51
|
Smith MR, Smyth RP, Marquet R, von Kleist M. MIMEAnTo: profiling functional RNA in mutational interference mapping experiments. Bioinformatics 2016; 32:3369-3370. [PMID: 27402903 DOI: 10.1093/bioinformatics/btw479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/06/2016] [Indexed: 11/14/2022] Open
Abstract
The mutational interference mapping experiment (MIME) is a powerful method that, coupled to a bioinformatics analysis pipeline, allows the identification of domains and structures in RNA that are important for its function. In MIME, target RNAs are randomly mutated, selected by function, physically separated and sequenced using next-generation sequencing (NGS). Quantitative effects of each mutation at each position in the RNA can be recovered with statistical certainty using the herein developed user-friendly, cross-platform software MIMEAnTo (MIME Analysis Tool). AVAILABILITY AND IMPLEMENTATION MIMEAnTo is implemented in C ++ using the boost library as well as Qt for the graphical user interface and is distributed under GPL (http://www.gnu.org/licences/gpl). The libraries are statically linked in a stand alone executable and are not required on the system. The plots are generated with gnuplot. Gnuplot-iostream (https://github.com/dstahlke/gnuplot-iostream) serves as gnuplot interface. Standalone executables including examples and source code can be downloaded from https://github.com/maureensmith/MIMEAnTo CONTACTS: msmith@zedat.fu-berlin.de or vkleist@zedat.fu-berlin.deSupplementary information: Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Maureen R Smith
- Systems Pharmacology & Disease Control, Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Redmond P Smyth
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Roland Marquet
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Max von Kleist
- Systems Pharmacology & Disease Control, Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
52
|
Racine PJ, Chamontin C, de Rocquigny H, Bernacchi S, Paillart JC, Mougel M. Requirements for nucleocapsid-mediated regulation of reverse transcription during the late steps of HIV-1 assembly. Sci Rep 2016; 6:27536. [PMID: 27273064 PMCID: PMC4895152 DOI: 10.1038/srep27536] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/13/2016] [Indexed: 12/19/2022] Open
Abstract
HIV-1 is a retrovirus replicating within cells by reverse transcribing its genomic RNA (gRNA) into DNA. Within cells, virus assembly requires the structural Gag proteins with few accessory proteins, notably the viral infectivity factor (Vif) and two copies of gRNA as well as cellular factors to converge to the plasma membrane. In this process, the nucleocapsid (NC) domain of Gag binds to the packaging signal of gRNA which consists of a series of stem-loops (SL1-SL3) ensuring gRNA selection and packaging into virions. Interestingly, mutating NC activates a late-occurring reverse transcription (RT) step in producer cells, leading to the release of DNA-containing HIV-1 particles. In order to decipher the molecular mechanism regulating this late RT, we explored the role of several key partners of NC, such as Vif, gRNA and the cellular cytidine deaminase APOBEC3G that restricts HIV-1 infection by targeting the RT. By studying combinations of deletions of these putative players, we revealed that NC, SL1-SL3 and in lesser extent Vif, but not APOBEC3G, interplay regulates the late RT.
Collapse
Affiliation(s)
- Pierre-Jean Racine
- Centre d'études d’agents pathogènes et biotechnologies pour la santé, CPBS-CNRS, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier, France
| | - Célia Chamontin
- Centre d'études d’agents pathogènes et biotechnologies pour la santé, CPBS-CNRS, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier, France
| | - Hugues de Rocquigny
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74 Route du Rhin, 67401, Illkirch Cedex, France
| | - Serena Bernacchi
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084, Strasbourg, France
| | - Jean-Christophe Paillart
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084, Strasbourg, France
| | - Marylène Mougel
- Centre d'études d’agents pathogènes et biotechnologies pour la santé, CPBS-CNRS, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier, France
| |
Collapse
|
53
|
Kalloush RM, Vivet-Boudou V, Ali LM, Mustafa F, Marquet R, Rizvi TA. Packaging of Mason-Pfizer monkey virus (MPMV) genomic RNA depends upon conserved long-range interactions (LRIs) between U5 and gag sequences. RNA (NEW YORK, N.Y.) 2016; 22:905-919. [PMID: 27095024 PMCID: PMC4878616 DOI: 10.1261/rna.055731.115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 03/09/2016] [Indexed: 06/05/2023]
Abstract
MPMV has great potential for development as a vector for gene therapy. In this respect, precisely defining the sequences and structural motifs that are important for dimerization and packaging of its genomic RNA (gRNA) are of utmost importance. A distinguishing feature of the MPMV gRNA packaging signal is two phylogenetically conserved long-range interactions (LRIs) between U5 and gag complementary sequences, LRI-I and LRI-II. To test their biological significance in the MPMV life cycle, we introduced mutations into these structural motifs and tested their effects on MPMV gRNA packaging and propagation. Furthermore, we probed the structure of key mutants using SHAPE (selective 2'hydroxyl acylation analyzed by primer extension). Disrupting base-pairing of the LRIs affected gRNA packaging and propagation, demonstrating their significance to the MPMV life cycle. A double mutant restoring a heterologous LRI-I was fully functional, whereas a similar LRI-II mutant failed to restore gRNA packaging and propagation. These results demonstrate that while LRI-I acts at the structural level, maintaining base-pairing is not sufficient for LRI-II function. In addition, in vitro RNA dimerization assays indicated that the loss of RNA packaging in LRI mutants could not be attributed to the defects in dimerization. Our findings suggest that U5-gag LRIs play an important architectural role in maintaining the structure of the 5' region of the MPMV gRNA, expanding the crucial role of LRIs to the nonlentiviral group of retroviruses.
Collapse
Affiliation(s)
- Rawan M Kalloush
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Valérie Vivet-Boudou
- Architecture et Réactivité de l'ARN, CNRS, IBMC, Université de Strasbourg, 67084 Strasbourg cedex, France
| | - Lizna M Ali
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Roland Marquet
- Architecture et Réactivité de l'ARN, CNRS, IBMC, Université de Strasbourg, 67084 Strasbourg cedex, France
| | - Tahir A Rizvi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
54
|
Puchta O, Cseke B, Czaja H, Tollervey D, Sanguinetti G, Kudla G. Network of epistatic interactions within a yeast snoRNA. Science 2016; 352:840-4. [PMID: 27080103 PMCID: PMC5137784 DOI: 10.1126/science.aaf0965] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/23/2016] [Indexed: 12/13/2022]
Abstract
Epistatic interactions play a fundamental role in molecular evolution, but little is known about the spatial distribution of these interactions within genes. To systematically survey a model landscape of intragenic epistasis, we quantified the fitness of ~60,000 Saccharomyces cerevisiae strains expressing randomly mutated variants of the 333-nucleotide-long U3 small nucleolar RNA (snoRNA). The fitness effects of individual mutations were correlated with evolutionary conservation and structural stability. Many mutations had small individual effects but had large effects in the context of additional mutations, which indicated negative epistasis. Clusters of negative interactions were explained by local thermodynamic threshold effects, whereas positive interactions were enriched among large-effect sites and between base-paired nucleotides. We conclude that high-throughput mapping of intragenic epistasis can identify key structural and functional features of macromolecules.
Collapse
Affiliation(s)
- Olga Puchta
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, Scotland, UK
| | - Botond Cseke
- School of Informatics, University of Edinburgh, Edinburgh, Scotland, UK
| | | | - David Tollervey
- SynthSys, Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, Scotland, UK. Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, Scotland, UK
| | - Guido Sanguinetti
- School of Informatics, University of Edinburgh, Edinburgh, Scotland, UK. SynthSys, Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, Scotland, UK
| | - Grzegorz Kudla
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, Scotland, UK.
| |
Collapse
|