51
|
Okwan-Duodu D, Landry J, Shen XZ, Diaz R. Angiotensin-converting enzyme and the tumor microenvironment: mechanisms beyond angiogenesis. Am J Physiol Regul Integr Comp Physiol 2013; 305:R205-15. [DOI: 10.1152/ajpregu.00544.2012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The renin angiotensin system (RAS) is a network of enzymes and peptides that coalesce primarily on the angiotensin II type 1 receptor (AT1R) to induce cell proliferation, angiogenesis, fibrosis, and blood pressure control. Angiotensin-converting enzyme (ACE), the key peptidase of the RAS, is promiscuous in that it cleaves other substrates such as substance P and bradykinin. Accumulating evidence implicates ACE in the pathophysiology of carcinogenesis. While the role of ACE and its peptide network in modulating angiogenesis via the AT1R is well documented, its involvement in shaping other aspects of the tumor microenvironment remains largely unknown. Here, we review the role of ACE in modulating the immune compartment of the tumor microenvironment, which encompasses the immunosuppressive, cancer-promoting myeloid-derived suppressor cells, alternatively activated tumor-associated macrophages, and T regulatory cells. We also discuss the potential roles of peptides that accumulate in the setting of chronic ACE inhibitor use, such as bradykinin, substance P, and N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP), and how they may undercut the gains of anti-angiogenesis from ACE inhibition. These emerging mechanisms may harmonize the often-conflicting results on the role of ACE inhibitors and ACE polymorphisms in various cancers and call for further investigations into the potential benefit of ACE inhibitors in some neoplasms.
Collapse
Affiliation(s)
- Derick Okwan-Duodu
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia; and
| | - Jerome Landry
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia; and
| | - Xiao Z. Shen
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Roberto Diaz
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia; and
| |
Collapse
|
52
|
Leone P, Shin EC, Perosa F, Vacca A, Dammacco F, Racanelli V. MHC class I antigen processing and presenting machinery: organization, function, and defects in tumor cells. J Natl Cancer Inst 2013; 105:1172-87. [PMID: 23852952 DOI: 10.1093/jnci/djt184] [Citation(s) in RCA: 369] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The surface presentation of peptides by major histocompatibility complex (MHC) class I molecules is critical to all CD8(+) T-cell adaptive immune responses, including those against tumors. The generation of peptides and their loading on MHC class I molecules is a multistep process involving multiple molecular species that constitute the so-called antigen processing and presenting machinery (APM). The majority of class I peptides begin as proteasome degradation products of cytosolic proteins. Once transported into the endoplasmic reticulum by TAP (transporter associated with antigen processing), peptides are not bound randomly by class I molecules but are chosen by length and sequence, with peptidases editing the raw peptide pool. Aberrations in APM genes and proteins have frequently been observed in human tumors and found to correlate with relevant clinical variables, including tumor grade, tumor stage, disease recurrence, and survival. These findings support the idea that APM defects are immune escape mechanisms that disrupt the tumor cells' ability to be recognized and killed by tumor antigen-specific cytotoxic CD8(+) T cells. Detailed knowledge of APM is crucial for the optimization of T cell-based immunotherapy protocols.
Collapse
Affiliation(s)
- Patrizia Leone
- Department of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | | | | | | | | | | |
Collapse
|
53
|
Lorente E, Infantes S, Barnea E, Beer I, Barriga A, García-Medel N, Lasala F, Jiménez M, Admon A, López D. Diversity of natural self-derived ligands presented by different HLA class I molecules in transporter antigen processing-deficient cells. PLoS One 2013; 8:e59118. [PMID: 23555621 PMCID: PMC3608615 DOI: 10.1371/journal.pone.0059118] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/11/2013] [Indexed: 12/16/2022] Open
Abstract
The transporter associated with antigen processing (TAP) translocates the cytosol-derived proteolytic peptides to the endoplasmic reticulum lumen where they complex with nascent human leukocyte antigen (HLA) class I molecules. Non-functional TAP complexes and viral or tumoral blocking of these transporters leads to reduced HLA class I surface expression and a drastic change in the available peptide repertoire. Using mass spectrometry to analyze complex human leukocyte antigen HLA-bound peptide pools isolated from large numbers of TAP-deficient cells, we identified 334 TAP-independent ligands naturally presented by four different HLA-A, -B, and -C class I molecules with very different TAP dependency from the same cell line. The repertoire of TAP-independent peptides examined favored increased peptide lengths and a lack of strict binding motifs for all four HLA class I molecules studied. The TAP-independent peptidome arose from 182 parental proteins, the majority of which yielded one HLA ligand. In contrast, TAP-independent antigen processing of very few cellular proteins generated multiple HLA ligands. Comparison between TAP-independent peptidome and proteome of several subcellular locations suggests that the secretory vesicle-like organelles could be a relevant source of parental proteins for TAP-independent HLA ligands. Finally, a predominant endoproteolytic peptidase specificity for Arg/Lys or Leu/Phe residues in the P(1) position of the scissile bond was found for the TAP-independent ligands. These data draw a new and intricate picture of TAP-independent pathways.
Collapse
Affiliation(s)
- Elena Lorente
- Unidad de Procesamiento Antigénico-Inmunología Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Susana Infantes
- Unidad de Procesamiento Antigénico-Inmunología Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Eilon Barnea
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ilan Beer
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Alejandro Barriga
- Unidad de Procesamiento Antigénico-Inmunología Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Noel García-Medel
- Centro de Biología Molecular Severo Ochoa, CSIC/Universidad Autónoma de Madrid, Madrid, Spain
| | - Fátima Lasala
- Unidad de Proteómica, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Mercedes Jiménez
- Unidad de Proteómica, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Arie Admon
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Daniel López
- Unidad de Procesamiento Antigénico-Inmunología Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- * E-mail:
| |
Collapse
|
54
|
Local bone marrow renin-angiotensin system in primitive, definitive and neoplastic haematopoiesis. Clin Sci (Lond) 2013; 124:307-23. [PMID: 23157407 DOI: 10.1042/cs20120300] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The locally active ligand peptides, mediators, receptors and signalling pathways of the haematopoietic BM (bone marrow) autocrine/paracrine RAS (renin-angiotensin system) affect the essential steps of definitive blood cell production. Haematopoiesis, erythropoiesis, myelopoiesis, formation of monocytic and lymphocytic lineages, thrombopoiesis and other stromal cellular elements are regulated by the local BM RAS. The local BM RAS is present and active even in primitive embryonic haematopoiesis. ACE (angiotensin-converting enzyme) is expressed on the surface of the first endothelial and haematopoietic cells, forming the marrow cavity in the embryo. ACE marks early haematopoietic precursor cells and long-term blood-forming CD34(+) BM cells. The local autocrine tissue BM RAS may also be active in neoplastic haematopoiesis. Critical RAS mediators such as renin, ACE, AngII (angiotensin II) and angiotensinogen have been identified in leukaemic blast cells. The local tissue RAS influences tumour growth and metastases in an autocrine and paracrine fashion via the modulation of numerous carcinogenic events, such as angiogenesis, apoptosis, cellular proliferation, immune responses, cell signalling and extracellular matrix formation. The aim of the present review is to outline the known functions of the local BM RAS within the context of primitive, definitive and neoplastic haematopoiesis. Targeting the actions of local RAS molecules could represent a valuable therapeutic option for the management of neoplastic disorders.
Collapse
|
55
|
Bernstein KE, Ong FS, Blackwell WLB, Shah KH, Giani JF, Gonzalez-Villalobos RA, Shen XZ, Fuchs S, Touyz RM. A modern understanding of the traditional and nontraditional biological functions of angiotensin-converting enzyme. Pharmacol Rev 2012; 65:1-46. [PMID: 23257181 DOI: 10.1124/pr.112.006809] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Angiotensin-converting enzyme (ACE) is a zinc-dependent peptidase responsible for converting angiotensin I into the vasoconstrictor angiotensin II. However, ACE is a relatively nonspecific peptidase that is capable of cleaving a wide range of substrates. Because of this, ACE and its peptide substrates and products affect many physiologic processes, including blood pressure control, hematopoiesis, reproduction, renal development, renal function, and the immune response. The defining feature of ACE is that it is composed of two homologous and independently catalytic domains, the result of an ancient gene duplication, and ACE-like genes are widely distributed in nature. The two ACE catalytic domains contribute to the wide substrate diversity of ACE and, by extension, the physiologic impact of the enzyme. Several studies suggest that the two catalytic domains have different biologic functions. Recently, the X-ray crystal structure of ACE has elucidated some of the structural differences between the two ACE domains. This is important now that ACE domain-specific inhibitors have been synthesized and characterized. Once widely available, these reagents will undoubtedly be powerful tools for probing the physiologic actions of each ACE domain. In turn, this knowledge should allow clinicians to envision new therapies for diseases not currently treated with ACE inhibitors.
Collapse
Affiliation(s)
- Kenneth E Bernstein
- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Davis 2021, Los Angeles, CA 90048, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Abstract
Recognition of infected or altered cells by CD8(+) cytotoxic T lymphocytes is mediated by direct interaction of their T-cell receptor with peptides presented by MHC class I molecules. Peptides are transferred for assembly with newly synthesized MHC molecules by the transporters associated with antigen processing (TAP). Yet, a fraction of described epitopes are presented independently of TAP. Current belief is that most of them derive from membrane proteins, mostly from their signal sequences, and are processed by vesicular proteases. A thorough review of the published data may challenge some of these views.
Collapse
|
57
|
Peptidases trimming MHC class I ligands. Curr Opin Immunol 2012; 25:90-6. [PMID: 23089230 DOI: 10.1016/j.coi.2012.10.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 10/03/2012] [Indexed: 12/29/2022]
Abstract
Peptides presented by MHC class I molecules are typically produced through antigen degradation by the proteasome followed by trimming by exopeptidases. According to recent results, these include both aminopeptidases and carboxypeptidases in the cytosol and the endoplasmic reticulum. While cytosolic peptidases have a net neutral or destructive effect on MHC ligands, endoplasmic reticulum aminopeptidases are required for efficient class I loading and have a strong effect on the repertoire of peptide/MHC complexes. Cells lacking these enzymes can be eliminated both by NK cells and by CD8+ T cells recognizing complexes formed between an MHC class Ib molecule and a conserved peptide. Cross-presented peptides derived from internalized antigens can be processed by insulin-regulated aminopeptidase, the only endosomal trimming peptidase.
Collapse
|
58
|
Mage MG, Dolan MA, Wang R, Boyd LF, Revilleza MJ, Robinson H, Natarajan K, Myers NB, Hansen TH, Margulies DH. The peptide-receptive transition state of MHC class I molecules: insight from structure and molecular dynamics. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:1391-9. [PMID: 22753930 PMCID: PMC3422668 DOI: 10.4049/jimmunol.1200831] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
MHC class I (MHC-I) proteins of the adaptive immune system require antigenic peptides for maintenance of mature conformation and immune function via specific recognition by MHC-I-restricted CD8(+) T lymphocytes. New MHC-I molecules in the endoplasmic reticulum are held by chaperones in a peptide-receptive (PR) transition state pending release by tightly binding peptides. In this study, we show, by crystallographic, docking, and molecular dynamics methods, dramatic movement of a hinged unit containing a conserved 3(10) helix that flips from an exposed "open" position in the PR transition state to a "closed" position with buried hydrophobic side chains in the peptide-loaded mature molecule. Crystallography of hinged unit residues 46-53 of murine H-2L(d) MHC-I H chain, complexed with mAb 64-3-7, demonstrates solvent exposure of these residues in the PR conformation. Docking and molecular dynamics predict how this segment moves to help form the A and B pockets crucial for the tight peptide binding needed for stability of the mature peptide-loaded conformation, chaperone dissociation, and Ag presentation.
Collapse
Affiliation(s)
- Michael G. Mage
- Molecular Biology Section, Laboratory of Immunology, NIAID, NIH, Bethesda, MD,Corresponding authors: , ph: 301-402-5537, fax: 301-480-7352; or , ph: 301-496-6429, fax: 301-496-0222
| | - Michael A. Dolan
- Computational Biology Section, Bioinformatics and Computational Biosciences Branch (BCBB), NIAID, NIH, Bethesda, MD
| | - Rui Wang
- Molecular Biology Section, Laboratory of Immunology, NIAID, NIH, Bethesda, MD
| | - Lisa F. Boyd
- Molecular Biology Section, Laboratory of Immunology, NIAID, NIH, Bethesda, MD
| | | | - Howard Robinson
- National Synchrotron Light Source, Brookhaven National Laboratories, Upton, New York
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immunology, NIAID, NIH, Bethesda, MD
| | - Nancy B. Myers
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Ted H. Hansen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - David H. Margulies
- Molecular Biology Section, Laboratory of Immunology, NIAID, NIH, Bethesda, MD,Corresponding authors: , ph: 301-402-5537, fax: 301-480-7352; or , ph: 301-496-6429, fax: 301-496-0222
| |
Collapse
|
59
|
Proteome sampling by the HLA class I antigen processing pathway. PLoS Comput Biol 2012; 8:e1002517. [PMID: 22615552 PMCID: PMC3355062 DOI: 10.1371/journal.pcbi.1002517] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 03/30/2012] [Indexed: 12/31/2022] Open
Abstract
The peptide repertoire that is presented by the set of HLA class I molecules of an individual is formed by the different players of the antigen processing pathway and the stringent binding environment of the HLA class I molecules. Peptide elution studies have shown that only a subset of the human proteome is sampled by the antigen processing machinery and represented on the cell surface. In our study, we quantified the role of each factor relevant in shaping the HLA class I peptide repertoire by combining peptide elution data, in silico predictions of antigen processing and presentation, and data on gene expression and protein abundance. Our results indicate that gene expression level, protein abundance, and rate of potential binding peptides per protein have a clear impact on sampling probability. Furthermore, once a protein is available for the antigen processing machinery in sufficient amounts, C-terminal processing efficiency and binding affinity to the HLA class I molecule determine the identity of the presented peptides. Having studied the impact of each of these factors separately, we subsequently combined all factors in a logistic regression model in order to quantify their relative impact. This model demonstrated the superiority of protein abundance over gene expression level in predicting sampling probability. Being able to discriminate between sampled and non-sampled proteins to a significant degree, our approach can potentially be used to predict the sampling probability of self proteins and of pathogen-derived proteins, which is of importance for the identification of autoimmune antigens and vaccination targets. HLA class I molecules are expressed on the cell surface of almost all cells of the human body in complex with short fragments (peptides) of cytosolic proteins, thereby providing a snapshot of the intracellular state of a cell to circulating CD8+ T cells. Several processes are involved in shaping the peptide ligand repertoire of an HLA class I molecule, which generally represents only a small fraction of the proteins available in the cytosol. In our work we addressed protein sampling by HLA class I molecules to answer two questions: 1) Which proteins are sampled by the antigen processing pathway and why, and 2) which peptides of a given protein are picked to represent the source protein on the cell surface? To this end we quantified the contribution of each process involved in peptide processing and presentation individually and combined them into a logistic regression model. This simple model enabled us to predict the sampling probability of self proteins and may aid in the identification of autoimmune antigens.
Collapse
|
60
|
Compeer EB, Flinsenberg TWH, van der Grein SG, Boes M. Antigen processing and remodeling of the endosomal pathway: requirements for antigen cross-presentation. Front Immunol 2012; 3:37. [PMID: 22566920 PMCID: PMC3342355 DOI: 10.3389/fimmu.2012.00037] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 02/16/2012] [Indexed: 12/29/2022] Open
Abstract
Cross-presentation of endocytosed antigen as peptide/class I major histocompatibility complex complexes plays a central role in the elicitation of CD8+ T cell clones that mediate anti-viral and anti-tumor immune responses. While it has been clear that there are specific subsets of professional antigen presenting cells capable of antigen cross-presentation, identification of mechanisms involved is still ongoing. Especially amongst dendritic cells (DC), there are specialized subsets that are highly proficient at antigen cross-presentation. We here present a focused survey on the cell biological processes in the endosomal pathway that support antigen cross-presentation. This review highlights DC-intrinsic mechanisms that facilitate the cross-presentation of endocytosed antigen, including receptor-mediated uptake, maturation-induced endosomal sorting of membrane proteins, dynamic remodeling of endosomal structures and cell surface-directed endosomal trafficking. We will conclude with the description of pathogen-induced deviation of endosomal processing, and discuss how immune evasion strategies pertaining endosomal trafficking may preclude antigen cross-presentation.
Collapse
Affiliation(s)
- Ewoud Bernardus Compeer
- Department of Pediatric Immunology, University Medical Center Utrecht/Wilhelmina Children's Hospital Utrecht, Netherlands
| | | | | | | |
Collapse
|
61
|
Abstract
The renin-angiotensin system (RAS) exercises fundamental control over sodium and water handling in the kidney. Accordingly, dysregulation of the RAS leads to blood pressure elevation with ensuing renal and cardiovascular damage. Recent studies have revealed that the RAS hormonal cascade is more complex than initially posited with multiple enzymes, effector molecules, and receptors that coordinately regulate the effects of the RAS on the kidney and vasculature. Moreover, recently identified tissue-specific RAS components have pleomorphic effects independent of the circulating RAS that influence critical homeostatic mechanisms including the immune response and fetal development. Further characterization of the diverse interactions between the RAS and other signaling pathways within specific tissues should lead to novel treatments for renal and cardiovascular disease.
Collapse
|
62
|
Shen XZ, Ong FS, Bernstein EA, Janjulia T, Blackwell WLB, Shah KH, Taylor BL, Gonzalez-Villalobos RA, Fuchs S, Bernstein KE. Nontraditional roles of angiotensin-converting enzyme. Hypertension 2012; 59:763-8. [PMID: 22353608 DOI: 10.1161/hypertensionaha.111.188342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Xiao Z Shen
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Origin and plasticity of MHC I-associated self peptides. Autoimmun Rev 2011; 11:627-35. [PMID: 22100331 DOI: 10.1016/j.autrev.2011.11.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 11/02/2011] [Indexed: 01/13/2023]
Abstract
Endogenous peptides presented by MHC I molecules represent the essence of self for CD8 T lymphocytes. These MHC I peptides (MIPs) regulate all key events that occur during the lifetime of CD8 T cells. CD8 T cells are selected on self-MIPs, sustained by self-MIPs, and activated in the presence of self-MIPs. Recently, large-scale mass spectrometry studies have revealed that the self-MIP repertoire is more complex and plastic than previously anticipated. The composition of the self-MIP repertoire varies from one cell type to another and can be perturbed by cell-intrinsic and -extrinsic factors including dysregulation of cellular metabolism and infection. The complexity and plasticity of the self-MIP repertoire represent a major challenge for the maintenance of self tolerance and can have pervasive effects on the global functioning of the immune system.
Collapse
|