51
|
PAX6 Expression and Retinal Cell Death in a Transgenic Mouse Model for Acute Angle-Closure Glaucoma. J Glaucoma 2015; 24:426-32. [PMID: 25827297 DOI: 10.1097/ijg.0b013e318207069b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE PAX6 is a highly conserved protein essential for the control of eye development both in invertebrates and vertebrates. PAX6 expression persists in the adult inner retina, but little is known about its functions after completion of retinal differentiation. Therefore, we investigated PAX6 expression in wild-type and calcitonin receptor-like receptor transgenic (CLR(SMαA)) mice with angle-closure glaucoma. METHODS Intraocular pressure was measured by indentation tonometry in anesthetized mice. Eyes of mice of both genotypes were enucleated at various ages and retinas were processed for morphological analysis and PAX6 immunostaining. The content of PAX6 in retinal extracts was estimated by Western blot analysis. Retinal expression of glaucoma-related genes was analyzed by reverse transcription-polymerase chain reaction. RESULTS Control mice showed normal retinal morphology between p22 and p428 with steady PAX6 expression in the ganglion cell layer (GCL) and the inner nuclear layer (INL). CLR(SMαA) mice examined between p22 and p82 exhibited increased intraocular pressure and a progressive decrease in cell number including PAX6-expressing cells in the GCL. The INL was not affected up to postnatal day 42. Later, a significant increase in PAX6-expressing cells concomitant with an overall loss of cells was observed in the INL of CLR(SMαA) as compared with control mice. Retinal up-regulation of glaucoma-related genes was furthermore observed. CONCLUSIONS Distinctive changes of PAX6 expression in the inner retina of CLR(SMαA) mice suggest a role in regulatory mechanisms involved in glaucoma-related retinal cell death. The selective increase of PAX6 expression in the degenerating INL of CLR(SMαA) mice may represent an attempt to preserve retinal cytoarchitecture.
Collapse
|
52
|
Greenlees R, Mihelec M, Yousoof S, Speidel D, Wu SK, Rinkwitz S, Prokudin I, Perveen R, Cheng A, Ma A, Nash B, Gillespie R, Loebel DA, Clayton-Smith J, Lloyd IC, Grigg JR, Tam PP, Yap AS, Becker TS, Black GC, Semina E, Jamieson RV. Mutations inSIPA1L3cause eye defects through disruption of cell polarity and cytoskeleton organization. Hum Mol Genet 2015; 24:5789-804. [DOI: 10.1093/hmg/ddv298] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/21/2015] [Indexed: 01/27/2023] Open
|
53
|
Deml B, Reis LM, Lemyre E, Clark RD, Kariminejad A, Semina EV. Novel mutations in PAX6, OTX2 and NDP in anophthalmia, microphthalmia and coloboma. Eur J Hum Genet 2015; 24:535-41. [PMID: 26130484 PMCID: PMC4929874 DOI: 10.1038/ejhg.2015.155] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/17/2015] [Accepted: 06/03/2015] [Indexed: 12/16/2022] Open
Abstract
Anophthalmia and microphthalmia (A/M) are developmental ocular malformations defined as the complete absence or reduction in size of the eye. A/M is a highly heterogeneous disorder with SOX2 and FOXE3 playing major roles in dominant and recessive pedigrees, respectively; however, the majority of cases lack a genetic etiology. We analyzed 28 probands affected with A/M spectrum (without mutations in SOX2/FOXE3) by whole-exome sequencing. Analysis of 83 known A/M factors identified pathogenic/likely pathogenic variants in PAX6, OTX2 and NDP in three patients. A novel heterozygous likely pathogenic variant in PAX6, c.767T>C, p.(Val256Ala), was identified in two brothers with bilateral microphthalmia, coloboma, primary aphakia, iris hypoplasia, sclerocornea and congenital glaucoma; the unaffected mother appears to be a mosaic carrier. While A/M has been reported as a rare feature, this is the first report of congenital primary aphakia in association with PAX6 and the identified allele represents the first variant in the PAX6 homeodomain to be associated with A/M. A novel pathogenic variant in OTX2, c.651delC, p.(Thr218Hisfs*76), in a patient with syndromic bilateral anophthalmia and a hemizygous pathogenic variant in NDP, c.293 C>T, p.(Pro98Leu), in two brothers with isolated bilateral microphthalmia and sclerocornea were also identified. Pathogenic/likely pathogenic variants were not discovered in the 25 remaining A/M cases. This study underscores the utility of whole-exome sequencing for identification of causative mutations in highly variable ocular phenotypes as well as the extreme genetic heterogeneity of A/M conditions.
Collapse
Affiliation(s)
- Brett Deml
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, WI, USA
| | - Linda M Reis
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Emmanuelle Lemyre
- Service de Génétique médicale, CHU Ste-Justine, Département de Pédiatrie, Université de Montréal, Montréal, Canada
| | - Robin D Clark
- Division of Medical Genetics, Department of Pediatrics, Loma Linda University Children's Hospital, Loma Linda, CA 92354
| | | | - Elena V Semina
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, WI, USA
| |
Collapse
|
54
|
Reis LM, Semina EV. Conserved genetic pathways associated with microphthalmia, anophthalmia, and coloboma. ACTA ACUST UNITED AC 2015; 105:96-113. [PMID: 26046913 DOI: 10.1002/bdrc.21097] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/13/2015] [Indexed: 12/19/2022]
Abstract
The human eye is a complex organ whose development requires extraordinary coordination of developmental processes. The conservation of ocular developmental steps in vertebrates suggests possible common genetic mechanisms. Genetic diseases involving the eye represent a leading cause of blindness in children and adults. During the last decades, there has been an exponential increase in genetic studies of ocular disorders. In this review, we summarize current success in identification of genes responsible for microphthalmia, anophthalmia, and coloboma (MAC) phenotypes, which are associated with early defects in embryonic eye development. Studies in animal models for the orthologous genes identified overlapping phenotypes for most factors, confirming the conservation of their function in vertebrate development. These animal models allow for further investigation of the mechanisms of MAC, integration of various identified genes into common developmental pathways and finally, provide an avenue for the development and testing of therapeutic interventions.
Collapse
Affiliation(s)
- Linda M Reis
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Elena V Semina
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Cell Biology Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
55
|
Panova IG, Markitantova YV, Smirnova YA, Zinovieva RD. Molecular-genetic mechanisms of cornea morphogenesis. BIOL BULL+ 2015. [DOI: 10.1134/s1062359015020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
56
|
|
57
|
Takamiya M, Weger BD, Schindler S, Beil T, Yang L, Armant O, Ferg M, Schlunck G, Reinhard T, Dickmeis T, Rastegar S, Strähle U. Molecular description of eye defects in the zebrafish Pax6b mutant, sunrise, reveals a Pax6b-dependent genetic network in the developing anterior chamber. PLoS One 2015; 10:e0117645. [PMID: 25692557 PMCID: PMC4334901 DOI: 10.1371/journal.pone.0117645] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/29/2014] [Indexed: 11/19/2022] Open
Abstract
The cornea is a central component of the camera eye of vertebrates and even slight corneal disturbances severely affect vision. The transcription factor PAX6 is required for normal eye development, namely the proper separation of the lens from the developing cornea and the formation of the iris and anterior chamber. Human PAX6 mutations are associated with severe ocular disorders such as aniridia, Peters anomaly and chronic limbal stem cell insufficiency. To develop the zebrafish as a model for corneal disease, we first performed transcriptome and in situ expression analysis to identify marker genes to characterise the cornea in normal and pathological conditions. We show that, at 7 days post fertilisation (dpf), the zebrafish cornea expresses the majority of marker genes (67/84 tested genes) found also expressed in the cornea of juvenile and adult stages. We also characterised homozygous pax6b mutants. Mutant embryos have a thick cornea, iris hypoplasia, a shallow anterior chamber and a small lens. Ultrastructure analysis revealed a disrupted corneal endothelium. pax6b mutants show loss of corneal epithelial gene expression including regulatory genes (sox3, tfap2a, foxc1a and pitx2). In contrast, several genes (pitx2, ctnnb2, dcn and fabp7a) were ectopically expressed in the malformed corneal endothelium. Lack of pax6b function leads to severe disturbance of the corneal gene regulatory programme.
Collapse
Affiliation(s)
- Masanari Takamiya
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany
| | - Benjamin D. Weger
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany
| | - Simone Schindler
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany
| | - Tanja Beil
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany
| | - Lixin Yang
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany
| | - Olivier Armant
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany
| | - Marco Ferg
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany
| | - Günther Schlunck
- Eye Center, Freiburg University Medical Center, Killianstr. 5, 79106 Freiburg, Germany
| | - Thomas Reinhard
- Eye Center, Freiburg University Medical Center, Killianstr. 5, 79106 Freiburg, Germany
| | - Thomas Dickmeis
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany
| | - Sepand Rastegar
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany
| | - Uwe Strähle
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe, Germany
- * E-mail:
| |
Collapse
|
58
|
Hood MP, Kerr NC, Smaoui N, Iannaccone A. Abnormal cone ERGs in a family with congenital nystagmus and photophobia harboring a p.X423Lfs mutation in the PAX6 gene. Doc Ophthalmol 2015; 130:157-64. [DOI: 10.1007/s10633-014-9477-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 12/23/2014] [Indexed: 10/24/2022]
|
59
|
Weh E, Reis LM, Happ HC, Levin AV, Wheeler PG, David KL, Carney E, Angle B, Hauser N, Semina EV. Whole exome sequence analysis of Peters anomaly. Hum Genet 2014; 133:1497-511. [PMID: 25182519 PMCID: PMC4395516 DOI: 10.1007/s00439-014-1481-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 08/20/2014] [Indexed: 12/12/2022]
Abstract
Peters anomaly is a rare form of anterior segment ocular dysgenesis, which can also be associated with additional systemic defects. At this time, the majority of cases of Peters anomaly lack a genetic diagnosis. We performed whole exome sequencing of 27 patients with syndromic or isolated Peters anomaly to search for pathogenic mutations in currently known ocular genes. Among the eight previously recognized Peters anomaly genes, we identified a de novo missense mutation in PAX6, c.155G>A, p.(Cys52Tyr), in one patient. Analysis of 691 additional genes currently associated with a different ocular phenotype identified a heterozygous splicing mutation c.1025+2T>A in TFAP2A, a de novo heterozygous nonsense mutation c.715C>T, p.(Gln239*) in HCCS, a hemizygous mutation c.385G>A, p.(Glu129Lys) in NDP, a hemizygous mutation c.3446C>T, p.(Pro1149Leu) in FLNA, and compound heterozygous mutations c.1422T>A, p.(Tyr474*) and c.2544G>A, p.(Met848Ile) in SLC4A11; all mutations, except for the FLNA and SLC4A11 c.2544G>A alleles, are novel. This is the first study to use whole exome sequencing to discern the genetic etiology of a large cohort of patients with syndromic or isolated Peters anomaly. We report five new genes associated with this condition and suggest screening of TFAP2A and FLNA in patients with Peters anomaly and relevant syndromic features and HCCS, NDP and SLC4A11 in patients with isolated Peters anomaly.
Collapse
Affiliation(s)
- Eric Weh
- Department of Pediatrics and Children’s Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cell Biology, Neurobiology and Anatomy Department, Medical, College of Wisconsin, Milwaukee, WI 53226, USA
| | - Linda M. Reis
- Department of Pediatrics and Children’s Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Hannah C. Happ
- Department of Pediatrics and Children’s Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Alex V. Levin
- Pediatric Ophthalmology and Ocular Genetics, Wills Eye, Hospital, Philadelphia, PA 19107, USA
| | | | - Karen L. David
- Division of Genetics, Department of Medicine, New York, Methodist Hospital, Brooklyn, NY 11215, USA
| | - Erin Carney
- Division of Genetics, Department of Medicine, New York, Methodist Hospital, Brooklyn, NY 11215, USA
| | - Brad Angle
- Department of Pediatrics, Northwestern University Feinberg School of Medicine and Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Natalie Hauser
- Center for Human Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elena V. Semina
- Department of Pediatrics and Children’s Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cell Biology, Neurobiology and Anatomy Department, Medical, College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
60
|
Zagozewski JL, Zhang Q, Pinto VI, Wigle JT, Eisenstat DD. The role of homeobox genes in retinal development and disease. Dev Biol 2014; 393:195-208. [PMID: 25035933 DOI: 10.1016/j.ydbio.2014.07.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/02/2014] [Accepted: 07/08/2014] [Indexed: 11/18/2022]
Abstract
Homeobox genes are an evolutionarily conserved class of transcription factors that are critical for development of many organ systems, including the brain and eye. During retinogenesis, homeodomain-containing transcription factors, which are encoded by homeobox genes, play essential roles in the regionalization and patterning of the optic neuroepithelium, specification of retinal progenitors and differentiation of all seven of the retinal cell classes that derive from a common progenitor. Homeodomain transcription factors control retinal cell fate by regulating the expression of target genes required for retinal progenitor cell fate decisions and for terminal differentiation of specific retinal cell types. The essential role of homeobox genes during retinal development is demonstrated by the number of human eye diseases, including colobomas and anophthalmia, which are attributed to homeobox gene mutations. In the following review, we highlight the role of homeodomain transcription factors during retinogenesis and regulation of their gene targets. Understanding the complexities of vertebrate retina development will enhance our ability to drive differentiation of specific retinal cell types towards novel cell-based replacement therapies for retinal degenerative diseases.
Collapse
Affiliation(s)
- Jamie L Zagozewski
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | - Qi Zhang
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada R3E 0J9
| | - Vanessa I Pinto
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada R3E 0J9
| | - Jeffrey T Wigle
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada R3E 0J9; Institute of Cardiovascular Sciences, St. Boniface Hospital Research Institute, Winnipeg, MB, Canada R2H 2A6
| | - David D Eisenstat
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada T6G 2H7; Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada R3E 0J9; Department of Pediatrics, University of Alberta, Edmonton, AB, Canada T6G 1C9.
| |
Collapse
|
61
|
Williamson KA, FitzPatrick DR. The genetic architecture of microphthalmia, anophthalmia and coloboma. Eur J Med Genet 2014; 57:369-80. [PMID: 24859618 DOI: 10.1016/j.ejmg.2014.05.002] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 05/14/2014] [Indexed: 10/25/2022]
Abstract
Microphthalmia, anophthalmia and coloboma (MAC) are distinct phenotypes that represent a continuum of structural developmental eye defects. In severe bilateral cases (anophthalmia or severe microphthalmia) the genetic cause is now identifiable in approximately 80 percent of cases, with de novo heterozygous loss-of-function mutations in SOX2 or OTX2 being the most common. The genetic cause of other forms of MAC, in particular isolated coloboma, remains unknown in the majority of cases. This review will focus on MAC phenotypes that are associated with mutation of the genes SOX2, OTX2, PAX6, STRA6, ALDH1A3, RARB, VSX2, RAX, FOXE3, BMP4, BMP7, GDF3, GDF6, ABCB6, ATOH7, C12orf57, TENM3 (ODZ3), and VAX1. Recently reported mutation of the SALL2 and YAP1 genes are discussed in brief. Clinical and genetic features were reviewed in a total of 283 unrelated MAC cases or families that were mutation-positive from these 20 genes. Both the relative frequency of mutations in MAC cohort screens and the level of confidence in the assignment of disease-causing status were evaluated for each gene.
Collapse
Affiliation(s)
- Kathleen A Williamson
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - David R FitzPatrick
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK.
| |
Collapse
|
62
|
Abstract
Aniridia classically presents with a bilateral congenital absence or malformation of the irides, foveal hypoplasia, and nystagmus, and patients tend to develop visually significant pre-senile cataracts and keratopathy. Additionally, they are at high risk for developing glaucoma. Classic aniridia can be genetically defined as the presence of a PAX6 gene deletion or loss-of-function mutation that results in haploinsufficiency. Variants of aniridia, which include a condition previously referred to as autosomal dominant keratitis, are likely due to PAX6 mutations that lead to partial loss of PAX6 function. Aniridia-associated keratopathy (AAK) is a progressive and potentially debilitating problem affecting aniridic patients. The current treatments for AAK are to replace the limbal stem cells through keratolimbal allograft (KLAL) with or without subsequent keratoplasty for visual rehabilitation, or to implant a Boston type 1 keratoprosthesis. Future therapies for AAK may be aimed at the genetic modification of corneal limbal stem cells.
Collapse
Affiliation(s)
- Hyunjoo J Lee
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School , Boston, Massachusetts , USA
| | | |
Collapse
|
63
|
Blake JA, Ziman MR. Pax genes: regulators of lineage specification and progenitor cell maintenance. Development 2014; 141:737-51. [PMID: 24496612 DOI: 10.1242/dev.091785] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pax genes encode a family of transcription factors that orchestrate complex processes of lineage determination in the developing embryo. Their key role is to specify and maintain progenitor cells through use of complex molecular mechanisms such as alternate RNA splice forms and gene activation or inhibition in conjunction with protein co-factors. The significance of Pax genes in development is highlighted by abnormalities that arise from the expression of mutant Pax genes. Here, we review the molecular functions of Pax genes during development and detail the regulatory mechanisms by which they specify and maintain progenitor cells across various tissue lineages. We also discuss mechanistic insights into the roles of Pax genes in regeneration and in adult diseases, including cancer.
Collapse
Affiliation(s)
- Judith A Blake
- School of Medical Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | | |
Collapse
|
64
|
Prokudin I, Simons C, Grigg JR, Storen R, Kumar V, Phua ZY, Smith J, Flaherty M, Davila S, Jamieson RV. Exome sequencing in developmental eye disease leads to identification of causal variants in GJA8, CRYGC, PAX6 and CYP1B1. Eur J Hum Genet 2013; 22:907-15. [PMID: 24281366 DOI: 10.1038/ejhg.2013.268] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 10/18/2013] [Accepted: 10/25/2013] [Indexed: 12/13/2022] Open
Abstract
Developmental eye diseases, including cataract/microcornea, Peters anomaly and coloboma/microphthalmia/anophthalmia, are caused by mutations encoding many different signalling and structural proteins in the developing eye. All modes of Mendelian inheritance occur and many are sporadic cases, so provision of accurate recurrence risk information for families and affected individuals is highly challenging. Extreme genetic heterogeneity renders testing for all known disease genes clinically unavailable with traditional methods. We used whole-exome sequencing in 11 unrelated developmental eye disease patients, as it provides a strategy for assessment of multiple disease genes simultaneously. We identified five causative variants in four patients in four different disease genes, GJA8, CRYGC, PAX6 and CYP1B1. This detection rate (36%) is high for a group of patients where clinical testing is frequently not undertaken due to lack of availability and cost. The results affected clinical management in all cases. These variants were detected in the cataract/microcornea and Peters anomaly patients. In two patients with coloboma/microphthalmia, variants in ABCB6 and GDF3 were identified with incomplete penetrance, highlighting the complex inheritance pattern associated with this phenotype. In the coloboma/microphthalmia patients, four other variants were identified in CYP1B1, and CYP1B1 emerged as a candidate gene to be considered as a modifier in coloboma/microphthalmia.
Collapse
Affiliation(s)
- Ivan Prokudin
- 1] Eye and Developmental Genetics Research Group, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, NSW, Australia [2] Children's Medical Research Institute, Sydney, NSW, Australia
| | - Cas Simons
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - John R Grigg
- 1] Eye and Developmental Genetics Research Group, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, NSW, Australia [2] Discipline of Ophthalmology and Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Rebecca Storen
- 1] Eye and Developmental Genetics Research Group, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, NSW, Australia [2] Children's Medical Research Institute, Sydney, NSW, Australia [3] Discipline of Ophthalmology and Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Vikrant Kumar
- Human Genetics, Genome Institute of Singapore, Singapore
| | - Zai Y Phua
- Human Genetics, Genome Institute of Singapore, Singapore
| | - James Smith
- Department of Ophthalmology, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Maree Flaherty
- Department of Ophthalmology, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Sonia Davila
- Human Genetics, Genome Institute of Singapore, Singapore
| | - Robyn V Jamieson
- 1] Eye and Developmental Genetics Research Group, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, NSW, Australia [2] Children's Medical Research Institute, Sydney, NSW, Australia [3] Discipline of Ophthalmology and Save Sight Institute, University of Sydney, Sydney, NSW, Australia [4] Disciplines of Paediatrics and Child Health and Genetic Medicine, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
65
|
Liu Y, Allingham RR, Qin X, Layfield D, Dellinger AE, Gibson J, Wheeler J, Ashley-Koch AE, Stamer WD, Hauser MA. Gene expression profile in human trabecular meshwork from patients with primary open-angle glaucoma. Invest Ophthalmol Vis Sci 2013; 54:6382-9. [PMID: 24003086 DOI: 10.1167/iovs.13-12128] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To identify the specific genes in human trabecular meshwork (TM) related to POAG. METHODS Primary open-angle glaucoma TM specimens were obtained from routine trabeculectomy surgery. Nonglaucomatous control TM specimens were dissected from donor eyes using the same approach as a standard trabeculectomy. All cases were screened for myocilin (MYOC) mutations. Total RNA was extracted, labeled, and hybridized to Illumina HumanWG-6 BeadChips. Expression data were normalized and analyzed using the R package limma in Bioconductor. Pathway analyses were performed using DAVID Bioinformatics Resources. RESULTS Our study included surgical TM specimens from 15 cases and 13 controls. One case was identified with a heterozygous Q368X MYOC mutation. If TMs were available from both eyes in an individual, the expression data were combined for analysis. The following three comparisons were performed for differential analyses: (1) MYOC POAG case versus 14 non-MYOC POAG cases, (2) MYOC POAG case versus 13 controls, and (3) 14 non-MYOC POAG cases versus 13 controls. Limited by one MYOC case in comparisons 1 and 2, expression changes were reported comparing the fold changes but without P values. Comparison 3 identified 483 genes, including 36 components of TM exosomes. Gene ontology analysis identified several enriched functional clusters, including cell adhesion, extracellular matrix, and secretion. CONCLUSIONS This is the largest TM expression study of POAG cases and controls performed to date and represents the first report of TM expression in a patient having POAG with a Q368X MYOC mutation. Our data suggest the potential role of endocytic and exosome pathways in the pathogenesis of POAG.
Collapse
Affiliation(s)
- Yutao Liu
- Center for Human Genetics, Duke University Medical Center, Durham, North Carolina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Ganesh A, Mai DT, Levin AV. Pediatric glaucoma terminology. Am J Med Genet A 2013; 161A:3205-15. [DOI: 10.1002/ajmg.a.35205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 11/23/2011] [Indexed: 11/07/2022]
Affiliation(s)
- Anuradha Ganesh
- Pediatric Ophthalmology and Ocular Genetics; Wills Eye Institute; Philadelphia Pennsylvania
- Department of Ophthalmology; Sultan Qaboos University Hospital; Muscat Oman
| | - Dang Tam Mai
- Pediatric Ophthalmology and Ocular Genetics; Wills Eye Institute; Philadelphia Pennsylvania
- Department of Glaucoma; Ho Chi Minh City Eye Hospital; Saigon Viet Nam
| | - Alex V. Levin
- Pediatric Ophthalmology and Ocular Genetics; Wills Eye Institute; Philadelphia Pennsylvania
- Thomas Jefferson University; Philadelphia; Pennsylvania
| |
Collapse
|
67
|
Abstract
A premature female infant underwent her first ophthalmologic examination at the age of 4 weeks. The initial examination of the baby was requested for evaluation of a ‘white spot’ on the surface of her right eye. She had been hospitalized in the neonatal intensive care unit because of systemic abnormalities, such as a right clavicle fracture and microcephaly. Slit-lamp examination of the right eye showed a central corneal opacity, corneal thinning, and an iridocorneal adhesion. The lens and fundus of the right eye could not be observed. We observed no pathologic findings in the left eye. The baby’s parents were informed of the high risk for spontaneous corneal perforation without external pressure. At 42 days of age, an ophthalmologic examination of the infant was again requested for evaluation of ‘tears’ from her right eye 3 hours previously. Examination revealed corneal perforation, iris protrusion, and a fat anterior chamber. We performed emergent conjunctival flap surgery. Three months following surgery, the patient’s right eye was successfully preserved with no sign of inflammation or leakage.
Collapse
Affiliation(s)
- Moosang Kim
- Department of Ophthalmology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | | | | |
Collapse
|
68
|
Ito YA, Walter MA. Genomics and anterior segment dysgenesis: a review. Clin Exp Ophthalmol 2013; 42:13-24. [PMID: 24433355 DOI: 10.1111/ceo.12152] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 05/05/2013] [Indexed: 01/16/2023]
Abstract
Anterior segment dysgenesis refers to a spectrum of disorders affecting structures in the anterior segment of the eye including the iris, cornea and trabecular meshwork. Approximately 50% of patients with anterior segment dysgenesis develop glaucoma. Traditional genetic methods using linkage analysis and family-based studies have identified numerous disease-causing genes such as PAX6, FOXC1 and PITX2. Despite these advances, phenotypic and genotypic heterogeneity pose continuing challenges to understand the mechanisms underlying the complexity of anterior segment dysgenesis disorders. Genomic methods, such as genome-wide association studies, are potentially an effective tool to understand anterior segment dysgenesis and the individual susceptibility to the development of glaucoma. In this review, we provide the rationale, as well as the challenges, to utilizing genomic methods to examine anterior segment dysgenesis disorders.
Collapse
Affiliation(s)
- Yoko A Ito
- Department of Medical Genetics, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
69
|
Ocular surface development and gene expression. J Ophthalmol 2013; 2013:103947. [PMID: 23533700 PMCID: PMC3595720 DOI: 10.1155/2013/103947] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/16/2013] [Indexed: 01/10/2023] Open
Abstract
The ocular surface-a continuous epithelial surface with regional specializations including the surface and glandular epithelia of the cornea, conjunctiva, and lacrimal and meibomian glands connected by the overlying tear film-plays a central role in vision. Molecular and cellular events involved in embryonic development, postnatal maturation, and maintenance of the ocular surface are precisely regulated at the level of gene expression by a well-coordinated network of transcription factors. A thorough appreciation of the biological characteristics of the ocular surface in terms of its gene expression profiles and their regulation provides us with a valuable insight into the pathophysiology of various blinding disorders that disrupt the normal development, maturation, and/or maintenance of the ocular surface. This paper summarizes the current status of our knowledge related to the ocular surface development and gene expression and the contribution of different transcription factors to this process.
Collapse
|
70
|
Hamoudi H, Rudnick JC, Prause JU, Tauscher K, Breithaupt A, Teifke JP, Heegaard S. Anterior segment dysgenesis (Peters' anomaly) in two snow leopard (Panthera uncia) cubs. Vet Ophthalmol 2012; 16 Suppl 1:130-4. [DOI: 10.1111/vop.12017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Hassan Hamoudi
- Department of Ophthalmology; University of Copenhagen, Glostrup Hospital; Glostrup Denmark
| | | | - Jan U. Prause
- Department of Neuroscience and Pharmacology, Eye Pathology Institute; University of Copenhagen; Copenhagen Denmark
| | - Kerstin Tauscher
- Friedrich-Löffler-Institut; Bundesforschungsinstitut fuer Tiergesundheit; Greifswald Germany
| | - Angele Breithaupt
- Friedrich-Löffler-Institut; Bundesforschungsinstitut fuer Tiergesundheit; Greifswald Germany
| | - Jens P. Teifke
- Friedrich-Löffler-Institut; Bundesforschungsinstitut fuer Tiergesundheit; Greifswald Germany
| | - Steffen Heegaard
- Department of Ophthalmology; University of Copenhagen, Glostrup Hospital; Glostrup Denmark
- Department of Neuroscience and Pharmacology, Eye Pathology Institute; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
71
|
Dai L, Li Y, Du CY, Gong LM, Han CC, Li XG, Fan P, Fu SB. Ten SNPs of PAX6, Lumican, and MYOC genes are not associated with high myopia in Han Chinese. Ophthalmic Genet 2012; 33:171-8. [PMID: 22809227 DOI: 10.3109/13816810.2012.675397] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To investigate whether the PAX6, Lumican, and MYOC genes are related to high myopia in Han Chinese since the association between these genes and high myopia is unclear in this patient population. METHODS Peripheral venous blood samples were collected for DNA extraction from 220 subjects with high myopia (refractive error ≤-10.00 D) vs. normal controls among the Han Chinese of Northeastern China. Mass spectrometry was applied to detect 10 SNP loci of the PAX6, Lumican, and MYOC genes. The candidate region was analyzed using case-control correlation analysis. The χ(2) test was used to analyze the allele and genotype frequencies in the myopic group vs. the control group. Haploview software was used for haplotype analysis. RESULTS The χ(2) test was used to compare the allele and genotype frequencies of SNPs in patients and control subjects and the results showed that ten SNPs of the PAX6, Lumican, and MYOC genes were not significantly associated with high myopia. CONCLUSIONS Our results confirm that the PAX6, Lumican, and MYOC genes were not associated with high myopia in the Han Chinese in Northeastern China.
Collapse
Affiliation(s)
- Lili Dai
- Department of Ophthalmology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Abstract
Aniridia is a rare congenital disorder in which there is a variable degree of hypoplasia or the absence of iris tissue associated with multiple other ocular changes, some present from birth and some arising progressively over time. Most cases are associated with dominantly inherited mutations or deletions of the PAX6 gene. This article will review the clinical manifestations, the molecular basis including genotype-phenotype correlations, diagnostic approaches and management of aniridia.
Collapse
|
73
|
Abstract
PURPOSE OF REVIEW Anterior segment dysgenesis (ASD) disorders encompass a spectrum of developmental conditions affecting the cornea, iris, and lens and are generally associated with an approximate 50% risk for glaucoma. These conditions are characterized by both autosomal dominant and recessive patterns of inheritance often with incomplete penetrance/variable expressivity. This article summarizes what is known about the genetics of ASD disorders and reviews recent developments. RECENT FINDINGS Mutations in Collagen type IV alpha-1 (COL4A1) and Beta-1,3-galactosyltransferase-like (B3GALTL) have been reported in ASD patients. Novel findings in other well known ocular genes are also presented, among which regulatory region deletions in PAX6 and PITX2 are most notable. SUMMARY Although a number of genetic causes have been identified, many ASD conditions are still awaiting genetic elucidation. The majority of characterized ASD genes encode transcription factors; several other genes represent extracellular matrix-related proteins. All of the involved genes play active roles in ocular development and demonstrate conserved functions across species. The use of novel technologies, such as whole genome sequencing/comparative genomic hybridization, is likely to broaden the mutation spectrums in known genes and assist in the identification of novel causative genes as well as modifiers explaining the phenotypic variability of ASD conditions.
Collapse
|
74
|
Chograni M, Chaabouni M, Mâazoul F, Bouzid H, Kraiem A, Chaabouni HBB. Absence of mutations in four genes encoding for congenital cataract and expressed in the human brain in Tunisian families with cataract and mental retardation. BMC Ophthalmol 2011; 11:35. [PMID: 22103961 PMCID: PMC3258189 DOI: 10.1186/1471-2415-11-35] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 11/21/2011] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND To identify the genetic defect associated with autosomal recessive congenital cataract (ARCC), mental retardation (MR) and ARCC, MR and microcephaly present in most patients in four Tunisian consanguineous families. METHODS We screened four genes implicated in congenital cataract by direct sequencing in two groups of patients; those affected by ARCC associated to MR and those who presented also microcephaly. Among its three genes PAX6, PITX3 and HSF4 are expressed in human brain and one gene LIM2 encodes for the protein MP20 that interact with the protein galectin-3 expressed in human brain and plays a crucial role in its development. All genes were screened by direct sequencing in two groups of patients; those affected by ARCC associated to MR and those who presented also microcephaly. RESULTS We report no mutation in the four genes of congenital cataract and its flanking regions. Only variations that did not segregate with the studied phenotypes (ARCC associated to MR, ARCC associated with MR and microcephaly) are reported. We detected three intronic variations in PAX6 gene: IVS4 -274insG (intron 4), IVS12 -174G>A (intron12) in the four studied families and IVS4 -195G>A (intron 4) in two families. Two substitutions polymorphisms in PITX3 gene: c.439 C>T (exon 3) and c.930 C>A (exon4) in one family. One intronic variation in HSF4 gene: IVS7 +93C>T (intron 7) identified in one family. And three intronic substitutions in LIM2 gene identified in all four studied families: IVS2 -24A>G (intron 2), IVS4 +32C>T (intron 4) and c.*15A>C (3'-downstream sequence). CONCLUSION Although the role of the four studied genes: PAX6, PITX3, HSF4 and LIM2 in both ocular and central nervous system development, we report the absence of mutations in all studied genes in four families with phenotypes associating cataract, MR and microcephaly.
Collapse
Affiliation(s)
- Manèl Chograni
- University Tunis Elmanar, Laboratoire Génétique Humaine, Tunis, Tunisia
| | | | | | | | | | | |
Collapse
|
75
|
Cho D, Choi D, Nam W. Unilateral Peters' anomaly with chorioretinal coloboma in the other eye. KOREAN JOURNAL OF OPHTHALMOLOGY 2011; 25:352-4. [PMID: 21976945 PMCID: PMC3178772 DOI: 10.3341/kjo.2011.25.5.352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 08/26/2010] [Indexed: 11/23/2022] Open
Abstract
An 18-year-old man presented with poor vision in both eyes that had been present since birth. Central corneal opacity and inferior peripheral sclerocornea with iridocorneal adhesion were observed upon anterior segment examination of the left eye. A coloboma of the iris was observed in the patient's right eye, which manifested as a small notch in the inferior pupillary margin and cataract. Fundus examination of the right eye showed a large inferior chorioretinal coloboma involving the optic disc and macula. It is essential to examine the fundus in detail, if possible, in cases of Peters' anomaly, because these patients may have congenital anomalies such as chorioretinal coloboma.
Collapse
Affiliation(s)
- Dooyoung Cho
- Department of Ophthalmology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | | | | |
Collapse
|
76
|
Davis LK, Meyer KJ, Schindler EI, Beck JS, Rudd DS, Grundstad AJ, Scheetz TE, Braun TA, Fingert JH, Alward WLM, Kwon YH, Folk JC, Russell SR, Wassink TH, Sheffield VC, Stone EM. Copy number variations and primary open-angle glaucoma. Invest Ophthalmol Vis Sci 2011; 52:7122-33. [PMID: 21310917 PMCID: PMC3207715 DOI: 10.1167/iovs.10-5606] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 08/06/2010] [Accepted: 11/01/2010] [Indexed: 11/24/2022] Open
Abstract
PURPOSE This study sought to investigate the role of rare copy number variation (CNV) in age-related disorders of blindness, with a focus on primary open-angle glaucoma (POAG). Data are reported from a whole-genome copy number screen in a large cohort of 400 individuals with POAG and 500 age-matched glaucoma-free subjects. METHODS DNA samples from patients and controls were tested for CNVs using a combination of two microarray platforms. The signal intensity data generated from these arrays were then analyzed with multiple CNV detection programs including CNAG version 2.0, PennCNV, and dChip. RESULTS A total of 11 validated CNVs were identified as recurrent in the POAG set and absent in the age-matched control set. This set included CNVs on 5q23.1 (DMXL1, DTWD2), 20p12 (PAK7), 12q14 (C12orf56, XPOT, TBK1, and RASSF3), 12p13.33 (TULP3), and 10q34.21 (PAX2), among others. The CNVs presented here are exceedingly rare and are not found in the Database of Genomic Variants. Moreover, expression data from ocular tissue support the role of these CNV-implicated genes in vision-related processes. In addition, CNV locations of DMXL1 and PAK7 overlap previously identified linkage signals for glaucoma on 5p23.1 and 20p12, respectively. CONCLUSIONS The data are consistent with the hypothesis that rare CNV plays a role in the development of POAG.
Collapse
Affiliation(s)
- Lea K. Davis
- From the Department of Psychiatry, University of Illinois, Chicago, Illinois; and
| | | | | | | | | | | | - Todd E. Scheetz
- Ophthalmology and Visual Sciences, and
- the Center for Bioinformatics and Computational Biology, and
| | - Terry A. Braun
- Ophthalmology and Visual Sciences, and
- the Center for Bioinformatics and Computational Biology, and
| | - John H. Fingert
- the Interdisciplinary Genetics Program
- Ophthalmology and Visual Sciences, and
| | | | | | | | | | | | - Val C. Sheffield
- the Interdisciplinary Genetics Program
- the Departments of Pediatrics
- the Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa
| | - Edwin M. Stone
- the Interdisciplinary Genetics Program
- Ophthalmology and Visual Sciences, and
- the Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa
| |
Collapse
|
77
|
Luo F, Zhou L, Ma X, He Y, Zou L, Jie Y, Liu J, Pan Z. Mutation analysis of PAX6 in a Chinese family and a patient with a presumed sporadic case of congenital aniridia. Ophthalmic Res 2011; 47:27-31. [PMID: 21691140 DOI: 10.1159/000327593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 03/17/2011] [Indexed: 11/19/2022]
Abstract
AIMS Mutations in the PAX6 are the major cause of congenital aniridia. The objective of this study was to analyze genetic mutations in PAX6 in Chinese patients with congenital aniridia. METHODS Total genomic DNA was isolated from the peripheral blood of the aniridia patients, all healthy family members and 100 healthy volunteers. The 14 exons (including alternatively spliced exon 5a) of the PAX6 gene were amplified by polymerase chain reaction, and the products were sequenced to identify the mutation. RESULTS Two mutations of PAX6 were detected in exon 11 in the congenital aniridia patients. One mutation was caused by the duplication of the 4 nucleic acids CTCC (c.1286insCTCC), which would lead to a frameshift. The other mutation was caused by a transition from C to T (c.1311C → T), which would generate a stop codon. Neither mutation was present in the healthy family members or 100 healthy volunteers. CONCLUSION We examined the exon sequence of the PAX6 gene in a Chinese family and an unrelated individual with aniridia. The predicted outcome of both mutations is premature termination. The mutation found in the unrelated individual has not previously been reported and represents a new addition to the spectrum of mutations in PAX6.
Collapse
Affiliation(s)
- Fei Luo
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Khan K, Al-Maskari A, McKibbin M, Carr IM, Booth A, Mohamed M, Siddiqui S, Poulter JA, Parry DA, Logan CV, Hashmi A, Sahi T, Jafri H, Raashid Y, Johnson CA, Markham AF, Toomes C, Rice A, Sheridan E, Inglehearn CF, Ali M. Genetic heterogeneity for recessively inherited congenital cataract microcornea with corneal opacity. Invest Ophthalmol Vis Sci 2011; 52:4294-9. [PMID: 21474777 DOI: 10.1167/iovs.10-6776] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate whether three consanguineous families from the Punjab province of Pakistan, with affected members with recessively inherited congenital cataract microcornea with corneal opacity, are genetically homogeneous. METHODS An ophthalmic examination was performed on each family member to establish the diagnosis. The two largest families were analyzed by homozygosity mapping using SNP arrays. Linkage was confirmed using polymorphic microsatellite markers, and logarithm of odds (LOD) scores were calculated. Candidate genes were prioritized using the ENDEAVOUR program. RESULTS Autosomal recessive congenital cataract-microcornea with corneal opacity mapped to chromosome 10cen for family MEP57 and to either chromosomes 2ptel or 20p for family MEP60. For MEP57, the refined interval was 36.8 Mb flanked by D10S1208 (35.3 Mb) and D10S676 (72.1 Mb). For MEP60, the interval containing the mutation was either 6.7 Mb from the telomere of chromosome 2 to marker D2S281 or 3.8 Mb flanked by D20S906 (1.5 Mb) and D20S835 (5.3 Mb). Maximum multipoint LOD scores of 3.09, 1.94, and 3.09 were calculated at D10S567, D2S281, and D20S473 for families MEP57 and MEP60. Linkage to these loci was excluded for family MEP68. SLC4A11 was excluded as a candidate gene for the observed phenotype in MEP60. CONCLUSIONS The authors have identified two new loci, one on chromosome 10cen and the other on 2ptel or 20p, that are associated with recessively inherited congenital cataract-microcornea with corneal opacity. This phenotype is genetically heterogeneous in the Pakistani population. Further genetic studies of this kind, combined with a detailed phenotypic description, will contribute to more precise classification criteria for anterior segment disease.
Collapse
Affiliation(s)
- Kamron Khan
- Leeds Institute of Molecular Medicine, Leeds, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Davis J, Piatigorsky J. Overexpression of Pax6 in mouse cornea directly alters corneal epithelial cells: changes in immune function, vascularization, and differentiation. Invest Ophthalmol Vis Sci 2011; 52:4158-68. [PMID: 21447684 DOI: 10.1167/iovs.10-6726] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To assess whether Pax6 functions directly in the cornea, a corneal-preferred promoter was used to overexpress Pax6 specifically in the cornea. METHODS Transgenic mice harboring a construct containing mouse Pax6 coding sequences fused downstream of the aldehyde dehydrogenase 3a1 (Aldh3a1) promoter were generated (Pax6 Tg). Pax6 expression was analyzed by Western blot and immunohistochemistry. Eye sections were stained with hematoxylin and eosin, Schiff reagent, and fluorescein, to assess morphologic changes, the presence of goblet cells, and barrier integrity, respectively. Gene expression changes in mildly affected Pax6 Tg corneas were compared to age-matched, wild-type (WT) corneas by microarray analysis and quantitative PCR. Promoter regulation of several differentially expressed genes was examined by monitoring luciferase activity of reporter constructs after cotransfection with Pax6 in COS7 cells. RESULTS Corneal overexpression of Pax6 produces an abnormal cornea with altered epithelial cell morphology, neovascularization, immune cell invasion, and a compromised barrier; the lens appeared normal. Major changes in expression of genes involved in immune function, vascularization, and epithelial differentiation occurred in corneas from Pax6 Tg versus WT mice. The keratin (K) profile was dramatically altered in the Pax6 Tg corneas, as were several components of the Wnt signaling pathway. In severely affected Pax6 Tg corneas, K12 was reduced, and Pax6 was redistributed into the cytoplasm. Promoters from the chitinase 3-like 3, Wnt inhibitory factor 1, and fms-related tyrosine kinase 1/soluble VEGF receptor genes were upregulated five-, seven-, and threefold, respectively, by Pax6 in transfected COS7 cells. CONCLUSIONS Pax6 functions directly to maintain normal, corneal epithelial cells.
Collapse
Affiliation(s)
- Janine Davis
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | | |
Collapse
|
80
|
Lieven O, Rüther U. The Dkk1 dose is critical for eye development. Dev Biol 2011; 355:124-37. [PMID: 21539829 DOI: 10.1016/j.ydbio.2011.04.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 03/25/2011] [Accepted: 04/18/2011] [Indexed: 10/18/2022]
Abstract
During mammalian ocular development, several signaling pathways control the spatiotemporal highly defined realization of the three-dimensional eye architecture. Given the complexity of these inductive signals, the developing eye is a sensitive organ for several diseases. In this study, we investigated a Dkk1+/- haploinsufficiency during eye development, resulting in coloboma and anterior eye defects, two common developmental eye disorders. Dkk1 impacts eye development from a defined developmental time point on, and is critical for lens separation from the surface ectoderm via β-catenin mediated Pdgfrα and E-cadherin expression. Dkk1 does not impact the dorso ventral retina patterning in general but is critical for Shh dependent Pax2 extension into the midline region. The described results also indicate that the retinal Dkk1 dose is critical for important steps during eye development, such as optic fissure closure and cornea formation. Further analysis of the relationship between Dkk1 and Shh signaling revealed that Dkk1 and Shh coordinatively control anterior head formation and eye induction. During eye development itself, retinal Dkk1 activation is depending on cilia mediated Gli3 regulation. Therefore, our data essentially improve the knowledge of coloboma and anterior eye defects, which are common human eye developmental defects.
Collapse
Affiliation(s)
- Oliver Lieven
- Institute for Animal Developmental, Molecular Biology, Heinrich-Heine-University, Düsseldorf, Germany.
| | | |
Collapse
|
81
|
Functional analysis of missense mutations G36A and G51A in PAX6, and PAX6(5a) causing ocular anomalies. Exp Eye Res 2011; 93:40-9. [PMID: 21524647 DOI: 10.1016/j.exer.2011.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 04/02/2011] [Accepted: 04/05/2011] [Indexed: 12/26/2022]
Abstract
The PAX6 has been described a "master regulator of eye development". A specific ratio of PAX6, and its alternatively spliced isoform, PAX6(5a), has also been observed essential for optimal function. Mutations into PAX6 lead to a number of ocular, and neuronal defects of variable penetrance and expressivity but the mechanism is either poorly understood or underrepresented. This report describes analysis of functions of two missense mutations, G36A, and G51A, causing optic-nerve hypoplasia and optic-disc coloboma in humans, respectively. Mutations were created by site-directed mutagenesis. Products were detected by in-vitro translation and transient transfection to the cultured NIH-3T3 cells. Their DNA-binding, and transcriptional activation properties were analysed through electrophoretic mobility shift assay and luciferase reporter assay, respectively. Mutations induced changes in conformation and secondary structure of PAX6, and PAX6(5a) not only restrict to specific site of mutation in the paired-domain but extend to homeodomain, and transactivation domain. The PAX6-G36A showed reduced binding to PAX6-consensus binding sequence and PAX6(5a)-consensus binding sequence but its binding affinity to homeodomain binding sequence was unaffected. It showed significantly higher transactivation potential through PAX6-consensus binding sequence but reduced activity with PAX6(5a)-consensus binding sequence and homeodomain binding sequence containing luciferase reporters. The PAX6(5a)-G36A showed enhanced transactivation potential with PAX6-consensus binding sequence, PAX6(5a)-consensus binding sequence, and homeodomain binding sequence containing luciferase reporters. The binding affinity of PAX6(5a)-G36A was significantly higher to PAX6-consensus binding sequence, and PAX6(5a)-consensus binding sequence as compared to PAX6(5a) but remains unaffected to homeodomain binding sequence. The enhanced binding affinity was observed by PAX6-G51A to PAX6-consensus binding sequence, PAX6(5a)-consensus binding sequence, and homeodomain binding sequence. The transactivation potential was observed higher with PAX6-consensus binding sequence but significant reduction was evident with PAX6(5a)-consensus binding sequence, and homeodomain binding sequence containing luciferase reporters. The lower binding affinity to PAX6-consensus binding sequence and PAX6(5a)-consensus binding sequence was observed by PAX6(5a)-G51A but loss of binding affinity was detected to homeodomain binding sequence. However, PAX6(5a)-G51A showed significantly higher transactivation with PAX6-consensus binding sequence, PAX6(5a)-consensus binding sequence, and homeodomain binding sequence containing luciferase reporters. With the eye-specific α-A-crystallin promoter, PAX6-G36A and PAX6-G51A mutants were found to have higher ability to transactivate whereas PAX6(5a)-G36A and PAX6(5a)-G51A have lower transactivation potential compared to their respective wild type forms. Thus, variable DNA-binding and transactivation properties of the mutants with different PAX6-binding sequences provide an insight towards their variable penetrance and expressivity.
Collapse
|
82
|
Ma DL, Xu T, Chan DSH, Man BYW, Fong WF, Leung CH. A highly selective, label-free, homogenous luminescent switch-on probe for the detection of nanomolar transcription factor NF-kappaB. Nucleic Acids Res 2011; 39:e67. [PMID: 21398636 PMCID: PMC3105395 DOI: 10.1093/nar/gkr106] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Transcription factors are involved in a number of important cellular processes. The transcription factor NF-κB has been linked with a number of cancers, autoimmune and inflammatory diseases. As a result, monitoring transcription factors potentially represents a means for the early detection and prevention of diseases. Most methods for transcription factor detection tend to be tedious and laborious and involve complicated sample preparation, and are not practical for routine detection. We describe herein the first label-free luminescence switch-on detection method for transcription factor activity using Exonuclease III and a luminescent ruthenium complex, [Ru(phen)2(dppz)]2+. As a proof of concept for this novel assay, we have designed a double-stranded DNA sequence bearing two NF-κB binding sites. The results show that the luminescence response was proportional to the concentration of the NF-κB subunit p50 present in the sample within a wide concentration range, with a nanomolar detection limit. In the presence of a known NF-κB inhibitor, oridonin, a reduction in the luminescence response of the ruthenium complex was observed. The reduced luminescence response of the ruthenium complex in the presence of small molecule inhibitors allows the assay to be applied to the high-throughput screening of chemical libraries to identify new antagonists of transcription factor DNA binding activity. This will allow the rapid and low cost identification and development of novel scaffolds for the treatment of diseases caused by the deregulation of transcription factor activity.
Collapse
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | | | | | | | | | | |
Collapse
|
83
|
Cross SH, McKie L, West K, Coghill EL, Favor J, Bhattacharya S, Brown SDM, Jackson IJ. The Opdc missense mutation of Pax2 has a milder than loss-of-function phenotype. Hum Mol Genet 2011; 20:223-34. [PMID: 20943750 PMCID: PMC3005898 DOI: 10.1093/hmg/ddq457] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 10/08/2010] [Indexed: 01/14/2023] Open
Abstract
Renal-coloboma syndrome, also known as papillorenal syndrome, is an autosomal dominant human disorder in which optic disc coloboma is associated with kidney abnormalities. Mutations in the paired domain transcription factor PAX2 have been found to be the underlying cause of this disease. Disease severity varies between patients, and in some cases, renal hypoplasia has been found in the absence of any retinal defects. Here we report an N-ethyl-N-nitrosourea-induced mouse mutation, Opdc, which is an isoleucinetothreonine missense mutation, I40T, in the first α-helix of the Pax2 paired domain. The mutant protein binds target DNA sequences less strongly than the wild-type protein and acts poorly to transactivate target promoters in culture. The phenotypic consequence of this mutation on the development of the eye and ear is similar to that reported for null alleles of Pax2. However, in homozygotes, cerebellar development is normal on a genetic background in which loss of Pax2 results in failure of cerebellar formation. Moreover, there is a genetic background effect on the heterozygous phenotype such that on some strain backgrounds, kidney development is unaffected. Opdc is the first hypomorphic mutation reported for Pax2 that differs in phenotype from loss-of-function mutations. These results suggest that PAX2 is a strong candidate gene for cases in which human patients have optic disc coloboma not associated with renal dysplasia.
Collapse
Affiliation(s)
- Sally H Cross
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Edinburgh, UK.
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Parikh M, Alward WL. Axenfeld-Rieger Syndrome and Peters' Anomaly. Cornea 2011. [DOI: 10.1016/b978-0-323-06387-6.00065-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
85
|
A novel, non-stop mutation in FOXE3 causes an autosomal dominant form of variable anterior segment dysgenesis including Peters anomaly. Eur J Hum Genet 2010; 19:293-9. [PMID: 21150893 DOI: 10.1038/ejhg.2010.210] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Anterior segment dysgenesis (ASD) is a spectrum of disorders that affect the anterior ocular chamber. Clinical studies on a Newfoundland family over the past 30 years show that 11 relatives have a variable ocular phenotype ranging from microcornea to Peters anomaly, segregating as an autosomal dominant trait. To determine the molecular etiology of the variable ASD in this family, we sequenced nine functional candidate genes and identified 44 variants. A point mutation in FOXE3, which codes for a transcription factor involved in the formation of the lens and surrounding structures, co-segregated with the variable ocular phenotype. This novel mutation (c.959G>T) substitutes the stop codon for a leucine residue, predicting the addition of 72 amino acids to the C-terminus of FOXE3. Two recent reports have also identified non-stop mutations in FOXE3 in patients with variable ocular phenotypes and predict an extended protein. Although FOXE3 is a lens-specific gene, we successfully isolated complementary DNA from lymphoblasts of an affected family member, and our sequencing results show that the c.959T allele is absent, suggesting that it may be degraded at the RNA level. Though preliminary, our results challenge the notion that an extended FOXE3 protein causes ASD, and instead suggests a mechanism of haploinsufficiency in the case of non-stop mutations. This study adds to several reports that suggest that autosomal-dominant mutations within FOXE3 cause ASD and has important clinical utility, especially for the diagnosis of mildly affected patients.
Collapse
|
86
|
Huang B, He W. Molecular characteristics of inherited congenital cataracts. Eur J Med Genet 2010; 53:347-57. [PMID: 20624502 DOI: 10.1016/j.ejmg.2010.07.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Accepted: 07/04/2010] [Indexed: 01/20/2023]
Abstract
Congenital cataracts are a major cause of induced blindness in children, and inherited cataracts are the major cause of congenital cataracts. Inherited congenital cataracts have been associated with mutations in specific genes, including those of crystallins, gap junction proteins, membrane transport and channel proteins, the cytoskeleton, and growth and transcription factors. Locating and identifying the genes and mutations involved in cataractogenesis are essential to gaining an understanding of the molecular defects and pathophysiologic characteristics of inherited congenital cataracts. In this review, we summarize the current research in this field.
Collapse
Affiliation(s)
- Bingyu Huang
- Medical Genetics Laboratory, Department of Obstetrics and Gynecology, Second Teaching Hospital, Jilin University, 218 Zhiqiang, Changchun, 130041, China.
| | | |
Collapse
|
87
|
Abstract
The PAX (paired box) genes are a family of transcription factors critical for fetal growth and organogenesis. Abnormalities of PAX2, PAX3, PAX6, and PAX9 are associated with various congenital craniofacial anomalies, including tooth abnormalities. We present here a boy with oligodontia and language delay. Dental x-rays showed that he lacked primary molars and was missing most of his permanent teeth. A genome-wide, single-nucleotide polymorphism-based microarray revealed a de novo 223-kb heterozygous deletion on 14q13.3 that included the PAX9 gene. In addition, the array showed 2 copies of the X chromosome and 1 copy of the Y chromosome, diagnostic for Klinefelter syndrome. The findings in this patient illustrate the role of the PAX9 gene in tooth development and provide the first example of a de novo deletion of 14q13.3 manifesting primarily with oligodontia. This report also supports the utility of genome-wide microarrays in determining the genetic cause of craniofacial abnormalities.
Collapse
|
88
|
Li L, Nakaya N, Chavali VR, Ma Z, Jiao X, Sieving PA, Riazuddin S, Tomarev SI, Ayyagari R, Riazuddin SA, Hejtmancik JF. A mutation in ZNF513, a putative regulator of photoreceptor development, causes autosomal-recessive retinitis pigmentosa. Am J Hum Genet 2010; 87:400-9. [PMID: 20797688 DOI: 10.1016/j.ajhg.2010.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/30/2010] [Accepted: 08/03/2010] [Indexed: 02/04/2023] Open
Abstract
Retinitis pigmentosa (RP) is a phenotypically and genetically heterogeneous group of inherited retinal degenerations characterized clinically by night blindness, progressive constriction of the visual fields, and loss of vision, and pathologically by progressive loss of rod and then cone photoreceptors. Autosomal-recessive RP (arRP) in a consanguineous Pakistani family previously linked to chromosome 2p22.3-p24.1 is shown to result from a homozygous missense mutation (c.1015T>C [p.C339R]) in ZNF513, encoding a presumptive transcription factor. znf513 is expressed in the retina, especially in the outer nuclear layer, inner nuclear layer, and photoreceptors. Knockdown of znf513 in zebrafish reduces eye size, retinal thickness, and expression of rod and cone opsins and causes specific loss of photoreceptors. These effects are rescued by coinjection with wild-type (WT) but not p.C339R-znf513 mRNA. Both normal and p.C339R mutant ZNF513 proteins expressed in COS-7 cells localize to the nucleus. ChIP analysis shows that only the wild-type but not the mutant ZNF513 binds to the Pax6, Sp4, Arr3, Irbp, and photoreceptor opsin promoters. These results suggest that the ZNF513 p.C339R mutation is responsible for RP in this family and that ZNF513 plays a key role in the regulation of photoreceptor-specific genes in retinal development and photoreceptor maintenance.
Collapse
|
89
|
Axenfeld-Rieger Syndrome Associated with Congenital Glaucoma and Cytochrome P4501B1 Gene Mutations. Case Rep Med 2010; 2010. [PMID: 20827438 PMCID: PMC2934855 DOI: 10.1155/2010/212656] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 06/13/2010] [Accepted: 07/26/2010] [Indexed: 01/09/2023] Open
Abstract
Developmental anomalies of the ocular anterior chamber angle may lead to an incomplete development of the structures that form the conventional aqueous outflow pathway. Thus, disorders that present with such dysfunction tend to be associated with glaucoma. Among them, Axenfeld-Rieger (ARS) malformation is a rare clinical entity with an estimated prevalence of one in every 200,000 individuals. The changes in eye morphogenesis in ARS are highly penetrant and are associated with 50% risk of development of glaucoma. Mutations in the cytochrome P4501B1 (CYP1B1) gene have been reported to be associated with primary congenital glaucoma and other forms of glaucoma and mutations in pituitary homeobox 2
(PITX2) gene have been identified in ARS in various studies. This case was negative for PITX2 mutations and compound heterozygote for CYP1B1 mutations.
Clinical manifestations of this patient include bilateral elevated intraocular pressure (>40 mmHg) with increased corneal diameter (>14 mm) and corneal opacity. Patient also had iridocorneal adhesions, anteriorly displaced Schwalbe line, anterior insertion of iris, broad nasal bridge and protruding umbilicus. This is the first study from north India reporting CYP1B1 mutations in Axenfeld-Rieger syndrome with bilateral buphthalmos and early onset glaucoma. Result of this study supports the role of CYP1B1 as a causative gene in ASD disorders and its role in oculogenesis.
Collapse
|
90
|
Kroeber M, Davis N, Holzmann S, Kritzenberger M, Shelah-Goraly M, Ofri R, Ashery-Padan R, Tamm ER. Reduced expression of Pax6 in lens and cornea of mutant mice leads to failure of chamber angle development and juvenile glaucoma. Hum Mol Genet 2010; 19:3332-42. [PMID: 20538882 DOI: 10.1093/hmg/ddq237] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Heterozygous mutations in PAX6 are causative for aniridia, a condition that is frequently associated with juvenile glaucoma. Defects in morphogenesis of the iridocorneal angle, such as lack of trabecular meshwork differentiation, absence of Schlemm's canal and blockage of the angle by iris tissue, have been described as likely causes for glaucoma, and comparable defects have been observed in heterozygous Pax6-deficient mice. Here, we employed Cre/loxP-mediated inactivation of a single Pax6 allele in either the lens/cornea or the distal optic cup to dissect in which tissues both alleles of Pax6 need to be expressed to control the development of the tissues in the iridocorneal angle. Somatic inactivation of one allele of Pax6 exclusively from epithelial cells of lens and cornea resulted in the disruption of trabecular meshwork and Schlemm's canal development as well as in an adhesion between iris periphery and cornea in juvenile eyes, which resulted in the complete closure of the iridocorneal angle in the adult eye. Structural changes in the iridocorneal angle presumably caused a continuous increase in intraocular pressure leading to degenerative changes in optic nerve axons and to glaucoma. In contrast, the inactivation of a single Pax6 allele in the distal optic cup did not cause obvious changes in iridocorneal angle formation. We conclude that the defects in iridocorneal angle formation are caused by non-autonomous mechanisms due to Pax6 haploinsufficiency in lens or corneal epithelial cells. Pax6 probably controls the expression of signaling molecules in lens cells that regulate the morphogenetic processes during iridocorneal angle formation.
Collapse
Affiliation(s)
- Markus Kroeber
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
91
|
|
92
|
Iseri SU, Osborne RJ, Farrall M, Wyatt AW, Mirza G, Nürnberg G, Kluck C, Herbert H, Martin A, Hussain MS, Collin JRO, Lathrop M, Nürnberg P, Ragoussis J, Ragge NK. Seeing clearly: the dominant and recessive nature of FOXE3 in eye developmental anomalies. Hum Mutat 2009; 30:1378-86. [PMID: 19708017 DOI: 10.1002/humu.21079] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
FOXE3 is a lens-specific transcription factor with a highly conserved forkhead domain previously implicated in congenital primary aphakia and anterior segment dysgenesis. Here, we identify new recessive FOXE3 mutations causative for microphthalmia, sclerocornea, primary aphakia, and glaucoma in two extended consanguineous families by SNP array genotyping followed by a candidate gene approach. Following an additional screen of 236 subjects with developmental eye anomalies, we report two further novel heterozygous mutations segregating in a dominant fashion in two different families. Although the dominant mutations were penetrant, they gave rise to highly variable phenotypes including iris and chorioretinal colobomas, Peters' anomaly, and isolated cataract (cerulean type and early onset adult nuclear and cortical cataract). Using in situ hybridization in human embryos, we demonstrate expression of FOXE3 restricted to lens tissue, predominantly in the anterior epithelium, suggesting that the extralenticular phenotypes caused by FOXE3 mutations are most likely to be secondary to abnormal lens formation. Our findings suggest that mutations in FOXE3 can give rise to a broad spectrum of eye anomalies, largely, but not exclusively related to lens development, and that both dominant and recessive inheritance patterns can be represented. We suggest including FOXE3 in the diagnostic genetic screening for these anomalies.
Collapse
Affiliation(s)
- Sibel Ugur Iseri
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Bayrakli F, Guney I, Bayri Y, Ercan-Sencicek AG, Ceyhan D, Cankaya T, Mason C, Bilguvar K, Bayrakli S, Mane SM, State MW, Gunel M. A novel heterozygous deletion within the 3' region of the PAX6 gene causing isolated aniridia in a large family group. J Clin Neurosci 2009; 16:1610-4. [PMID: 19793656 DOI: 10.1016/j.jocn.2009.03.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 03/10/2009] [Accepted: 03/11/2009] [Indexed: 10/20/2022]
Abstract
Paired box gene 6 (PAX6) is the causative gene of aniridia. It is a dominantly inherited eye abnormality characterized by partial or complete absence of the iris. The PAX6 gene is located on chromosome 11p13 and contains 14 exons. It is expressed mainly in the developing eye and central nervous system. Submicroscopic copy number variations are common in the human genome. Submicroscopic deletions may cause several human diseases, either by disrupting coding sequences or by eliminating regulatory elements essential for expression of the gene in question. Over the past several years, array-based comparative genomic hybridization has become an increasingly useful tool for both identifying normal cytogenetic variations and characterizing chromosomal abnormalities associated with developmental delays and cancer. Our results support the notion that assessing copy number variation of the PAX6 gene itself and also of flanking regions, may contribute to the molecular diagnosis of aniridia.
Collapse
Affiliation(s)
- Fatih Bayrakli
- Department of Neurosurgery, Van Military Hospital, Van, Turkey.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
[Intensive intracorneal keloid formation in a case of Peters plus syndrome and in Peters anomaly with maximum manifestation]. Ophthalmologe 2009; 107:178-81. [PMID: 19756642 DOI: 10.1007/s00347-009-2014-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We present two cases of Peters anomaly (Peters plus syndrome and a maximum manifestation variant) with abnormally thickened cornea and corneal staphyloma. Both patients presented to our hospital shortly after birth and were treated with perforating keratoplasty and lensectomy. Histological analysis showed marked thickening of the corneal stroma due to abnormal stromal connective tissue deposition. Additionally, both eyes showed the characteristic changes of Peters anomaly with corneal opacity, adherence of the iris stroma and anterior lens surface to the posterior corneal surface, absence of the corneal endothelium, Descemet and Bowmans layers. Peters anomaly with abnormally thick intracorneal fibrosis with or without congenital corneal staphyloma is a very rare manifestation.
Collapse
|
95
|
Zhang W, Mulieri PJ, Gaio U, Bae GU, Krauss RS, Kang JS. Ocular abnormalities in mice lacking the immunoglobulin superfamily member Cdo. FEBS J 2009; 276:5998-6010. [PMID: 19754878 DOI: 10.1111/j.1742-4658.2009.07310.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vertebrate eye development requires a series of complex morphogenetic and inductive events to produce a lens vesicle centered within the bilayered optic cup and a posteriorly positioned optic stalk. Multiple congenital eye defects, including microphthalmia and coloboma, result from defects in early eye morphogenesis. Cdo is a multifunctional cell surface immunoglobulin superfamily member that interacts with and mediates signaling by cadherins and netrins to regulate myogenesis. In addition, Cdo plays an essential role in early forebrain development by functioning as coreceptor for sonic hedgehog. It is reported here that Cdo is expressed in a dynamic, but dorsally restricted, fashion during early eye development, and that mice lacking Cdo display multiple eye defects. Anomalies seen in Cdo(-/-) mice include coloboma (failure to close the optic fissure); failure to form a proper boundary between the retinal pigmented epithelium and optic stalk; defective lens formation, including failure to separate from the surface ectoderm; and microphthalmia. Consistent with this wide array of defects, developing eyes of Cdo(-/-) mice show altered expression of several regulators of dorsoventral eye patterning, including Pax6, Pax2, and Tbx5. Taken together, these findings show that Cdo is required for normal eye development and is required for normal expression of patterning genes in both the ventral and dorsal domains. The multiple eye development defects seen in Cdo(-/-) mice suggest that mutations in human Cdo could contribute to congenital eye anomalies, such as Jacobsen syndrome, which is frequently associated with ocular defects, including coloboma and Peters' anomaly.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
96
|
Ashby RS, Megaw PL, Morgan IG. Changes in the expression of Pax6 RNA transcripts in the retina during periods of altered ocular growth in chickens. Exp Eye Res 2009; 89:392-7. [DOI: 10.1016/j.exer.2009.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 03/22/2009] [Accepted: 04/11/2009] [Indexed: 12/01/2022]
|
97
|
Chanas SA, Collinson JM, Ramaesh T, Dorà N, Kleinjan DA, Hill RE, West JD. Effects of elevated Pax6 expression and genetic background on mouse eye development. Invest Ophthalmol Vis Sci 2009; 50:4045-59. [PMID: 19387074 PMCID: PMC2763115 DOI: 10.1167/iovs.07-1630] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To analyze the effects of Pax6 overexpression and its interaction with genetic background on eye development. METHODS Histologic features of eyes from hemizygous PAX77(+/-) transgenic (high Pax6 gene dose) and wild-type mice were compared on different genetic backgrounds. Experimental PAX77(+/-)<-->wild-type and control wild-type<-->wild-type chimeras were analyzed to investigate the causes of abnormal eye development in PAX77(+/-) mice. RESULTS PAX77(+/-) mice showed an overlapping but distinct spectrum of eye abnormalities to Pax6(+/-) heterozygotes (low Pax6 dose). Some previously reported PAX77(+/-) eye abnormalities did not occur on all three genetic backgrounds examined. Several types of eye abnormalities occurred in the experimental PAX77(+/-)<-->wild-type chimeras, and they occurred more frequently in chimeras with higher contributions of PAX77(+/-) cells. Groups of RPE cells intruded into the optic nerve sheath, indicating that the boundary between the retina and optic nerve may be displaced. Both PAX77(+/-) and wild-type cells were involved in this ingression and in retinal folds, suggesting that neither effect was cell-autonomous. Cell-autonomous effects included failure of PAX77(+/-) and wild-type cells to mix normally and overrepresentation of PAX77(+/-) in the lens epithelium and RPE. CONCLUSIONS The extent of PAX77(+/-) eye abnormalities depended on PAX77(+/-) genotype, genetic background, and stochastic variation. Chimera analysis identified two types of cell-autonomous effects of the PAX77(+/-) genotype. Abnormal cell mixing between PAX77(+/-) and wild-type cells suggests altered expression of cell surface adhesion molecules. Some phenotypic differences between PAX77(+/-)<-->wild-type and Pax6(+/-)<-->wild-type chimeras may reflect differences in the levels of PAX77(+/-) and Pax6(+/-) contributions to chimeric lenses.
Collapse
Affiliation(s)
- Simon A. Chanas
- Division of Reproductive and Developmental Sciences, Genes and Development Group, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - J. Martin Collinson
- School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Institute of Medical Sciences, Aberdeen, Scotland, United Kingdom
| | - Thaya Ramaesh
- Division of Reproductive and Developmental Sciences, Genes and Development Group, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Department of Clinical and Surgical Sciences, Ophthalmology Section, University of Edinburgh, Princess Alexandra Eye Pavilion, Royal Infirmary of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Natalie Dorà
- School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Institute of Medical Sciences, Aberdeen, Scotland, United Kingdom
| | - Dirk A. Kleinjan
- Medical and Developmental Genetics Section, MRC Human Genetics Unit, Edinburgh, Scotland, United Kingdom
| | - Robert E. Hill
- Medical and Developmental Genetics Section, MRC Human Genetics Unit, Edinburgh, Scotland, United Kingdom
| | - John D. West
- Division of Reproductive and Developmental Sciences, Genes and Development Group, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
98
|
Abstract
The transcription factor Pitx3 is critical for lens formation. Deletions in the promoter of this gene cause abnormal lens development in the aphakia (ak) mouse mutant, which has only rudimentary lenses. In this study, we investigated the role of Pitx3 in lens development and differentiation. We found that reduced expression of Pitx3 leads to changes in the proliferation, differentiation and survival of lens cells. The genetic interactions between Pitx3 and Foxe3 were investigated, as these two transcription factors are expressed at the same time in lens development and their absence has similar consequences for lens development. We found no evidence that these two genes genetically interact. In general, our study shows that the abnormal phenotype of the ak lenses is not due to just one molecular pathway, rather in the absence of Pitx3 expression multiple aspects of lens development are disrupted.
Collapse
Affiliation(s)
- Olga Medina-Martinez
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Rina Shah
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Milan Jamrich
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
99
|
Ramaesh T, Williams SE, Paul C, Ramaesh K, Dhillon B, West JD. Histopathological characterisation of effects of the mouse Pax6Leca4 missense mutation on eye development. Exp Eye Res 2009; 89:263-73. [DOI: 10.1016/j.exer.2009.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 02/06/2009] [Accepted: 03/23/2009] [Indexed: 02/02/2023]
|
100
|
García-Villegas R, Escamilla J, Sánchez-Guzmán E, Pastén A, Hernández-Quintero M, Gómez-Flores E, Castro-Muñozledo F. Pax-6 is expressed early in the differentiation of a corneal epithelial model system. J Cell Physiol 2009; 220:348-56. [DOI: 10.1002/jcp.21771] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|