indirectly regulate TP53. Comparative studies illustrate sub-type specific functions between enhancers in ER+ and ER- cells. Finally, we developed the pySpade package to facilitate analysis of single-cell enhancer screens. Overall, we demonstrate that enhancers form regulatory networks that link cancer genes in the genome, providing a more comprehensive understanding of the contribution of enhancers to breast cancer development.
Collapse
Affiliation(s)
- Yihan Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences
| | | | - Lei Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences
| | - Huan Zhao
- Cecil H. and Ida Green Center for Reproductive Biology Sciences
| | - Shiqi Xie
- Cecil H. and Ida Green Center for Reproductive Biology Sciences
- Current address: Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Gary C Hon
- Cecil H. and Ida Green Center for Reproductive Biology Sciences
- Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
82
|
Head ST, Dezem F, Todor A, Yang J, Plummer J, Gayther S, Kar S, Schildkraut J, Epstein MP. Cis- and trans-eQTL TWAS of breast and ovarian cancer identify more than 100 risk associated genes in the BCAC and OCAC consortia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566218. [PMID: 38014246 PMCID: PMC10680675 DOI: 10.1101/2023.11.09.566218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Transcriptome-wide association studies (TWAS) have investigated the role of genetically regulated transcriptional activity in the etiologies of breast and ovarian cancer. However, methods performed to date have only considered regulatory effects of risk associated SNPs thought to act in cis on a nearby target gene. With growing evidence for distal (trans) regulatory effects of variants on gene expression, we performed TWAS of breast and ovarian cancer using a Bayesian genome-wide TWAS method (BGW-TWAS) that considers effects of both cis- and trans-expression quantitative trait loci (eQTLs). We applied BGW-TWAS to whole genome and RNA sequencing data in breast and ovarian tissues from the Genotype-Tissue Expression project to train expression imputation models. We applied these models to large-scale GWAS summary statistic data from the Breast Cancer and Ovarian Cancer Association Consortia to identify genes associated with risk of overall breast cancer, non-mucinous epithelial ovarian cancer, and 10 cancer subtypes. We identified 101 genes significantly associated with risk with breast cancer phenotypes and 8 with ovarian phenotypes. These loci include established risk genes and several novel candidate risk loci, such as ACAP3, whose associations are predominantly driven by trans-eQTLs. We replicated several associations using summary statistics from an independent GWAS of these cancer phenotypes. We further used genotype and expression data in normal and tumor breast tissue from the Cancer Genome Atlas to examine the performance of our trained expression imputation models. This work represents a first look into the role of trans-eQTLs in the complex molecular mechanisms underlying these diseases.
Collapse
Affiliation(s)
- S. Taylor Head
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Felipe Dezem
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Andrei Todor
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Jingjing Yang
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Jasmine Plummer
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Simon Gayther
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Siddhartha Kar
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Joellen Schildkraut
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Michael P. Epstein
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
83
|
Yu J, Zhuang C, Guo W, Zhou X, Chen Y, Wang L, Li W, Zhu Y, Zhuang R, Tian K. Causal relationship between breakfast skipping and bone mineral density: a two-sample Mendelian randomized study. Front Endocrinol (Lausanne) 2023; 14:1200892. [PMID: 38027166 PMCID: PMC10660815 DOI: 10.3389/fendo.2023.1200892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Objective To explore the causal association between breakfast skipping and bone mineral density (BMD) through two-sample Mendelian randomisation (MR) analysis. Methods A two-sample MR approach was adopted to explore the causal relationship of breakfast skipping with BMDs (across three skeletal sites and five age groups). Publicly available genome-wide association study summary data were used for MR analysis. We used five methods to estimate the causal associations between breakfast skipping and BMDs: inverse-variance weighting (IVW), MR-Egger, weighted median, simple mode, and weighted mode. IVW was used for the main analysis and the remaining four methods were used as supplementary analyses. The heterogeneity of the MR results was determined using IVW and MR-Egger methods. The pleiotropy of the MR results was determined using MR-Egger intercept. Furthermore, a leave-one-out test was performed to determine whether the MR results were affected by a single nucleotide polymorphism. Results With the IVW method, we did not find any causal relationship between breakfast skipping and forearm, femoral neck, and lumbar spine BMD. Subsequently, when we included BMD data stratified by five different age groups in the analysis, the results showed that there was no apparent causal effect between breakfast skipping and age-stratified BMD. This finding was supported by all four supplementary methods (P > 0.05 for all methods). No heterogeneity or horizontal pleiotropy was detected in any of the analyses (P > 0.05). The leave-one-out tests conducted in the analyses did not identify any single nucleotide polymorphism that could have influenced the MR results, indicating the reliability of our findings. Conclusion No causal effect was found between breakfast skipping and BMD (across three skeletal sites and five age groups).
Collapse
Affiliation(s)
- Jinsheng Yu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chen Zhuang
- Alberta Institute, Wenzhou Medical University, Wenzhou, China
| | - Wenxuan Guo
- Orthopedic Department, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Xing Zhou
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yixuan Chen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Likang Wang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Wenkai Li
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yiwen Zhu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Rujie Zhuang
- Orthopedic Department, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Kun Tian
- Orthopedic Department, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
84
|
Zhang Y, Chen Y, Mei Y, Xu R, Zhang H, Feng X. Causal effects of gut microbiota on erectile dysfunction: a two-sample Mendelian randomization study. Front Microbiol 2023; 14:1257114. [PMID: 37928685 PMCID: PMC10620728 DOI: 10.3389/fmicb.2023.1257114] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023] Open
Abstract
Background Several observational studies have reported the correlation between gut microbiota and the risk of erectile dysfunction (ED). However, the causal association between them remained unestablished owing to intrinsic limitations, confounding factors, and reverse causality. Therefore, the two-sample Mendelian randomization (MR) study was performed to determine the causal effect of gut microbiota on the risk of ED. Methods The MR analysis utilized the publicly available genome-wide association study (GWAS) summary-level data to explore the causal associations between gut microbiota and ED. The gut microbiota data were extracted from the MiBioGen study (N = 18,340), and the ED data were extracted from the IEU Open GWAS (6,175 ED cases and 217,630 controls). The single nucleotide polymorphisms (SNPs) served as instrumental variables (IVs) by two thresholds of P-values, the first P-value setting as <1e-05 (locus-wide significance level) and the second P-value setting as <5e-08 (genome-wide significance level). The inverse variance weighted approach was used as the primary approach for MR analysis, supplemented with the other methods. In addition, sensitivity analyses were performed to evaluate the robustness of the MR results, including Cochran's Q test for heterogeneity, the MR-Egger intercept test for horizontal pleiotropy, the Mendelian randomization pleiotropy residual sum, and outlier (MR-PRESSO) global test for outliers, and the forest test and leave-one-out test for strong influence SNPs. Results Our results presented that the increased abundance of Lachnospiraceae at family level (OR: 1.265, 95% CI: 1.054-1.519), Senegalimassilia (OR: 1.320, 95% CI: 1.064-1.638), Lachnospiraceae NC2004 group (OR: 1.197, 95% CI: 1.018-1.407), Tyzzerella3 (OR: 1.138, 95% CI: 1.017-1.273), and Oscillibacter (OR: 1.201, 95% CI: 1.035-1.393) at genus level may be risk factors for ED, while the increased abundance of Ruminococcaceae UCG013 (OR: 0.770, 95% CI: 0.615-0.965) at genus level may have a protective effect on ED. No heterogeneity or pleiotropy was found based on the previously described set of sensitivity analyses. Conclusion Our MR analysis demonstrated that the gut microbiota had inducing and protective effects on the risk of ED. The results provide clinicians with novel insights into the treatment and prevention of ED in the future. Furthermore, our study also displays novel insights into the pathogenesis of microbiota-mediated ED.
Collapse
Affiliation(s)
- Yuyang Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuxi Chen
- Department of Statistics and Finance, School of Management, University of Science and Technology of China, Hefei, Anhui, China
| | - Yangyang Mei
- Department of Urology, Jiangyin People's Hospital of Jiangsu Province, Jiangyin, China
| | - Renfang Xu
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Department of Urology, First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Hong Zhang
- Department of Statistics and Finance, School of Management, University of Science and Technology of China, Hefei, Anhui, China
| | - Xingliang Feng
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Department of Urology, First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| |
Collapse
|
85
|
Ma C, Wang X, Dai JY, Turman C, Kraft P, Stopsack KH, Loda M, Pettersson A, Mucci LA, Stanford JL, Penney KL. Germline Genetic Variants Associated with Somatic TMPRSS2:ERG Fusion Status in Prostate Cancer: A Genome-Wide Association Study. Cancer Epidemiol Biomarkers Prev 2023; 32:1436-1443. [PMID: 37555839 PMCID: PMC10592169 DOI: 10.1158/1055-9965.epi-23-0275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/12/2023] [Accepted: 08/04/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND The prostate cancer subtype defined by the presence of TMPRSS2:ERG has been shown to be molecularly and epidemiologically distinct. However, few studies have investigated germline genetic variants associating with TMPRSS2:ERG fusion status. METHODS We performed a genome-wide association study with 396 TMPRSS2:ERG(+) cases, 390 TMPRSS2:ERG(-) cases, and 2,386 cancer-free controls from the Physicians' Health Study (PHS), the Health Professionals Follow-up Study (HPFS), and a Seattle-based Fred Hutchinson (FH) Cancer Center Prostate Cancer Study. We applied logistic regression models to test the associations between ∼5 million SNPs with TMPRSS2:ERG fusion status accounting for population stratification. RESULTS We did not identify genome-wide significant variants comparing the TMPRSS2:ERG(+) to the TMPRSS2:ERG(-) prostate cancer cases in the meta-analysis. When comparing TMPRSS2:ERG(+) prostate cancer cases with controls without prostate cancer, 10 genome-wide significant SNPs on chromosome 17q24.3 were observed in the meta-analysis. When comparing TMPRSS2:ERG(-) prostate cancer cases with controls without prostate cancer, two SNPs on chromosome 8q24.21 in the meta-analysis reached genome-wide significance. CONCLUSIONS We observed SNPs at several known prostate cancer risk loci (17q24.3, 1q32.1, and 8q24.21) that were differentially and exclusively associated with the risk of developing prostate tumors either with or without the gene fusion. IMPACT Our findings suggest that tumors with the TMPRSS2:ERG fusion exhibit a different germline genetic etiology compared with fusion negative cases.
Collapse
Affiliation(s)
- Chaoran Ma
- Department of Nutrition, University of Massachusetts Amherst, Amherst, MA
| | - Xiaoyu Wang
- Division of Public Health Sciences, Fred Hutchison Cancer Center, Seattle, WA
| | - James Y. Dai
- Division of Public Health Sciences, Fred Hutchison Cancer Center, Seattle, WA
- Department of Biostatistics, University of Washington School of Public Health, Seattle, WA
| | - Constance Turman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Konrad H. Stopsack
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | | | - Andreas Pettersson
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Lorelei A. Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Janet L. Stanford
- Division of Public Health Sciences, Fred Hutchison Cancer Center, Seattle, WA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA
| | - Kathryn L. Penney
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
86
|
Wichert K, Hoppe R, Ickstadt K, Behrens T, Winter S, Herold R, Terschüren C, Lo WY, Guénel P, Truong T, Bolla MK, Wang Q, Dennis J, Michailidou K, Lush M, Andrulis IL, Brenner H, Chang-Claude J, Cox A, Cross SS, Czene K, Eriksson M, Figueroa JD, García-Closas M, Goldberg MS, Hamann U, He W, Holleczek B, Hopper JL, Jakubowska A, Ko YD, Lubiński J, Mulligan AM, Obi N, Rhenius V, Shah M, Shu XO, Simard J, Southey MC, Zheng W, Dunning AM, Pharoah PDP, Hall P, Easton DF, Brüning T, Brauch H, Harth V, Rabstein S. Polymorphisms in genes of melatonin biosynthesis and signaling support the light-at-night hypothesis for breast cancer. Eur J Epidemiol 2023; 38:1053-1068. [PMID: 37789226 PMCID: PMC10570222 DOI: 10.1007/s10654-023-01048-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 08/30/2023] [Indexed: 10/05/2023]
Abstract
Light-at-night triggers the decline of pineal gland melatonin biosynthesis and secretion and is an IARC-classified probable breast-cancer risk factor. We applied a large-scale molecular epidemiology approach to shed light on the putative role of melatonin in breast cancer. We investigated associations between breast-cancer risk and polymorphisms at genes of melatonin biosynthesis/signaling using a study population of 44,405 women from the Breast Cancer Association Consortium (22,992 cases, 21,413 population-based controls). Genotype data of 97 candidate single nucleotide polymorphisms (SNPs) at 18 defined gene regions were investigated for breast-cancer risk effects. We calculated adjusted odds ratios (ORs) and 95% confidence intervals (CI) by logistic regression for the main-effect analysis as well as stratified analyses by estrogen- and progesterone-receptor (ER, PR) status. SNP-SNP interactions were analyzed via a two-step procedure based on logic regression. The Bayesian false-discovery probability (BFDP) was used for all analyses to account for multiple testing. Noteworthy associations (BFDP < 0.8) included 10 linked SNPs in tryptophan hydroxylase 2 (TPH2) (e.g. rs1386492: OR = 1.07, 95% CI 1.02-1.12), and a SNP in the mitogen-activated protein kinase 8 (MAPK8) (rs10857561: OR = 1.11, 95% CI 1.04-1.18). The SNP-SNP interaction analysis revealed noteworthy interaction terms with TPH2- and MAPK-related SNPs (e.g. rs1386483R ∧ rs1473473D ∧ rs3729931D: OR = 1.20, 95% CI 1.09-1.32). In line with the light-at-night hypothesis that links shift work with elevated breast-cancer risks our results point to SNPs in TPH2 and MAPK-genes that may impact the intricate network of circadian regulation.
Collapse
Grants
- C12292/A11174 Cancer Research UK
- C5047/A15007 Cancer Research UK
- UM1 CA164920 NCI NIH HHS
- R01CA100374 NIH HHS
- C1281/A12014 Cancer Research UK
- C5047/A10692 Cancer Research UK
- R01 CA100374 NCI NIH HHS
- C490/A16561 Cancer Research UK
- C8197/A16565 Cancer Research UK
- C490/A10124 Cancer Research UK
- R01 CA128978 NCI NIH HHS
- C1287/A10118 Cancer Research UK
- P30 CA068485 NCI NIH HHS
- U01 CA164920 NCI NIH HHS
- CA128978 NIH HHS
- U19 CA148112 NCI NIH HHS
- C1287/A10710 Cancer Research UK
- C5047/A8384 Cancer Research UK
- European Union's Horizon 2020 Research and Innovation Programme
- Genome Canada
- Canadian Institutes of Health Research
- Ministère de l’Économie et de l'Innovation du Québec
- Government of Canada
- Génome Québec
- Fondation du cancer du sein du Québec
- Confluence project by National Cancer Institute Intramural Research Program, National Institutes of Health
- European Community's Seventh Framework Programme
- Cancer Research UK
- National Institutes of Health
- Post-Cancer GWAS initiative
- Department of Defence
- Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer
- Susan G. Komen for the Cure
- Breast Cancer Research Foundation
- Ovarian Cancer Research Fund
- National Cancer Institute (USA)
- National Health and Medical Research Council of Australia
- Cancer Council NSW
- Victorian Health Promotion Foundation (Australia)
- Victorian Breast Cancer Research Consortium
- National Health and Medical Research Council
- Fondation de France
- Institut National du Cancer (INCa)
- Ligue Nationale contre le Cancer
- Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail
- Agence Nationale de la Recherche
- Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg
- Deutsche Krebshilfe
- Bundesministerium für Bildung und Forschung
- Robert Bosch Stiftung
- Deutsches Krebsforschungszentrum
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA)
- Department of Internal Medicine, Johanniter GmbH Bonn, Johanniter Krankenhaus, Bonn, Germany
- Märit and Hans Rausings Initiative Against Breast Cancer
- Hamburger Krebsgesellschaft
- Canadian Institutes of Health Research for the “CIHR Team in Familial Risks of Breast Cancer” program
- Ministry of Economic Development, Innovation and Export Trade
- NIH
- Survey and Biospecimen Shared Resource
- USA National Cancer Institute of the National Institutes of Health
- Intramural Research Funds of the National Cancer Institute, Department of Health and Human Services, USA
- Agency for Science, Technology and Research of Singapore
- US National Institute of Health
- Susan G. Komen
- Sheffield Experimental Cancer Medicine Centre
- Breast Cancer Now Tissue Bank
- UK National Institute for Health Research Biomedical Research Centre at the University of Cambridge
- NHS in the East of England through the Clinical Academic Reserve
- Minister of Science and Higher Education, Regional Initiative of Excellence, project number 002/RID/2018/19
- Ruhr-Universität Bochum (1007)
Collapse
Affiliation(s)
- Katharina Wichert
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany.
| | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Katja Ickstadt
- Department of Statistics, TU Dortmund University, Dortmund, Germany
| | - Thomas Behrens
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Stefan Winter
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Robert Herold
- Institute for Occupational and Maritime Medicine Hamburg (ZfAM), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Claudia Terschüren
- Institute for Occupational and Maritime Medicine Hamburg (ZfAM), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Wing-Yee Lo
- Department of Clinical Pathology, University of Melbourne Centre for Cancer Research Victorian Comprehensive Cancer Centre Melbourne, Melbourne, VIC, Australia
| | - Pascal Guénel
- Team "Exposome and Heredity", CESP, Gustave Roussy, INSERM, University Paris-Saclay, UVSQ, Villejuif, France
| | - Thérèse Truong
- Team "Exposome and Heredity", CESP, Gustave Roussy, INSERM, University Paris-Saclay, UVSQ, Villejuif, France
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Biostatistics Unit, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Michael Lush
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Angela Cox
- Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Simon S Cross
- Academic Unit of Pathology, Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Eriksson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jonine D Figueroa
- Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, The University of Edinburgh, Edinburgh, UK
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark S Goldberg
- Department of Medicine, McGill University, Montréal, QC, Canada
- Division of Clinical Epidemiology, Royal Victoria Hospital, McGill University, Montréal, QC, Canada
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wei He
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Anna Jakubowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland
| | - Yon-Dschun Ko
- Department of Internal Medicine, Johanniter GmbH Bonn, Johanniter Krankenhaus, Bonn, Germany
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Anna Marie Mulligan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | - Nadia Obi
- Institute for Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Valerie Rhenius
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jacques Simard
- Genomics Center, Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Québec City, QC, Canada
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- iFIT-Cluster of Excellence, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
| | - Volker Harth
- Institute for Occupational and Maritime Medicine Hamburg (ZfAM), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Sylvia Rabstein
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| |
Collapse
|
87
|
Wu M, Du Y, Zhang C, Li Z, Li Q, Qi E, Ruan W, Feng S, Zhou H. Mendelian Randomization Study of Lipid Metabolites Reveals Causal Associations with Heel Bone Mineral Density. Nutrients 2023; 15:4160. [PMID: 37836445 PMCID: PMC10574167 DOI: 10.3390/nu15194160] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Osteoporosis, which is a bone disease, is characterized by low bone mineral density and an increased risk of fractures. The heel bone mineral density is often used as a representative measure of overall bone mineral density. Lipid metabolism, which includes processes such as fatty acid metabolism, glycerol metabolism, inositol metabolism, bile acid metabolism, carnitine metabolism, ketone body metabolism, sterol and steroid metabolism, etc., may have an impact on changes in bone mineral density. While some studies have reported correlations between lipid metabolism and heel bone mineral density, the overall causal relationship between metabolites and heel bone mineral density remains unclear. OBJECTIVE to investigate the causal relationship between lipid metabolites and heel bone mineral density using two-sample Mendelian randomization analysis. METHODS Summary-level data from large-scale genome-wide association studies were extracted to identify genetic variants linked to lipid metabolite levels. These genetic variants were subsequently employed as instrumental variables in Mendelian randomization analysis to estimate the causal effects of each lipid metabolite on heel bone mineral density. Furthermore, metabolites that could potentially be influenced by causal relationships with bone mineral density were extracted from the KEGG and WikiPathways databases. The causal associations between these downstream metabolites and heel bone mineral density were then examined. Lastly, a sensitivity analysis was conducted to evaluate the robustness of the results and address potential sources of bias. RESULTS A total of 130 lipid metabolites were analyzed, and it was found that acetylcarnitine, propionylcarnitine, hexadecanedioate, tetradecanedioate, myo-inositol, 1-arachidonoylglycerophosphorine, 1-linoleoylglycerophoethanolamine, and epiandrosterone sulfate had a causal relationship with heel bone mineral density (p < 0.05). Furthermore, our findings also indicate an absence of causal association between the downstream metabolites associated with the aforementioned metabolites identified in the KEGG and WikiPathways databases and heel bone mineral density. CONCLUSION This work supports the hypothesis that lipid metabolites have an impact on bone health through demonstrating a causal relationship between specific lipid metabolites and heel bone mineral density. This study has significant implications for the development of new strategies to osteoporosis prevention and treatment.
Collapse
Affiliation(s)
- Mingxin Wu
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Yufei Du
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Chi Zhang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250013, China
| | - Zhen Li
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Qingyang Li
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250013, China
| | - Enlin Qi
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250013, China
| | - Wendong Ruan
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Shiqing Feng
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300070, China
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250013, China
| | - Hengxing Zhou
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300070, China
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250013, China
| |
Collapse
|
88
|
Liang W, Sun F. Do metabolic factors increase the risk of thyroid cancer? a Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1234000. [PMID: 37780617 PMCID: PMC10541021 DOI: 10.3389/fendo.2023.1234000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Background Epidemiological studies emphasize the link between metabolic factors and thyroid cancer. Using Mendelian randomization (MR), we assessed the possible causal impact of metabolic factors on thyroid cancer for the first time. Methods Summary statistics for metabolic factors and thyroid cancer were obtained from published Genome-wide association studies. The causal relationships were assessed using the inverse-variance weighted (IVW) method as the primary method through a two-sample Mendelian Randomization (MR) analysis. To account for the potential existence of horizontal pleiotropy, four additional methods were employed, including Mendelian Randomization-Egger (MR-Egger), weighted median method (WM), simple mode, and weighted mode method. Given the presence of interactions between metabolic factors, a multivariable MR analysis was subsequently conducted. Results The results showed there was a genetic link between HDL level and protection effect of thyroid cancer using IVW (OR= 0.75, 95% confidence intervals [CIs] 0.60-0.93, p=0.01) and MR-Egger method (OR= 0.70, 95% confidence intervals [CIs] 0.50- 0.97, p=0.03). The results remained robust in multivariable MR analysis for the genetic link between HDL level and protection effect of thyroid cancer (OR= 0.74, 95% confidence intervals [CIs] 0.55-0.99, p=0.04). Conclusions This study suggests a protection role for HDL on thyroid cancer. The study findings provide evidence for the public health suggestion for thyroid cancer prevention. HDL's potential as a pharmacological target needs further validation.
Collapse
Affiliation(s)
- Weiwei Liang
- Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - FangFang Sun
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Cancer Institute, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
89
|
Yan M, Ouyang YL, Xiao LY, Ao M, Gosau M, Friedrich RE, Smeets R, Fu LL, Feng HC, Burg S. Correlations between gut microbiota and lichen planus: a two-sample Mendelian randomization study. Front Immunol 2023; 14:1235982. [PMID: 37767099 PMCID: PMC10521728 DOI: 10.3389/fimmu.2023.1235982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Purpose Several existing studies have revealed that the occurrence of lichen planus (LP) is relevant to the gut microbiota, and the causal relationship between gut microbiota and LP was analyzed using the Mendelian randomization (MR) method. Methods Through the two-sample MR method, single nucleotide polymorphisms (SNPs) relevant to gut microbiota were selected as instrument variables (IVs) to evaluate the causal association between gut microbiota and the risk of LP. Results According to the selection criteria of inverse-variance weighted (IVW), six bacterial genera were found to be significantly linked to the initiation of LP; The IVW results suggested that Oxalobacteraceae, Victivallaceae, and Actinobacteria could restrain the initiation of LP, showing protective effects against LP. Desulfovibrio, Veillonella, and Ruminococcus gauvreauii groups were demonstrated to have casual correlations with the onset of LP. Conclusion The relationship between gut microbiota and LP was not a single positive or inverse relationship. Investigation of the causal relationship of these gut microbiota with LP could further provide evidence for the intestine-skin axis theory. However, the specific mechanism of microorganisms affecting the skin remains to be clarified. In this paper, the protective effects and mechanisms of Oxalobacteraceae, Victivallaceae, and Actinobacteria on LP require further exploration.
Collapse
Affiliation(s)
- Ming Yan
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, China
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yu-Long Ouyang
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, China
| | - Li-Yuan Xiao
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, China
| | - Man Ao
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, China
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Reinhard E. Friedrich
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ling-Ling Fu
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, China
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hong-chao Feng
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, China
| | - Simon Burg
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
90
|
Jiang Y, Du Y, Su R, Zhou X, Wei L, Zhang J, Zhu S, Zhang H, Fang C, Chen Y, Gao P, Zhang L, Wang S, Yu J, He M, Ding W, Feng L. Long-term outcomes of offspring from multiple gestations: a two-sample Mendelian randomization study on multi-system diseases using UK Biobank and FinnGen databases. J Transl Med 2023; 21:608. [PMID: 37684631 PMCID: PMC10492369 DOI: 10.1186/s12967-023-04423-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/05/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Assisted reproductive technologies (ART) have increased the incidence of multiple births, which can have a negative impact on maternal and offspring health. The study aimed to investigate the association between genetically predicted multiple birth and the risk of 42 common diseases of the nervous, psychiatric, cardiovascular, respiratory, digestive, and endocrine systems. METHODS The study utilized two-sample Mendelian randomization (MR) analysis to explore the potential causal relationship between genetically predicted multiple birth and the genetically predicted risk of diseases. The study used the FinnGen and UK Biobank datasets for analysis. RESULTS The study found no significant causal relationship between multiple birth and psychiatric disorders. However, the lower limits of the 95% confidence intervals for bipolar affective disorder and anxiety disorders were not robust, indicating a need for further investigation. The study found that multiple birth may be a strong risk factor for infantile cerebral palsy, and caution is necessary in both natural and ART multiple births. The study revealed a potential causal relationship between multiple birth and coronary heart disease, ischemic heart disease, and deep vein thrombosis, which may be related to abnormal intrauterine environments in multiple pregnancies. Surprisingly, multiple birth appears to have a protective effect against some respiratory diseases, such as chronic obstructive pulmonary disease and asthma. CONCLUSIONS The study highlights the need for caution regarding the risk of infantile cerebral palsy, cardiovascular diseases, and psychiatric disorders in multiple birth. Our study can lead to the development of preventive strategies and improved clinical management for affected infants.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yuanyuan Du
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Rui Su
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Xuan Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Lijie Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Jingyi Zhang
- Department of Obstetrics and Gynecology Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Shenglan Zhu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Huiting Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Chenyun Fang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yuting Chen
- Department of Obstetrics and Gynecology Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Peng Gao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Liangnan Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Shaoshuai Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Jun Yu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Mengzhou He
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Wencheng Ding
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, Hubei, China.
| | - Ling Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
91
|
Wang QL, Zhang Y, Zeng E, Grassmann F, He W, Czene K. Risk of estrogen receptor-specific breast cancer by family history of estrogen receptor subtypes and other cancers. J Natl Cancer Inst 2023; 115:1020-1028. [PMID: 37243749 PMCID: PMC10483332 DOI: 10.1093/jnci/djad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/02/2023] [Accepted: 05/25/2023] [Indexed: 05/29/2023] Open
Abstract
BACKGROUND The extent to which the risk of estrogen receptor (ER)-specific breast cancer is associated with ER status of breast cancer and other cancers among first-degree relatives is unclear. METHODS This population-based cohort included 464 707 cancer-free women in Stockholm, Sweden, during 1978-2019. For ER-negative and ER-positive breast cancers, we estimated hazard ratios (HRs) associated with ER status of female first-degree relatives with breast cancer and of other cancers in all first-degree relatives. Associations between ER-negative and ER-positive status by family cancer history were estimated using logistic regression in a case-only design. RESULTS Women with familial ER-positive breast cancer had 1.87 times (95% confidence interval [CI] = 1.77 to 1.97) higher risk of ER-positive subtype, whereas the corresponding hazard ratio for ER-negative was 2.54 (95% CI = 2.08 to 3.10) when having familial ER-negative breast cancer. The risk increased with an increasing number of female first-degree relatives having concordant subtypes and younger age at diagnosis (Ptrend <.001 for both). Nonbreast cancers among first-degree relatives were associated with both ER-positive (HR = 1.14, 95% CI = 1.10 to 1.17) and ER-negative (HR = 1.08, 95% CI = 1.01 to 1.16) breast cancers. Compared with women with ER-positive breast cancer, women with ER-negative breast cancer were more likely to have family history of liver (odds ratio [OR] = 1.33, 95% CI = 1.05 to 1.67), ovary (OR = 1.28, 95% CI = 1.01 to 1.61), and testicle cancer (OR = 1.79, 95% CI = 1.01 to 3.16) but less likely to have family history of endometrial cancer (OR = 0.77, 95% CI = 0.60 to 1.00) and leukemia (OR = 0.72, 95% CI = 0.56 to 0.91). CONCLUSIONS Risk of ER-specific breast cancer differs according to ER status of female first-degree relatives with breast cancer and some other cancers of first-degree relatives. This family history information should be considered in the individual risk prediction for ER subtypes.
Collapse
Affiliation(s)
- Qiao-Li Wang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Yuqi Zhang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Erwei Zeng
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Felix Grassmann
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Wei He
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Chronic Disease Research Institute, The Children’s Hospital, and National Clinical Research Center for Child Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
92
|
Mao M, Zhai C, Qian G. Gut microbiome relationship with arrhythmias and conduction blocks: A two-sample Mendelian randomization study. J Electrocardiol 2023; 80:155-161. [PMID: 37422943 DOI: 10.1016/j.jelectrocard.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/02/2023] [Accepted: 06/10/2023] [Indexed: 07/11/2023]
Abstract
INTRODUCTION Past research based on observations has suggested that the gut microbiome (GM) could play a role in developing arrhythmias and conduction blocks. Nonetheless, the nature of this association remains uncertain due to the potential for reverse causation and confounding factors in observational research. The aim of this investigation is to elucidate the causal relationship between GM and the development of arrhythmias as well as conduction blocks. METHODS This study collected summary statistics regarding GM, arrhythmias, and conduction blocks. Two-sample Mendelian randomization (MR) analysis was carried out employing various methods, with inverse variance weighted being the primary approach, followed by weighted median, simple mode, MR-Egger, and MR-PRESSO. Moreover, the MR findings were corroborated through multiple sensitivity analyses. RESULTS Among them, for atrial fibrillation and flutter (AF), phylum_Actinobacteria and genus_RuminococcaceaeUCG004 demonstrated a negative correlation, while order_Pasteurellales, family_Pasteurellaceae, and genus_Turicibacter were associated with an increased risk. In the case of paroxysmal tachycardia (PT), genus_Holdemania and genus_Roseburia were found to reduce risk. For atrioventricular block (AVB), order_Bifidobacteriales, family_Bifidobacteriaceae, and genus_Alistipes exhibited a negative correlation, whereas genus_CandidatusSoleaferrea showed a positive correlation. Concerning the left bundle-branch block (LBBB), family_Peptococcaceae appeared to decrease the risk, while genus_Flavonifractor was linked to an increased risk. Lastly, no causative GM was identified in the right bundle-branch block (RBBB) context. CONCLUSION We have uncovered potential causal links between some GM, arrhythmias, and conduction blocks. This insight may aid in designing microbiome-based interventions for these conditions and their risk factors in future trials. Additionally, it could facilitate the discovery of novel biomarkers for targeted prevention strategies.
Collapse
Affiliation(s)
- MengHui Mao
- Bengbu Medical College, 2600 Donghai Ave, Longzihu, Bengbu, Anhui, China; First Hospital of Jiaxing, No. 1882, Zhonghuan South Road, Nanhu District, Jiaxing City, Zhejiang Province, China
| | - ChangLin Zhai
- First Hospital of Jiaxing, No. 1882, Zhonghuan South Road, Nanhu District, Jiaxing City, Zhejiang Province, China
| | - Gang Qian
- Bengbu Medical College, 2600 Donghai Ave, Longzihu, Bengbu, Anhui, China; First Hospital of Jiaxing, No. 1882, Zhonghuan South Road, Nanhu District, Jiaxing City, Zhejiang Province, China.
| |
Collapse
|
93
|
Middha P, Wang X, Behrens S, Bolla MK, Wang Q, Dennis J, Michailidou K, Ahearn TU, Andrulis IL, Anton-Culver H, Arndt V, Aronson KJ, Auer PL, Augustinsson A, Baert T, Freeman LEB, Becher H, Beckmann MW, Benitez J, Bojesen SE, Brauch H, Brenner H, Brooks-Wilson A, Campa D, Canzian F, Carracedo A, Castelao JE, Chanock SJ, Chenevix-Trench G, Cordina-Duverger E, Couch FJ, Cox A, Cross SS, Czene K, Dossus L, Dugué PA, Eliassen AH, Eriksson M, Evans DG, Fasching PA, Figueroa JD, Fletcher O, Flyger H, Gabrielson M, Gago-Dominguez M, Giles GG, González-Neira A, Grassmann F, Grundy A, Guénel P, Haiman CA, Håkansson N, Hall P, Hamann U, Hankinson SE, Harkness EF, Holleczek B, Hoppe R, Hopper JL, Houlston RS, Howell A, Hunter DJ, Ingvar C, Isaksson K, Jernström H, John EM, Jones ME, Kaaks R, Keeman R, Kitahara CM, Ko YD, Koutros S, Kurian AW, Lacey JV, Lambrechts D, Larson NL, Larsson S, Le Marchand L, Lejbkowicz F, Li S, Linet M, Lissowska J, Martinez ME, Maurer T, Mulligan AM, Mulot C, Murphy RA, Newman WG, Nielsen SF, Nordestgaard BG, Norman A, O'Brien KM, Olson JE, Patel AV, Prentice R, Rees-Punia E, Rennert G, Rhenius V, Ruddy KJ, Sandler DP, et alMiddha P, Wang X, Behrens S, Bolla MK, Wang Q, Dennis J, Michailidou K, Ahearn TU, Andrulis IL, Anton-Culver H, Arndt V, Aronson KJ, Auer PL, Augustinsson A, Baert T, Freeman LEB, Becher H, Beckmann MW, Benitez J, Bojesen SE, Brauch H, Brenner H, Brooks-Wilson A, Campa D, Canzian F, Carracedo A, Castelao JE, Chanock SJ, Chenevix-Trench G, Cordina-Duverger E, Couch FJ, Cox A, Cross SS, Czene K, Dossus L, Dugué PA, Eliassen AH, Eriksson M, Evans DG, Fasching PA, Figueroa JD, Fletcher O, Flyger H, Gabrielson M, Gago-Dominguez M, Giles GG, González-Neira A, Grassmann F, Grundy A, Guénel P, Haiman CA, Håkansson N, Hall P, Hamann U, Hankinson SE, Harkness EF, Holleczek B, Hoppe R, Hopper JL, Houlston RS, Howell A, Hunter DJ, Ingvar C, Isaksson K, Jernström H, John EM, Jones ME, Kaaks R, Keeman R, Kitahara CM, Ko YD, Koutros S, Kurian AW, Lacey JV, Lambrechts D, Larson NL, Larsson S, Le Marchand L, Lejbkowicz F, Li S, Linet M, Lissowska J, Martinez ME, Maurer T, Mulligan AM, Mulot C, Murphy RA, Newman WG, Nielsen SF, Nordestgaard BG, Norman A, O'Brien KM, Olson JE, Patel AV, Prentice R, Rees-Punia E, Rennert G, Rhenius V, Ruddy KJ, Sandler DP, Scott CG, Shah M, Shu XO, Smeets A, Southey MC, Stone J, Tamimi RM, Taylor JA, Teras LR, Tomczyk K, Troester MA, Truong T, Vachon CM, Wang SS, Weinberg CR, Wildiers H, Willett W, Winham SJ, Wolk A, Yang XR, Zamora MP, Zheng W, Ziogas A, Dunning AM, Pharoah PDP, García-Closas M, Schmidt MK, Kraft P, Milne RL, Lindström S, Easton DF, Chang-Claude J. A genome-wide gene-environment interaction study of breast cancer risk for women of European ancestry. Breast Cancer Res 2023; 25:93. [PMID: 37559094 PMCID: PMC10411002 DOI: 10.1186/s13058-023-01691-8] [Show More Authors] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Genome-wide studies of gene-environment interactions (G×E) may identify variants associated with disease risk in conjunction with lifestyle/environmental exposures. We conducted a genome-wide G×E analysis of ~ 7.6 million common variants and seven lifestyle/environmental risk factors for breast cancer risk overall and for estrogen receptor positive (ER +) breast cancer. METHODS Analyses were conducted using 72,285 breast cancer cases and 80,354 controls of European ancestry from the Breast Cancer Association Consortium. Gene-environment interactions were evaluated using standard unconditional logistic regression models and likelihood ratio tests for breast cancer risk overall and for ER + breast cancer. Bayesian False Discovery Probability was employed to assess the noteworthiness of each SNP-risk factor pairs. RESULTS Assuming a 1 × 10-5 prior probability of a true association for each SNP-risk factor pairs and a Bayesian False Discovery Probability < 15%, we identified two independent SNP-risk factor pairs: rs80018847(9p13)-LINGO2 and adult height in association with overall breast cancer risk (ORint = 0.94, 95% CI 0.92-0.96), and rs4770552(13q12)-SPATA13 and age at menarche for ER + breast cancer risk (ORint = 0.91, 95% CI 0.88-0.94). CONCLUSIONS Overall, the contribution of G×E interactions to the heritability of breast cancer is very small. At the population level, multiplicative G×E interactions do not make an important contribution to risk prediction in breast cancer.
Collapse
Affiliation(s)
- Pooja Middha
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Xiaoliang Wang
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manjeet K Bolla
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Qin Wang
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Joe Dennis
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Kyriaki Michailidou
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Thomas U Ahearn
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Hoda Anton-Culver
- Department of Medicine, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA, USA
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kristan J Aronson
- Department of Public Health Sciences, and Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - Paul L Auer
- Division of Biostatistics, Institute for Health and Equity, and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Thaïs Baert
- Department of Oncology, Leuven Multidisciplinary Breast Center, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Laura E Beane Freeman
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Heiko Becher
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Javier Benitez
- Human Genetics Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- iFIT-Cluster of Excellence, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Daniele Campa
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Biology, University of Pisa, Pisa, Italy
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Angel Carracedo
- Genomic Medicine Group, International Cancer Genetics and Epidemiology Group, Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
- Grupo de Medicina Xenómica, Centro de Investigación en Red de Enfermedades Raras (CIBERER) y Centro Nacional de Genotipado (CEGEN-PRB2), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jose E Castelao
- Oncology and Genetics Unit, Instituto de Investigación Sanitaria Galicia Sur (IISGS), Xerencia de Xestion Integrada de Vigo-SERGAS, Vigo, Spain
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Emilie Cordina-Duverger
- Team 'Exposome and Heredity', CESP, Gustave Roussy, INSERM, University Paris-Saclay, UVSQ, Villejuif, France
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Angela Cox
- Department of Oncology and Metabolism, Sheffield Institute for Nucleic Acids (SInFoNiA), University of Sheffield, Sheffield, UK
| | - Simon S Cross
- Academic Unit of Pathology, Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Laure Dossus
- Nutrition and Metabolism Section, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Pierre-Antoine Dugué
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
| | - A Heather Eliassen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mikael Eriksson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - D Gareth Evans
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, School of Biological Sciences, University of Manchester, Manchester, UK
- North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester Academic Health Science Centre, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Jonine D Figueroa
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, The University of Edinburgh, Edinburgh, UK
| | - Olivia Fletcher
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Henrik Flyger
- Department of Breast Surgery, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Marike Gabrielson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Manuela Gago-Dominguez
- Genomic Medicine Group, International Cancer Genetics and Epidemiology Group, Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Graham G Giles
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Anna González-Neira
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Felix Grassmann
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Institute for Clinical Research and Systems Medicine, Health and Medical University, Potsdam, Germany
| | - Anne Grundy
- Department of Public Health Sciences, Queen's University, Kingston, ON, Canada
| | - Pascal Guénel
- Team 'Exposome and Heredity', CESP, Gustave Roussy, INSERM, University Paris-Saclay, UVSQ, Villejuif, France
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Niclas Håkansson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Susan E Hankinson
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst, Amherst, MA, USA
| | - Elaine F Harkness
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Nightingale and Genesis Prevention Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- NIHR Manchester Biomedical Research Unit, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | | | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Anthony Howell
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - David J Hunter
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Christian Ingvar
- Surgery, Clinical Sciences in Lund, Lund University, Lund, Sweden
| | - Karolin Isaksson
- Department of Surgery, Kristianstad Hospital, Kristianstad, Sweden
| | - Helena Jernström
- Oncology, Clinical Sciences in Lund, Lund University, Lund, Sweden
| | - Esther M John
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael E Jones
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Renske Keeman
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Cari M Kitahara
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Yon-Dschun Ko
- Department of Internal Medicine, Johanniter GmbH Bonn, Johanniter Krankenhaus, Bonn, Germany
| | - Stella Koutros
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Allison W Kurian
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - James V Lacey
- Department of Computational and Quantitative Medicine, City of Hope, Duarte, CA, USA
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, USA
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Nicole L Larson
- Department of Quantitative Health Sciences, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Susanna Larsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Flavio Lejbkowicz
- Clalit National Cancer Control Center, Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | - Shuai Li
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Martha Linet
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jolanta Lissowska
- Department of Cancer Epidemiology and Prevention, M. Sklodowska-Curie National Research Oncology Institute, Warsaw, Poland
| | - Maria Elena Martinez
- Moores Cancer Center and Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, USA
| | - Tabea Maurer
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Marie Mulligan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | - Claire Mulot
- INSERM UMR-S1138. CRB EPIGENETEC, Université Paris Cité, Paris, France
| | - Rachel A Murphy
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
- Cancer Control Research, BC Cancer, Vancouver, BC, Canada
| | - William G Newman
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, School of Biological Sciences, University of Manchester, Manchester, UK
- North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester Academic Health Science Centre, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Sune F Nielsen
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Børge G Nordestgaard
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Aaron Norman
- Department of Quantitative Health Sciences, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Katie M O'Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Janet E Olson
- Department of Quantitative Health Sciences, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Alpa V Patel
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Ross Prentice
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Erika Rees-Punia
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Gad Rennert
- Clalit National Cancer Control Center, Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | - Valerie Rhenius
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | | | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Christopher G Scott
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | - Mitul Shah
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ann Smeets
- Department of Surgical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - Jennifer Stone
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Genetic Epidemiology Group, School of Population and Global Health, University of Western Australia, Perth, WA, Australia
| | - Rulla M Tamimi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Jack A Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
- Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Lauren R Teras
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Katarzyna Tomczyk
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Melissa A Troester
- Department of Epidemiology, Gillings School of Global Public Health and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thérèse Truong
- Team 'Exposome and Heredity', CESP, Gustave Roussy, INSERM, University Paris-Saclay, UVSQ, Villejuif, France
| | - Celine M Vachon
- Department of Quantitative Health Sciences, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Sophia S Wang
- Department of Computational and Quantitative Medicine, City of Hope, Duarte, CA, USA
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, USA
| | - Clarice R Weinberg
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Hans Wildiers
- Department of Oncology, Leuven Multidisciplinary Breast Center, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Walter Willett
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Stacey J Winham
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - M Pilar Zamora
- Servicio de Oncología Médica, Hospital Universitario La Paz, Madrid, Spain
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Argyrios Ziogas
- Department of Medicine, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA, USA
| | - Alison M Dunning
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Paul D P Pharoah
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni Van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Roger L Milne
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Sara Lindström
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Douglas F Easton
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
94
|
Mertens E, Barrenechea-Pulache A, Sagastume D, Vasquez MS, Vandevijvere S, Peñalvo JL. Understanding the contribution of lifestyle in breast cancer risk prediction: a systematic review of models applicable to Europe. BMC Cancer 2023; 23:687. [PMID: 37480028 PMCID: PMC10360320 DOI: 10.1186/s12885-023-11174-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is a significant health concern among European women, with the highest prevalence rates among all cancers. Existing BC prediction models account for major risks such as hereditary, hormonal and reproductive factors, but research suggests that adherence to a healthy lifestyle can reduce the risk of developing BC to some extent. Understanding the influence and predictive role of lifestyle variables in current risk prediction models could help identify actionable, modifiable, targets among high-risk population groups. PURPOSE To systematically review population-based BC risk prediction models applicable to European populations and identify lifestyle predictors and their corresponding parameter values for a better understanding of their relative contribution to the prediction of incident BC. METHODS A systematic review was conducted in PubMed, Embase and Web of Science from January 2000 to August 2021. Risk prediction models were included if (i) developed and/or validated in adult cancer-free women in Europe, (ii) based on easily ascertained information, and (iii) reported models' final predictors. To investigate further the comparability of lifestyle predictors across models, estimates were standardised into risk ratios and visualised using forest plots. RESULTS From a total of 49 studies, 33 models were developed and 22 different existing models, mostly from Gail (22 studies) and Tyrer-Cuzick and co-workers (12 studies) were validated or modified for European populations. Family history of BC was the most frequently included predictor (31 models), while body mass index (BMI) and alcohol consumption (26 and 21 models, respectively) were the lifestyle predictors most often included, followed by smoking and physical activity (7 and 6 models respectively). Overall, for lifestyle predictors, their modest predictive contribution was greater for riskier lifestyle levels, though highly variable model estimates across different models. CONCLUSIONS Given the increasing BC incidence rates in Europe, risk models utilising readily available risk factors could greatly aid in widening the population coverage of screening efforts, while the addition of lifestyle factors could help improving model performance and serve as intervention targets of prevention programmes.
Collapse
Affiliation(s)
- Elly Mertens
- Unit of Non-Communicable Diseases, Department of Public Health, Institute of Tropical Medicine, Nationalestraat 155, 2000, Antwerp, Belgium.
| | - Antonio Barrenechea-Pulache
- Unit of Non-Communicable Diseases, Department of Public Health, Institute of Tropical Medicine, Nationalestraat 155, 2000, Antwerp, Belgium
| | - Diana Sagastume
- Unit of Non-Communicable Diseases, Department of Public Health, Institute of Tropical Medicine, Nationalestraat 155, 2000, Antwerp, Belgium
| | - Maria Salve Vasquez
- Health Information, Scientific Institute of Public Health (Sciensano), Brussels, Belgium
| | - Stefanie Vandevijvere
- Health Information, Scientific Institute of Public Health (Sciensano), Brussels, Belgium
| | - José L Peñalvo
- Unit of Non-Communicable Diseases, Department of Public Health, Institute of Tropical Medicine, Nationalestraat 155, 2000, Antwerp, Belgium
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
95
|
Rogers M, Gill D, Ahlqvist E, Robinson T, Mariosa D, Johansson M, Cortez Cardoso Penha R, Dossus L, Gunter MJ, Moreno V, Davey Smith G, Martin RM, Yarmolinsky J. Genetically proxied impaired GIPR signaling and risk of 6 cancers. iScience 2023; 26:106848. [PMID: 37250804 PMCID: PMC10209536 DOI: 10.1016/j.isci.2023.106848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/15/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Preclinical and genetic studies suggest that impaired glucose-dependent insulinotropic polypeptide receptor (GIPR) signaling worsens glycemic control. The relationship between GIPR signaling and the risk of cancers influenced by impaired glucose homeostasis is unclear. We examined the association of a variant in GIPR, rs1800437 (E354Q), shown to impair long-term GIPR signaling and lower circulating glucose-dependent insulinotropic peptide concentrations, with risk of 6 cancers influenced by impaired glucose homeostasis (breast, colorectal, endometrial, lung, pancreatic, and renal) in up to 235,698 cases and 333,932 controls. Each copy of E354Q was associated with a higher risk of overall and luminal A-like breast cancer and this association was consistent in replication and colocalization analyses. E354Q was also associated with higher postprandial glucose concentrations but diminished insulin secretion and lower testosterone concentrations. Our human genetics analysis suggests an adverse effect of the GIPR E354Q variant on breast cancer risk, supporting further evaluation of GIPR signaling in breast cancer prevention.
Collapse
Affiliation(s)
- Miranda Rogers
- MRC Integrative Epidemiology Unit, University of Bristol, BS8 2BN Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, BS8 2PS Bristol, UK
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, W2 1PG London, UK
- Chief Scientific Office, Research and Early Development, Novo Nordisk, 2300 Copenhagen, Denmark
| | - Emma Ahlqvist
- Department of Clinical Sciences, Lund University, Lund, 22362 Malmö, Sweden
| | - Tim Robinson
- MRC Integrative Epidemiology Unit, University of Bristol, BS8 2BN Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, BS8 2PS Bristol, UK
| | - Daniela Mariosa
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), 69007 Lyon, France
| | - Mattias Johansson
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), 69007 Lyon, France
| | | | - Laure Dossus
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC/WHO), 69007 Lyon, France
| | - Marc J. Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC/WHO), 69007 Lyon, France
| | - Victor Moreno
- Biomarkers and Susceptibility Unit, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute(IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, BS8 2BN Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, BS8 2PS Bristol, UK
| | - Richard M. Martin
- MRC Integrative Epidemiology Unit, University of Bristol, BS8 2BN Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, BS8 2PS Bristol, UK
- University Hospitals Bristol and Weston NHS Foundation Trust, National Institute for Health Research Bristol Biomedical Research Centre, University of Bristol, BS8 2BN Bristol, UK
| | - James Yarmolinsky
- MRC Integrative Epidemiology Unit, University of Bristol, BS8 2BN Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, BS8 2PS Bristol, UK
| |
Collapse
|
96
|
Hartkopf AD, Fehm TN, Welslau M, Müller V, Schütz F, Fasching PA, Janni W, Witzel I, Thomssen C, Beierlein M, Belleville E, Untch M, Thill M, Tesch H, Ditsch N, Lux MP, Aktas B, Banys-Paluchowski M, Kolberg-Liedtke C, Wöckel A, Kolberg HC, Harbeck N, Stickeler E, Bartsch R, Schneeweiss A, Ettl J, Würstlein R, Krug D, Taran FA, Lüftner D. Update Breast Cancer 2023 Part 1 - Early Stage Breast Cancer. Geburtshilfe Frauenheilkd 2023; 83:653-663. [PMID: 37916183 PMCID: PMC10617391 DOI: 10.1055/a-2074-0551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 11/03/2023] Open
Abstract
With abemaciclib (monarchE study) and olaparib (OlympiA study) gaining approval in the adjuvant treatment setting, a significant change in the standard of care for patients with early stage breast cancer has been established for some time now. Accordingly, some diverse developments are slowly being transferred from the metastatic to the adjuvant treatment setting. Recently, there have also been positive reports of the NATALEE study. Other clinical studies are currently investigating substances that are already established in the metastatic setting. These include, for example, the DESTINY Breast05 study with trastuzumab deruxtecan and the SASCIA study with sacituzumab govitecan. In this review paper, we summarize and place in context the latest developments over the past months.
Collapse
Affiliation(s)
- Andreas D. Hartkopf
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | - Tanja N. Fehm
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Düsseldorf, Germany
| | | | - Volkmar Müller
- Department of Gynecology, Hamburg-Eppendorf University Medical Center, Hamburg, Germany
| | - Florian Schütz
- Gynäkologie und Geburtshilfe, Diakonissen-Stiftungs-Krankenhaus Speyer, Speyer, Germany
| | - Peter A. Fasching
- Erlangen University Hospital, Department of Gynecology and Obstetrics; Comprehensive Cancer Center Erlangen EMN, Friedrich-Alexander University Erlangen-Nuremberg,
Erlangen, Germany
| | - Wolfgang Janni
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | - Isabell Witzel
- Klinik für Gynäkologie, Universitätsspital Zürich, Zürich, Switzerland
| | - Christoph Thomssen
- Department of Gynaecology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Milena Beierlein
- Erlangen University Hospital, Department of Gynecology and Obstetrics; Comprehensive Cancer Center Erlangen EMN, Friedrich-Alexander University Erlangen-Nuremberg,
Erlangen, Germany
| | | | - Michael Untch
- Clinic for Gynecology and Obstetrics, Breast Cancer Center, Gynecologic Oncology Center, Helios Klinikum Berlin Buch, Berlin, Germany
| | - Marc Thill
- Department of Gynecology and Gynecological Oncology, Agaplesion Markus Krankenhaus, Frankfurt am Main, Germany
| | - Hans Tesch
- Oncology Practice at Bethanien Hospital, Frankfurt am Main, Germany
| | - Nina Ditsch
- Department of Gynecology and Obstetrics, University Hospital Augsburg, Augsburg, Germany
| | - Michael P. Lux
- Klinik für Gynäkologie und Geburtshilfe, Frauenklinik St. Louise, Paderborn, St. Josefs-Krankenhaus, Salzkotten, St. Vincenz Krankenhaus GmbH, Paderborn, Germany
| | - Bahriye Aktas
- Department of Gynecology, University of Leipzig Medical Center, Leipzig, Germany
| | - Maggie Banys-Paluchowski
- Department of Gynecology and Obstetrics, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | | | - Achim Wöckel
- Department of Gynecology and Obstetrics, University Hospital Würzburg, Würzburg, Germany
| | | | - Nadia Harbeck
- Breast Center, Department of Gynecology and Obstetrics and CCC Munich LMU, LMU University Hospital, München, Germany
| | - Elmar Stickeler
- Department of Obstetrics and Gynecology, Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Düsseldorf), University Hospital of RWTH Aachen, Aachen, Germany
| | - Rupert Bartsch
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Andreas Schneeweiss
- National Center for Tumor Diseases, University Hospital and German Cancer Research Center, Heidelberg, Germany
| | - Johannes Ettl
- Klinik für Frauenheilkunde und Gynäkologie, Klinikum Kempten, Klinikverbund Allgäu, Kempten, Germany
| | - Rachel Würstlein
- Breast Center, Department of Gynecology and Obstetrics and CCC Munich LMU, LMU University Hospital, München, Germany
| | - David Krug
- Klinik für Strahlentherapie, Universitätsklinkum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Florin-Andrei Taran
- Department of Gynecology and Obstetrics, University Hospital Freiburg, Freiburg, Germany
| | - Diana Lüftner
- Medical University of Brandenburg Theodor-Fontane, Immanuel Hospital Märkische Schweiz, Buckow, Germany
| |
Collapse
|
97
|
Shieh Y, Roger J, Yau C, Wolf DM, Hirst GL, Swigart LB, Huntsman S, Hu D, Nierenberg JL, Middha P, Heise RS, Shi Y, Kachuri L, Zhu Q, Yao S, Ambrosone CB, Kwan ML, Caan BJ, Witte JS, Kushi LH, 't Veer LV, Esserman LJ, Ziv E. Development and testing of a polygenic risk score for breast cancer aggressiveness. NPJ Precis Oncol 2023; 7:42. [PMID: 37188791 PMCID: PMC10185660 DOI: 10.1038/s41698-023-00382-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/28/2023] [Indexed: 05/17/2023] Open
Abstract
Aggressive breast cancers portend a poor prognosis, but current polygenic risk scores (PRSs) for breast cancer do not reliably predict aggressive cancers. Aggressiveness can be effectively recapitulated using tumor gene expression profiling. Thus, we sought to develop a PRS for the risk of recurrence score weighted on proliferation (ROR-P), an established prognostic signature. Using 2363 breast cancers with tumor gene expression data and single nucleotide polymorphism (SNP) genotypes, we examined the associations between ROR-P and known breast cancer susceptibility SNPs using linear regression models. We constructed PRSs based on varying p-value thresholds and selected the optimal PRS based on model r2 in 5-fold cross-validation. We then used Cox proportional hazards regression to test the ROR-P PRS's association with breast cancer-specific survival in two independent cohorts totaling 10,196 breast cancers and 785 events. In meta-analysis of these cohorts, higher ROR-P PRS was associated with worse survival, HR per SD = 1.13 (95% CI 1.06-1.21, p = 4.0 × 10-4). The ROR-P PRS had a similar magnitude of effect on survival as a comparator PRS for estrogen receptor (ER)-negative versus positive cancer risk (PRSER-/ER+). Furthermore, its effect was minimally attenuated when adjusted for PRSER-/ER+, suggesting that the ROR-P PRS provides additional prognostic information beyond ER status. In summary, we used integrated analysis of germline SNP and tumor gene expression data to construct a PRS associated with aggressive tumor biology and worse survival. These findings could potentially enhance risk stratification for breast cancer screening and prevention.
Collapse
Affiliation(s)
- Yiwey Shieh
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA.
| | - Jacquelyn Roger
- PhD Program in Biological and Medical Informatics, University of California, San Francisco, San Francisco, CA, USA
| | - Christina Yau
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Denise M Wolf
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Gillian L Hirst
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Lamorna Brown Swigart
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Scott Huntsman
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Donglei Hu
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Jovia L Nierenberg
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Pooja Middha
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Rachel S Heise
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Yushu Shi
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Linda Kachuri
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Qianqian Zhu
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Marilyn L Kwan
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Bette J Caan
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - John S Witte
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Lawrence H Kushi
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Laura van 't Veer
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Laura J Esserman
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Elad Ziv
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
98
|
Chen JH, Zeng LY, Zhao YF, Tang HX, Lei H, Wan YF, Deng YQ, Liu KX. Causal effects of gut microbiota on sepsis: a two-sample Mendelian randomization study. Front Microbiol 2023; 14:1167416. [PMID: 37234519 PMCID: PMC10206031 DOI: 10.3389/fmicb.2023.1167416] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Recent studies had provided evidence that the gut microbiota is associated with sepsis. However, the potential causal relationship remained unclear. METHODS The present study aimed to explore the causal effects between gut microbiota and sepsis by performing Mendelian randomization (MR) analysis utilizing publicly accessible genome-wide association study (GWAS) summary-level data. Gut microbiota GWAS (N = 18,340) were obtained from the MiBioGen study and GWAS-summary-level data for sepsis were gained from the UK Biobank (sepsis, 10,154 cases; 452,764 controls). Two strategies were used to select genetic variants, i.e., single nucleotide polymorphisms (SNPs) below the locus-wide significance level (1 × 10-5) and the genome-wide statistical significance threshold (5 × 10-8) were chosen as instrumental variables (IVs). The inverse variance weighted (IVW) was used as the primary method for MR study, supplemented by a series of other methods. Additionally, a set of sensitivity analysis methods, including the MR-Egger intercept test, Mendelian randomized polymorphism residual and outlier (MR-PRESSO) test, Cochran's Q test, and leave-one-out test, were carried out to assess the robustness of our findings. RESULTS Our study suggested that increased abundance of Deltaproteobacteria, Desulfovibrionales, Catenibacterium, and Hungatella were negatively associated with sepsis risk, while Clostridiaceae1, Alloprevotella, LachnospiraceaeND3007group, and Terrisporobacter were positively correlated with the risk of sepsis. Sensitivity analysis revealed no evidence of heterogeneity and pleiotropy. CONCLUSION This study firstly found suggestive evidence of beneficial or detrimental causal associations of gut microbiota on sepsis risk by applying MR approach, which may provide valuable insights into the pathogenesis of microbiota-mediated sepsis and strategies for sepsis prevention and treatment.
Collapse
Affiliation(s)
- Jie-Hai Chen
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Li-Ying Zeng
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yun-Feng Zhao
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hao-Xuan Tang
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hang Lei
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu-Fei Wan
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yong-Qiang Deng
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ke-Xuan Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
99
|
Godina C, Tryggvadottir H, Bosch A, Borgquist S, Belting M, Isaksson K, Jernström H. Caveolin-1 genotypes as predictor for locoregional recurrence and contralateral disease in breast cancer. Breast Cancer Res Treat 2023; 199:335-347. [PMID: 37017811 PMCID: PMC10175335 DOI: 10.1007/s10549-023-06919-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/18/2023] [Indexed: 04/06/2023]
Abstract
PURPOSE Caveolin-1 (CAV1) has been implicated in breast cancer oncogenesis and metastasis and may be a potential prognosticator, especially for non-distant events. CAV1 functions as a master regulator of membrane transport and cell signaling. Several CAV1 SNPs have been linked to multiple cancers, but the prognostic impact of CAV1 SNPs in breast cancer remains unclear. Here, we investigated CAV1 polymorphisms in relation to clinical outcomes in breast cancer. METHODS A cohort of 1017 breast cancer patients (inclusion 2002-2012, Sweden) were genotyped using Oncoarray by Ilumina. Patients were followed for up to 15 years. Five out of six CAV1 SNPs (rs10256914, rs959173, rs3807989, rs3815412, and rs8713) passed quality control and were used for haplotype construction. CAV1 genotypes and haplotypes in relation to clinical outcomes were assessed with Cox regression and adjusted for potential confounders (age, tumor characteristics, and adjuvant treatments). RESULTS Only one SNP was associated with lymph node status, no other SNPs or haplotypes were associated with tumor characteristics. The CAV1 rs3815412 CC genotype (5.8% of patients) was associated with increased risk of contralateral breast cancer, adjusted hazard ratio (HRadj) 4.26 (95% CI 1.86-9.73). Moreover, the TTACA haplotype (13% of patients) conferred an increased risk for locoregional recurrence HRadj 2.24 (95% CI 1.24-4.04). No other genotypes or haplotypes were associated with clinical outcome. CONCLUSION CAV1 polymorphisms were associated with increased risk for locoregional recurrence and contralateral breast cancer. These findings may identify patients that could derive benefit from more tailored treatment to prevent non-distant events, if confirmed.
Collapse
Affiliation(s)
- Christopher Godina
- Division of Oncology, Department of Clinical Sciences in Lund, Lund University and Skåne University Hospital, Barngatan 4, 221 85, Lund, Sweden
| | - Helga Tryggvadottir
- Division of Oncology, Department of Clinical Sciences in Lund, Lund University and Skåne University Hospital, Barngatan 4, 221 85, Lund, Sweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund and Malmö, Sweden
| | - Ana Bosch
- Division of Oncology, Department of Clinical Sciences in Lund, Lund University and Skåne University Hospital, Barngatan 4, 221 85, Lund, Sweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund and Malmö, Sweden
| | - Signe Borgquist
- Division of Oncology, Department of Clinical Sciences in Lund, Lund University and Skåne University Hospital, Barngatan 4, 221 85, Lund, Sweden
- Department of Oncology, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Mattias Belting
- Division of Oncology, Department of Clinical Sciences in Lund, Lund University and Skåne University Hospital, Barngatan 4, 221 85, Lund, Sweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund and Malmö, Sweden
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Karolin Isaksson
- Division of Surgery, Department of Clinical Sciences in Lund, Lund University and Kristianstad Hospital, Lund and Kristianstad, Sweden
| | - Helena Jernström
- Division of Oncology, Department of Clinical Sciences in Lund, Lund University and Skåne University Hospital, Barngatan 4, 221 85, Lund, Sweden.
| |
Collapse
|
100
|
Kotnik U, Maver A, Peterlin B, Lovrecic L. Assessment of pathogenic variation in gynecologic cancer genes in a national cohort. Sci Rep 2023; 13:5307. [PMID: 37002323 PMCID: PMC10066348 DOI: 10.1038/s41598-023-32397-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Population-based estimates of pathogenic variation burden in gynecologic cancer predisposition genes are a prerequisite for the development of effective precision public health strategies. This study aims to reveal the burden of pathogenic variants in a comprehensive set of clinically relevant breast, ovarian, and endometrial cancer genes in a large population-based study. We performed a rigorous manual classification procedure to identify pathogenic variants in a panel of 17 gynecologic cancer predisposition genes in a cohort of 7091 individuals, representing 0.35% of the general population. The population burden of pathogenic variants in hereditary gynecologic cancer-related genes in our study was 2.14%. Pathogenic variants in genes ATM, BRCA1, and CDH1 are significantly enriched and the burden of pathogenic variants in CHEK2 is decreased in our population compared to the control population. We have identified a high burden of pathogenic variants in several gynecologic cancer-related genes in the Slovenian population, most importantly in the BRCA1 gene.
Collapse
Affiliation(s)
- Urška Kotnik
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia.
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| | - Aleš Maver
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Borut Peterlin
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Luca Lovrecic
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|