51
|
Balleza D, Rosas ME, Romero-Romero S. Voltage vs. Ligand I: Structural basis of the intrinsic flexibility of S3 segment and its significance in ion channel activation. Channels (Austin) 2019; 13:455-476. [PMID: 31647368 PMCID: PMC6833973 DOI: 10.1080/19336950.2019.1674242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We systematically predict the internal flexibility of the S3 segment, one of the most mobile elements in the voltage-sensor domain. By analyzing the primary amino acid sequences of V-sensor containing proteins, including Hv1, TPC channels and the voltage-sensing phosphatases, we established correlations between the local flexibility and modes of activation for different members of the VGIC superfamily. Taking advantage of the structural information available, we also assessed structural aspects to understand the role played by the flexibility of S3 during the gating of the pore. We found that S3 flexibility is mainly determined by two specific regions: (1) a short NxxD motif in the N-half portion of the helix (S3a), and (2) a short sequence at the beginning of the so-called paddle motif where the segment has a kink that, in some cases, divide S3 into two distinct helices (S3a and S3b). A good correlation between the flexibility of S3 and the reported sensitivity to temperature and mechanical stretch was found. Thus, if the channel exhibits high sensitivity to heat or membrane stretch, local S3 flexibility is low. On the other hand, high flexibility of S3 is preferentially associated to channels showing poor heat and mechanical sensitivities. In contrast, we did not find any apparent correlation between S3 flexibility and voltage or ligand dependence. Overall, our results provide valuable insights into the dynamics of channel-gating and its modulation.
Collapse
Affiliation(s)
- Daniel Balleza
- Departamento de Química ICET, Universidad Autónoma de Guadalajara , Zapopan Jalisco , Mexico
| | - Mario E Rosas
- Departamento de Química ICET, Universidad Autónoma de Guadalajara , Zapopan Jalisco , Mexico
| | - Sergio Romero-Romero
- Facultad de Medicina, Departamento de Bioquímica, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico. Current address: Department of Biochemistry, University of Bayreuth , Bayreuth , Germany
| |
Collapse
|
52
|
Ciotu CI, Tsantoulas C, Meents J, Lampert A, McMahon SB, Ludwig A, Fischer MJM. Noncanonical Ion Channel Behaviour in Pain. Int J Mol Sci 2019; 20:E4572. [PMID: 31540178 PMCID: PMC6770626 DOI: 10.3390/ijms20184572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 12/19/2022] Open
Abstract
Ion channels contribute fundamental properties to cell membranes. Although highly diverse in conductivity, structure, location, and function, many of them can be regulated by common mechanisms, such as voltage or (de-)phosphorylation. Primarily considering ion channels involved in the nociceptive system, this review covers more novel and less known features. Accordingly, we outline noncanonical operation of voltage-gated sodium, potassium, transient receptor potential (TRP), and hyperpolarization-activated cyclic nucleotide (HCN)-gated channels. Noncanonical features discussed include properties as a memory for prior voltage and chemical exposure, alternative ion conduction pathways, cluster formation, and silent subunits. Complementary to this main focus, the intention is also to transfer knowledge between fields, which become inevitably more separate due to their size.
Collapse
Affiliation(s)
- Cosmin I Ciotu
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Jannis Meents
- Institute of Physiology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Angelika Lampert
- Institute of Physiology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Stephen B McMahon
- Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UR, UK
| | - Andreas Ludwig
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Michael J M Fischer
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
53
|
Zhao Q, Wang J, Yin C, Zhang P, Zhang J, Shi M, Shen K, Xiao Y, Zhao Y, Yang X, Zhang Y. Near-Infrared Light-Sensitive Nano Neuro-Immune Blocker Capsule Relieves Pain and Enhances the Innate Immune Response for Necrotizing Infection. NANO LETTERS 2019; 19:5904-5914. [PMID: 31389707 DOI: 10.1021/acs.nanolett.9b01459] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Sensory neurons promote profound suppressive effects on neutrophils during Streptococcus pyogenes infection and contribute to the pathogenesis of necrotizing infection ("flesh-eating disease"). Thus, the development of new antibacterial agents for necrotizing infection is promising because of the clear streptococcal neuro-immune communication. Herein, based on the immune escape membrane exterior and competitive membrane functions of the glioma cell membrane, a novel nano neuro-immune blocker capsule was designed to prevent neuronal activation and improve neutrophil immune responses for necrotizing infection. These nano neuro-immune blockers could neutralize streptolysin S, suppress neuron pain conduction and calcitonin gene-related peptide release, and recruit neutrophils to the infection site, providing a strong therapeutic effect against necrotizing infection. Furthermore, nano neuro-immune blockers could serve as an effective inflammatory regulator and antibacterial agent via photothermal effects under near-infrared irradiation. In the Streptococcus pyogenes-induced necrotizing fasciitis mouse model, nano neuro-immune blockers showed significant therapeutic efficacy by ameliorating sensitivity to pain and promoting the antibacterial effect of neutrophils.
Collapse
Affiliation(s)
- Qin Zhao
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology , Wuhan University , Wuhan 430079 , China
| | - Jinyang Wang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology , Wuhan University , Wuhan 430079 , China
| | - Chengcheng Yin
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology , Wuhan University , Wuhan 430079 , China
| | - Peng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology , Wuhan University , Wuhan 430079 , China
| | - Jinglun Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology , Wuhan University , Wuhan 430079 , China
| | - Miusi Shi
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology , Wuhan University , Wuhan 430079 , China
| | - Kailun Shen
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology , Wuhan University , Wuhan 430079 , China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation , Queensland University of Technology , Kelvin Grove , Queensland 4059 , Australia
| | - Yanbing Zhao
- National Engineering Research Center for Nanomedicine, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Yufeng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology , Wuhan University , Wuhan 430079 , China
- Medical Research Institute, School of Medicine , Wuhan University , Wuhan , 430071 , China
| |
Collapse
|
54
|
Lin King JV, Emrick JJ, Kelly MJS, Herzig V, King GF, Medzihradszky KF, Julius D. A Cell-Penetrating Scorpion Toxin Enables Mode-Specific Modulation of TRPA1 and Pain. Cell 2019; 178:1362-1374.e16. [PMID: 31447178 DOI: 10.1016/j.cell.2019.07.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/23/2019] [Accepted: 07/11/2019] [Indexed: 02/01/2023]
Abstract
TRPA1 is a chemosensory ion channel that functions as a sentinel for structurally diverse electrophilic irritants. Channel activation occurs through an unusual mechanism involving covalent modification of cysteine residues clustered within an amino-terminal cytoplasmic domain. Here, we describe a peptidergic scorpion toxin (WaTx) that activates TRPA1 by penetrating the plasma membrane to access the same intracellular site modified by reactive electrophiles. WaTx stabilizes TRPA1 in a biophysically distinct active state characterized by prolonged channel openings and low Ca2+ permeability. Consequently, WaTx elicits acute pain and pain hypersensitivity but fails to trigger efferent release of neuropeptides and neurogenic inflammation typically produced by noxious electrophiles. These findings provide a striking example of convergent evolution whereby chemically disparate animal- and plant-derived irritants target the same key allosteric regulatory site to differentially modulate channel activity. WaTx is a unique pharmacological probe for dissecting TRPA1 function and its contribution to acute and persistent pain.
Collapse
Affiliation(s)
- John V Lin King
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joshua J Emrick
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA; Oral and Craniofacial Sciences Program, School of Dentistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mark J S Kelly
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Volker Herzig
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Katalin F Medzihradszky
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David Julius
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
55
|
Zhang Y, Yin Q, Gong D, Kang Y, Yang J, Liu J, Zhang W. The Preclinical Pharmacological Study of a Novel Long-Acting Local Anesthetic, a Fixed-Dose Combination of QX-OH/Levobupivacaine, in Rats. Front Pharmacol 2019; 10:895. [PMID: 31474859 PMCID: PMC6704344 DOI: 10.3389/fphar.2019.00895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/16/2019] [Indexed: 02/05/2023] Open
Abstract
Introduction: Previous studies demonstrated that 35 mM QX-OH/10 mM Levobupivacaine (LL-1), a fixed-dose combination, produced a long-acting effect in rat local anesthesia models. All preclinical pharmacodynamic results indicated that LL-1 had potential for postsurgical pain treatment. The objective of this study was to investigate the pharmacokinetics of LL-1. Then, the possible mechanism of the extended duration by the combination was examined. Methods and Results: All experiments were examined and approved by the Committee of Animal Care of the West China Hospital Sichuan University (Ethical approval number, 2015014A). The compound action potentials were recorded to verify the pharmacodynamic result in ex vivo. In frog sciatic nerve, LL-1 produced an effective inhibition with rapid onset time. The concentration-time profiles of LL-1 were determined in plasma and local tissues after sciatic nerve block. The maximum concentration of QX-OH and levobupivacaine were 727.22 ± 43.38 µg/g and 256.02 ± 28.52 µg/g in muscle, 634.26 ± 36.04 µg/g and 429.63 ± 48.64 µg/g in sciatic nerve, and 711.71 ± 25.14 ng/ml and 114.40 ± 10.19 ng/ml in plasma, respectively. The absorption of QX-OH into circulation was very rapid at 0.71 ± 0.06 h, which was faster than that of levobupivacaine (4.11 ± 0.39 h, p = 0.003). The half-time of QX-OH in plasma and local tissues had no significant difference (p = 0.329), with the values of 2.64 h, 3.20 h, and 3.79 h in plasma, muscle, and sciatic nerve, respectively. The elimination profile of levobupivacaine differed from that of QX-OH, which was slower eliminated from plasma (4.89 ± 1.77 h, p = 0.036) than from muscle (1.38 ± 0.60 h) or sciatic nerve (1.28 ± 0.74 h). When levobupivacaine was used alone, the Tmax in plasma was 1.07 ± 0.16 h. Interestingly, the Tmax of levobupivacaine in the plasma was increased by four times in combination with QX-OH (4.11 ± 0.39 h). Levobupivacaine promotes cellular QX-OH uptake. Conclusion: The preclinical pharmacokinetic study of LL-1 in the rat plasma, muscle, and sciatic nerve was accomplished. Then, the possible mechanism of the prolonged duration was that QX-OH delayed the absorption of levobupivacaine from the injection site into circulation, and levobupivacaine accelerated QX-OH to accumulate into cells.
Collapse
Affiliation(s)
- YuJun Zhang
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China.,Sichuan Engineering Laboratory of Transformation Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - QinQin Yin
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China.,Sichuan Engineering Laboratory of Transformation Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - DeYing Gong
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China.,Sichuan Engineering Laboratory of Transformation Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Kang
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China.,Sichuan Engineering Laboratory of Transformation Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Yang
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China.,Sichuan Engineering Laboratory of Transformation Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Liu
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China.,Sichuan Engineering Laboratory of Transformation Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - WenSheng Zhang
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China.,Sichuan Engineering Laboratory of Transformation Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
56
|
Mondoloni S, Durand-de Cuttoli R, Mourot A. Cell-Specific Neuropharmacology. Trends Pharmacol Sci 2019; 40:696-710. [PMID: 31400823 DOI: 10.1016/j.tips.2019.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/04/2019] [Accepted: 07/11/2019] [Indexed: 01/12/2023]
Abstract
Neuronal communication involves a multitude of neurotransmitters and an outstanding diversity of receptors and ion channels. Linking the activity of cell surface receptors and ion channels in defined neural circuits to brain states and behaviors has been a key challenge in neuroscience, since cell targeting is not possible with traditional neuropharmacology. We review here recent technologies that enable the effect of drugs to be restricted to specific cell types, thereby allowing acute manipulation of the brain's own proteins with circuit specificity. We highlight the importance of developing cell-specific neuropharmacology strategies for decoding the nervous system with molecular and circuit precision, and for developing future therapeutics with reduced side effects.
Collapse
Affiliation(s)
- Sarah Mondoloni
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), CNRS, INSERM, Sorbonne Université, Paris, France
| | - Romain Durand-de Cuttoli
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), CNRS, INSERM, Sorbonne Université, Paris, France; Nash Family Department of Neuroscience, Center for Affective Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandre Mourot
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), CNRS, INSERM, Sorbonne Université, Paris, France.
| |
Collapse
|
57
|
Zubcevic L, Hsu AL, Borgnia MJ, Lee SY. Symmetry transitions during gating of the TRPV2 ion channel in lipid membranes. eLife 2019; 8:e45779. [PMID: 31090543 PMCID: PMC6544438 DOI: 10.7554/elife.45779] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/14/2019] [Indexed: 01/19/2023] Open
Abstract
The Transient Receptor Potential Vanilloid 2 (TRPV2) channel is a member of the temperature-sensing thermoTRPV family. Recent advances in cryo-electronmicroscopy (cryo-EM) and X-ray crystallography have provided many important insights into the gating mechanisms of thermoTRPV channels. Interestingly, crystallographic studies of ligand-dependent TRPV2 gating have shown that the TRPV2 channel adopts two-fold symmetric arrangements during the gating cycle. However, it was unclear if crystal packing forces played a role in stabilizing the two-fold symmetric arrangement of the channel. Here, we employ cryo-EM to elucidate the structure of full-length rabbit TRPV2 in complex with the agonist resiniferatoxin (RTx) in nanodiscs and amphipol. We show that RTx induces two-fold symmetric conformations of TRPV2 in both environments. However, the two-fold symmetry is more pronounced in the native-like lipid environment of the nanodiscs. Our data offers insights into a gating pathway in TRPV2 involving symmetry transitions.
Collapse
Affiliation(s)
- Lejla Zubcevic
- Department of BiochemistryDuke University School of MedicineDurhamUnited States
| | - Allen L Hsu
- Genome Integrity and Structural Biology LaboratoryNational Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human ServicesResearch Triangle ParkUnited States
| | - Mario J Borgnia
- Department of BiochemistryDuke University School of MedicineDurhamUnited States
- Genome Integrity and Structural Biology LaboratoryNational Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human ServicesResearch Triangle ParkUnited States
| | - Seok-Yong Lee
- Department of BiochemistryDuke University School of MedicineDurhamUnited States
| |
Collapse
|
58
|
Lee K, Lee BM, Park CK, Kim YH, Chung G. Ion Channels Involved in Tooth Pain. Int J Mol Sci 2019; 20:ijms20092266. [PMID: 31071917 PMCID: PMC6539952 DOI: 10.3390/ijms20092266] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 01/05/2023] Open
Abstract
The tooth has an unusual sensory system that converts external stimuli predominantly into pain, yet its sensory afferents in teeth demonstrate cytochemical properties of non-nociceptive neurons. This review summarizes the recent knowledge underlying this paradoxical nociception, with a focus on the ion channels involved in tooth pain. The expression of temperature-sensitive ion channels has been extensively investigated because thermal stimulation often evokes tooth pain. However, temperature-sensitive ion channels cannot explain the sudden intense tooth pain evoked by innocuous temperatures or light air puffs, leading to the hydrodynamic theory emphasizing the microfluidic movement within the dentinal tubules for detection by mechanosensitive ion channels. Several mechanosensitive ion channels expressed in dental sensory systems have been suggested as key players in the hydrodynamic theory, and TRPM7, which is abundant in the odontoblasts, and recently discovered PIEZO receptors are promising candidates. Several ligand-gated ion channels and voltage-gated ion channels expressed in dental primary afferent neurons have been discussed in relation to their potential contribution to tooth pain. In addition, in recent years, there has been growing interest in the potential sensory role of odontoblasts; thus, the expression of ion channels in odontoblasts and their potential relation to tooth pain is also reviewed.
Collapse
Affiliation(s)
- Kihwan Lee
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 406-799, Korea.
| | - Byeong-Min Lee
- Department of Oral Physiology and Program in Neurobiology, School of Dentistry, Seoul National University, Seoul 08826, Korea.
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 406-799, Korea.
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 406-799, Korea.
| | - Gehoon Chung
- Department of Oral Physiology and Program in Neurobiology, School of Dentistry, Seoul National University, Seoul 08826, Korea.
- Dental Research Institute, Seoul National University, Seoul 03080, Korea.
| |
Collapse
|
59
|
Coughlin Q, Hopper AT, Blanco MJ, Tirunagaru V, Robichaud AJ, Doller D. Allosteric Modalities for Membrane-Bound Receptors: Insights from Drug Hunting for Brain Diseases. J Med Chem 2019; 62:5979-6002. [PMID: 30721063 DOI: 10.1021/acs.jmedchem.8b01651] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Medicinal chemists are accountable for embedding the appropriate drug target profile into the molecular architecture of a clinical candidate. An accurate characterization of the functional effects following binding of a drug to its biological target is a fundamental step in the discovery of new medicines, informing the translation of preclinical efficacy and safety observations into human trials. Membrane-bound proteins, particularly ion channels and G protein-coupled receptors (GPCRs), are biological targets prone to allosteric modulation. Investigations using allosteric drug candidates and chemical tools suggest that their functional effects may be tailored with a high degree of translational alignment, making them molecular tools to correct pathophysiological functional tone and enable personalized medicine when a causative target-to-disease link is known. We present select examples of functional molecular fine-tuning of allosterism and discuss consequences relevant to drug design.
Collapse
|
60
|
Recovery from tachyphylaxis of TRPV1 coincides with recycling to the surface membrane. Proc Natl Acad Sci U S A 2019; 116:5170-5175. [PMID: 30804201 DOI: 10.1073/pnas.1819635116] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The transient receptor potential vanilloid-1 (TRPV1) ion channel is essential for sensation of thermal and chemical pain. TRPV1 activation is accompanied by Ca2+-dependent desensitization; acute desensitization reflects rapid reduction in channel activity during stimulation, whereas tachyphylaxis denotes the diminution in TRPV1 responses to repetitive stimulation. Acute desensitization has been attributed to conformational changes of the TRPV1 channel; however, the mechanisms underlying the establishment of tachyphylaxis remain to be defined. Here, we report that the degree of whole-cell TRPV1 tachyphylaxis is regulated by the strength of inducing stimulation. Using light-sheet microscopy and pH-sensitive sensor pHluorin to follow TRPV1 endocytosis and exocytosis trafficking, we provide real-time information that tachyphylaxis of different degrees concurs with TRPV1 recycling to the plasma membrane in a proportional manner. This process controls TRPV1 surface expression level thereby the whole-cell nociceptive response. We further show that activity-gated TRPV1 trafficking associates with intracellular Ca2+ signals of distinct kinetics, and recruits recycling routes mediated by synaptotagmin 1 and 7, respectively. These results suggest that activity-dependent TRPV1 recycling contributes to the establishment of tachyphylaxis.
Collapse
|
61
|
Long-Term Diabetic Microenvironment Augments the Decay Rate of Capsaicin-Induced Currents in Mouse Dorsal Root Ganglion Neurons. Molecules 2019; 24:775. [PMID: 30795543 PMCID: PMC6412516 DOI: 10.3390/molecules24040775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/16/2019] [Accepted: 02/19/2019] [Indexed: 12/04/2022] Open
Abstract
Individuals with end-stage diabetic peripheral neuropathy present with decreased pain sensation. Transient receptor potential vanilloid type 1 (TRPV1) is implicated in pain signaling and resides on sensory dorsal root ganglion (DRG) neurons. We investigated the expression and functional activity of TRPV1 in DRG neurons of the Ins2+/Akita mouse at 9 months of diabetes using immunohistochemistry, live single cell calcium imaging, and whole-cell patch-clamp electrophysiology. 2′,7′-Dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescence assay was used to determine the level of Reactive Oxygen Species (ROS) in DRGs. Although TRPV1 expressing neuron percentage was increased in Ins2+/Akita DRGs at 9 months of diabetes compared to control, capsaicin-induced Ca2+ influx was smaller in isolated Ins2+/Akita DRG neurons, indicating impaired TRPV1 function. Consistently, capsaicin-induced Ca2+ influx was decreased in control DRG neurons cultured in the presence of 25 mM glucose for seven days versus those cultured with 5.5 mM glucose. The high glucose environment increased cytoplasmic ROS accumulation in cultured DRG neurons. Patch-clamp recordings revealed that capsaicin-activated currents decayed faster in isolated Ins2+/Akita DRG neurons as compared to those in control neurons. We propose that in poorly controlled diabetes, the accelerated rate of capsaicin-sensitive TRPV1 current decay in DRG neurons decreases overall TRPV1 activity and contributes to peripheral neuropathy.
Collapse
|
62
|
Ugur M, Ugur Ö. A Mechanism-Based Approach to P2X7 Receptor Action. Mol Pharmacol 2019; 95:442-450. [PMID: 30737253 DOI: 10.1124/mol.118.115022] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/30/2019] [Indexed: 01/08/2023] Open
Abstract
The ligand-gated ion channel P2X7 receptor attracts special attention due to its widespread presence as well as its unusual responses. Besides relatively well-understood mechanisms such as intracellular Ca2+ increase and K+ depletion, the P2X7 receptor activates other peculiar responses whose mechanisms are not fully understood. The best known among these is the permeabilization of the cell membrane to large molecules. This permeabilization has been explained by the activation of a nonselective permeation pathway by the P2X7 receptor, a phenomenon called "pore formation." However, with the emergence of new data, it became apparent that large molecules enter the cell directly through the pore of the ion channel, similar to the smaller ions. This explanation seems to be true for cationic large molecules. On the other hand, there is still convincing evidence indicating that the P2X7 receptor activates a separate pathway that permeates anionic large molecules in some cell types. Furthermore, there exist functional data suggesting that the P2X7 receptor may also activate other intracellular signaling molecules or other ion channels. Interestingly and contrary to what is expected from a ligand-gated channel, these activations occur in a seemingly direct manner. Somewhat overshadowed by the pore formation hypothesis, these action mechanisms may lead to a better understanding of not only the P2X7 receptor itself but also some important physiologic functions such as the release of anionic autocoids/neurotransmitters in the central nervous system. This review discusses, assesses, and draws attention to the data concerning these neglected but potentially important points in the P2X7 receptor field.
Collapse
Affiliation(s)
- Mehmet Ugur
- Department of Biophysics (M.U.) and Department of Pharmacology (O.U.), Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Özlem Ugur
- Department of Biophysics (M.U.) and Department of Pharmacology (O.U.), Faculty of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
63
|
Morales-Lázaro SL, Rosenbaum T. Cholesterol as a Key Molecule That Regulates TRPV1 Channel Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1135:105-117. [DOI: 10.1007/978-3-030-14265-0_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
64
|
Lang RJ, Hashitani H. Pacemaker Mechanisms Driving Pyeloureteric Peristalsis: Modulatory Role of Interstitial Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1124:77-101. [PMID: 31183823 DOI: 10.1007/978-981-13-5895-1_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The peristaltic pressure waves in the renal pelvis that propel urine expressed by the kidney into the ureter towards the bladder have long been considered to be 'myogenic', being little affected by blockers of nerve conduction or autonomic neurotransmission, but sustained by the intrinsic release of prostaglandins and sensory neurotransmitters. In uni-papilla mammals, the funnel-shaped renal pelvis consists of a lumen-forming urothelium and a stromal layer enveloped by a plexus of 'typical' smooth muscle cells (TSMCs), in multi-papillae kidneys a number of minor and major calyces fuse into a large renal pelvis. Electron microscopic, electrophysiological and Ca2+ imaging studies have established that the pacemaker cells driving pyeloureteric peristalsis are likely to be morphologically distinct 'atypical' smooth muscle cells (ASMCs) that fire Ca2+ transients and spontaneous transient depolarizations (STDs) which trigger propagating nifedipine-sensitive action potentials and Ca2+ waves in the TSMC layer. In uni-calyceal kidneys, ASMCs predominately locate on the serosal surface of the proximal renal pelvis while in multi-papillae kidneys they locate within the sub-urothelial space. 'Fibroblast-like' interstitial cells (ICs) located in the sub-urothelial space or adventitia are a mixed population of cells, having regional and species-dependent expression of various Cl-, K+, Ca2+ and cationic channels. ICs display asynchronous Ca2+ transients that periodically synchronize into bursts that accelerate ASMC Ca2+ transient firing. This review presents current knowledge of the architecture of the proximal renal pelvis, the role Ca2+ plays in renal pelvis peristalsis and the mechanisms by which ICs may sustain/accelerate ASMC pacemaking.
Collapse
Affiliation(s)
- Richard J Lang
- School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia.
| | - Hikaru Hashitani
- Department of Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
65
|
Peverini L, Beudez J, Dunning K, Chataigneau T, Grutter T. New Insights Into Permeation of Large Cations Through ATP-Gated P2X Receptors. Front Mol Neurosci 2018; 11:265. [PMID: 30108481 PMCID: PMC6080412 DOI: 10.3389/fnmol.2018.00265] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/13/2018] [Indexed: 11/28/2022] Open
Abstract
The permeability of large cations through the P2X pore has remained arguably the most controversial and complicated topic in P2X-related research, with the emergence of conflicting studies on the existence, mechanism and physiological relevance of a so-called “dilated” state. Due to the important role of several “dilating” P2X subtypes in numerous diseases, a clear and detailed understanding of this phenomenon represents a research priority. Recent advances, however, have challenged the existence of a progressive, ATP-induced pore dilation, by demonstrating that this phenomenon is an artifact of the method employed. Here, we discuss briefly the history of this controversial and enigmatic dilated state, from its initial discovery to its recent reconsideration. We will discuss the literature in which mechanistic pathways to a large cation-permeable state are proposed, as well as important advances in the methodology employed to study this elusive state. Considering recent literature, we will also open the discussion as to whether an intrinsically dilating P2X pore exists, as well as the physiological relevance of such a large cation-permeable pore and its potential use as therapeutic pathway.
Collapse
Affiliation(s)
- Laurie Peverini
- CNRS, CAMB UMR 7199, Équipe de Chimie et Neurobiologie Moléculaire, Université de Strasbourg, Strasbourg, France
| | - Juline Beudez
- CNRS, CAMB UMR 7199, Équipe de Chimie et Neurobiologie Moléculaire, Université de Strasbourg, Strasbourg, France
| | - Kate Dunning
- CNRS, CAMB UMR 7199, Équipe de Chimie et Neurobiologie Moléculaire, Université de Strasbourg, Strasbourg, France
| | - Thierry Chataigneau
- CNRS, CAMB UMR 7199, Équipe de Chimie et Neurobiologie Moléculaire, Université de Strasbourg, Strasbourg, France
| | - Thomas Grutter
- CNRS, CAMB UMR 7199, Équipe de Chimie et Neurobiologie Moléculaire, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
66
|
Yang F, Xiao X, Lee BH, Vu S, Yang W, Yarov-Yarovoy V, Zheng J. The conformational wave in capsaicin activation of transient receptor potential vanilloid 1 ion channel. Nat Commun 2018; 9:2879. [PMID: 30038260 PMCID: PMC6056546 DOI: 10.1038/s41467-018-05339-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/19/2018] [Indexed: 01/17/2023] Open
Abstract
The capsaicin receptor TRPV1 has been intensively studied by cryo-electron microscopy and functional tests. However, though the apo and capsaicin-bound structural models are available, the dynamic process of capsaicin activation remains intangible, largely due to the lack of a capsaicin-induced open structural model and the low occupancy of the transition states. Here we report that reducing temperature toward the freezing point substantially increased channel closure events even in the presence of saturating capsaicin. We further used a combination of fluorescent unnatural amino acid (fUAA) incorporation, computational modeling, and rate-equilibrium linear free-energy relationships analysis (Φ-analysis) to derive the fully open capsaicin-bound state model, and reveal how the channel transits from the apo to the open state. We observed that capsaicin initiates a conformational wave that propagates through the S4–S5 linker towards the S6 bundle and finally reaching the selectivity filter. Our study provides a temporal mechanism for capsaicin activation of TRPV1. The capsaicin receptor TRPV1 has been structurally characterized, but the capsaicin activation dynamics remain elusive. Here authors use fluorescent unnatural amino acid incorporation, computational modeling and Φ-analysis to derive the capsaicin-bound open state model and reveal the capsaicin induced conformational changes.
Collapse
Affiliation(s)
- Fan Yang
- Department of Biophysics and Kidney Disease Center, First Affiliated Hospital, Institute of Neuroscience, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang Province, China. .,Department of Physiology and Membrane Biology, University of California, Davis, CA, 95616, USA.
| | - Xian Xiao
- Department of Physiology and Membrane Biology, University of California, Davis, CA, 95616, USA.,Institute for Basic Medical Sciences, Westlake Institute for Advanced Study, Westlake University, Shilongshan Road No. 18, Xihu District, Hangzhou, 310024, Zhejiang Province, China
| | - Bo Hyun Lee
- Department of Physiology and Membrane Biology, University of California, Davis, CA, 95616, USA.,University of Washington, Department of Physiology and Biophysics, Seattle, WA, 98195, USA
| | - Simon Vu
- Department of Physiology and Membrane Biology, University of California, Davis, CA, 95616, USA
| | - Wei Yang
- Department of Biophysics and Kidney Disease Center, First Affiliated Hospital, Institute of Neuroscience, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang Province, China
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, Davis, CA, 95616, USA
| | - Jie Zheng
- Department of Physiology and Membrane Biology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
67
|
Tochitsky I, Kienzler MA, Isacoff E, Kramer RH. Restoring Vision to the Blind with Chemical Photoswitches. Chem Rev 2018; 118:10748-10773. [PMID: 29874052 DOI: 10.1021/acs.chemrev.7b00723] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Degenerative retinal diseases such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD) affect millions of people around the world and lead to irreversible vision loss if left untreated. A number of therapeutic strategies have been developed over the years to treat these diseases or restore vision to already blind patients. In this Review, we describe the development and translational application of light-sensitive chemical photoswitches to restore visual function to the blind retina and compare the translational potential of photoswitches with other vision-restoring therapies. This therapeutic strategy is enabled by an efficient fusion of chemical synthesis, chemical biology, and molecular biology and is broadly applicable to other biological systems. We hope this Review will be of interest to chemists as well as neuroscientists and clinicians.
Collapse
Affiliation(s)
- Ivan Tochitsky
- F.M. Kirby Neurobiology Center , Boston Children's Hospital , Boston , Massachusetts 02115 , United States.,Department of Neurobiology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Michael A Kienzler
- Department of Chemistry , University of Maine , Orono , Maine 04469 , United States
| | - Ehud Isacoff
- Department of Molecular and Cell Biology , University of California , Berkeley , California 94720 , United States.,Helen Wills Neuroscience Institute , University of California , Berkeley , California 94720 , United States.,Bioscience Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Richard H Kramer
- Department of Molecular and Cell Biology , University of California , Berkeley , California 94720 , United States.,Helen Wills Neuroscience Institute , University of California , Berkeley , California 94720 , United States
| |
Collapse
|
68
|
Selective cold pain inhibition by targeted block of TRPM8-expressing neurons with quaternary lidocaine derivative QX-314. Commun Biol 2018; 1:53. [PMID: 30271936 PMCID: PMC6123689 DOI: 10.1038/s42003-018-0062-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/02/2018] [Indexed: 01/04/2023] Open
Abstract
Treatment of pain with local anesthetics leads to an unfavorable decrease in general sensory acuity due to their indiscriminate block of both pain sensing (nociceptors) and non-pain sensing nerves. However, the cell impermeant lidocaine derivative QX-314 can be selectively targeted to only nociceptors by permeation through ligand-gated cation channels. Here we show that localized injection of QX-314 with agonists for the menthol receptor TRPM8 specifically blocks cold-evoked behaviors in mice, including cold allodynia and hyperalgesia. Remarkably, cooling stimuli also promotes QX-314-mediated inhibition of cold behaviors, and can be used to block cold allodynia, while retaining relatively normal cold sensation. The effects of both agonist and thermally evoked uptake of QX-314 are TRPM8-dependent, results demonstrating an effective approach to treat localized cold pain without altering general somatosensation. Serra Ongun, Angela Sarkisian and David McKemy show that localized co-injection of lidocaine derivative QX-314 and receptor agonists is able to block cold sensitivity in mice in a targeted way, with implications for treating cold pain associated with injury and disease.
Collapse
|
69
|
Panchal SK, Bliss E, Brown L. Capsaicin in Metabolic Syndrome. Nutrients 2018; 10:E630. [PMID: 29772784 PMCID: PMC5986509 DOI: 10.3390/nu10050630] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 12/21/2022] Open
Abstract
Capsaicin, the major active constituent of chilli, is an agonist on transient receptor potential vanilloid channel 1 (TRPV1). TRPV1 is present on many metabolically active tissues, making it a potentially relevant target for metabolic interventions. Insulin resistance and obesity, being the major components of metabolic syndrome, increase the risk for the development of cardiovascular disease, type 2 diabetes, and non-alcoholic fatty liver disease. In vitro and pre-clinical studies have established the effectiveness of low-dose dietary capsaicin in attenuating metabolic disorders. These responses of capsaicin are mediated through activation of TRPV1, which can then modulate processes such as browning of adipocytes, and activation of metabolic modulators including AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor α (PPARα), uncoupling protein 1 (UCP1), and glucagon-like peptide 1 (GLP-1). Modulation of these pathways by capsaicin can increase fat oxidation, improve insulin sensitivity, decrease body fat, and improve heart and liver function. Identifying suitable ways of administering capsaicin at an effective dose would warrant its clinical use through the activation of TRPV1. This review highlights the mechanistic options to improve metabolic syndrome with capsaicin.
Collapse
Affiliation(s)
- Sunil K Panchal
- Functional Foods Research Group, University of Southern Queensland, Toowoomba QLD 4350, Australia.
| | - Edward Bliss
- Functional Foods Research Group, University of Southern Queensland, Toowoomba QLD 4350, Australia.
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba QLD 4350, Australia.
| | - Lindsay Brown
- Functional Foods Research Group, University of Southern Queensland, Toowoomba QLD 4350, Australia.
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba QLD 4350, Australia.
| |
Collapse
|
70
|
Zubcevic L, Le S, Yang H, Lee SY. Conformational plasticity in the selectivity filter of the TRPV2 ion channel. Nat Struct Mol Biol 2018; 25:405-415. [PMID: 29728656 PMCID: PMC6025827 DOI: 10.1038/s41594-018-0059-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/22/2018] [Indexed: 12/13/2022]
Abstract
Transient receptor potential vanilloid (TRPV) channels are activated by ligands and heat and are involved in various physiological processes. In contrast to the architecturally related voltage-gated cation channels, TRPV1 and TRPV2 subtypes possess another activation gate at the selectivity filter that can open widely enough to permeate large organic cations. Despite recent structural advances, the mechanism of selectivity filter gating and permeation for both metal ions and large molecules by TRPV1 or TRPV2 is not well known. Here, we determined two crystal structures of rabbit TRPV2 in its Ca2+-bound and resiniferatoxin (RTx)- and Ca2+-bound forms, to 3.9 Å and 3.1 Å, respectively. Notably, our structures show that RTx binding leads to two-fold symmetric opening of the selectivity filter of TRPV2 that is wide enough for large organic cation permeation. Combined with functional characterizations, our studies reveal a structural basis for permeation of Ca2+ and large organic cations in TRPV2.
Collapse
Affiliation(s)
- Lejla Zubcevic
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Son Le
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Huanghe Yang
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA.,Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
71
|
Aravena PC, Barrientos C, Troncoso C, Coronado C, Sotelo-Hitschfeld P. Effect of warming anesthetic on pain perception during dental injection: a split-mouth randomized clinical trial. Local Reg Anesth 2018; 11:9-13. [PMID: 29503582 PMCID: PMC5826251 DOI: 10.2147/lra.s147288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The purpose of this study is to determine the effectiveness of warming anesthesia on the control of the pain produced during the administration of dental anesthesia injection and to analyze the role of Transient Receptor Potential Vanilloid-1 nociceptor channels in this effect. PATIENTS AND METHODS A double-blind, split-mouth randomized clinical trial was designed. Seventy-two volunteer students (22.1±2.45 years old; 51 men) from the School of Dentistry at the Universidad Austral de Chile (Valdivia, Chile) participated. They were each administered 0.9 mL of lidocaine HCl 2% with epinephrine 1:100,000 (Alphacaine®) using two injections in the buccal vestibule at the level of the upper lateral incisor teeth. Anesthesia was administered in a hemiarch at 42°C (107.6°F) and after 1 week, anesthesia was administered by randomized sequence on the contralateral side at room temperature (21°C-69.8°F) at a standardized speed. The intensity of pain perceived during the injection was compared using a 100 mm visual analog scale (VAS; Wilcoxon test p<0.05). RESULTS The use of anesthesia at room temperature produced an average VAS for pain of 35.3±16.71 mm and anesthesia at 42°C produced VAS for pain of 15±14.67 mm (p<0.001). CONCLUSION The use of anesthesia at 42°C significantly reduced the pain during the injection of anesthesia compared to its use at room temperature during maxillary injections. The physiological mechanism of the temperature on pain reduction could be due to a synergic action on the permeabilization of the Transient Receptor Potential Vanilloid-1 channels, allowing the passage of anesthetic inside the nociceptors.
Collapse
Affiliation(s)
- Pedro Christian Aravena
- Department of Dentistry, Universidad Austral de Chile, Valdivia, Chile
- Department of Dental Implant Surgery, São Leopoldo Mandic School and Dental Institute, Campinas, SP, Brazil
| | - Camila Barrientos
- Department of Dentistry, Universidad Austral de Chile, Valdivia, Chile
| | - Catalina Troncoso
- Department of Dentistry, Universidad Austral de Chile, Valdivia, Chile
| | - Cesar Coronado
- Faculty of Health Science, School of Medicine, Universidad Autónoma de Chile, Santiago, Chile
| | - Pamela Sotelo-Hitschfeld
- Department of Center for Interdisciplinary Studies on Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
72
|
Zhen X, Xie C, Jiang Y, Ai X, Xing B, Pu K. Semiconducting Photothermal Nanoagonist for Remote-Controlled Specific Cancer Therapy. NANO LETTERS 2018; 18:1498-1505. [PMID: 29342359 DOI: 10.1021/acs.nanolett.7b05292] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanomedicine have shown success in cancer therapy, but the pharmacological actions of most nanomedicine are often nonspecific to cancer cells because of utilization of the therapeutic agents that induce cell apoptosis from inner organelles. We herein report the development of semiconducting photothermal nanoagonists that can remotely and specifically initiate the apoptosis of cancer cells from cell membrane. The organic nanoagonists comprise semiconducting polymer nanoparticles (SPNs) and capsaicin (Cap) as the photothermally responsive nanocarrier and the agonist for activation of transient receptor potential cation channel subfamily V member 1 (TRPV1), respectively. Under multiple NIR laser irradiation at the time scale of seconds, the nanoagonists can repeatedly and locally release Cap to multiply activate TRPV1 channels on the cellular membrane; the cumulative effect is the overinflux of ions in mitochondria followed by the induction of cell apoptosis specifically for TRPV1-postive cancer cells. Multiple transient activation of TRPV1 channels is essential to induce such a cell death both in vitro and in vivo because both free Cap and simple Cap-encapsulated nanoparticles fail to do so. The photothermally triggered release also ensures a high local concentration of the TRPV1 agonist at tumor site, permitting specific cancer cell therapy at a low systemic administration dosage. Our study thus demonstrates the first example of ion-channel-specific and remote-controlled drug-delivery system for cancer cell therapy.
Collapse
Affiliation(s)
- Xu Zhen
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, 637457 Singapore
| | - Chen Xie
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, 637457 Singapore
| | - Yuyan Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, 637457 Singapore
| | - Xiangzhao Ai
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 637371 Singapore
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 637371 Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, 637457 Singapore
| |
Collapse
|
73
|
Castillo K, Diaz-Franulic I, Canan J, Gonzalez-Nilo F, Latorre R. Thermally activated TRP channels: molecular sensors for temperature detection. Phys Biol 2018; 15:021001. [PMID: 29135465 DOI: 10.1088/1478-3975/aa9a6f] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Temperature sensing is one of the oldest capabilities of living organisms, and is essential for sustaining life, because failure to avoid extreme noxious temperatures can result in tissue damage or death. A subset of members of the transient receptor potential (TRP) ion channel family is finely tuned to detect temperatures ranging from extreme cold to noxious heat, giving rise to thermoTRP channels. Structural and functional experiments have shown that thermoTRP channels are allosteric proteins, containing different domains that sense changes in temperature, among other stimuli, triggering pore opening. Although temperature-dependence is well characterized in thermoTRP channels, the molecular nature of temperature-sensing elements remains unknown. Importantly, thermoTRP channels are involved in pain sensation, related to pathological conditions. Here, we provide an overview of thermoTRP channel activation. We also discuss the structural and functional evidence supporting the existence of an intrinsic temperature sensor in this class of channels, and we explore the basic thermodynamic principles for channel activation. Finally, we give a view of their role in painful pathophysiological conditions.
Collapse
Affiliation(s)
- Karen Castillo
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2366103, Chile. www.cinv.cl
| | | | | | | | | |
Collapse
|
74
|
Zhang F, Jara-Oseguera A, Chang TH, Bae C, Hanson SM, Swartz KJ. Heat activation is intrinsic to the pore domain of TRPV1. Proc Natl Acad Sci U S A 2018; 115:E317-E324. [PMID: 29279388 PMCID: PMC5777071 DOI: 10.1073/pnas.1717192115] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The TRPV1 channel is a sensitive detector of pain-producing stimuli, including noxious heat, acid, inflammatory mediators, and vanilloid compounds. Although binding sites for some activators have been identified, the location of the temperature sensor remains elusive. Using available structures of TRPV1 and voltage-activated potassium channels, we engineered chimeras wherein transmembrane regions of TRPV1 were transplanted into the Shaker Kv channel. Here we show that transplanting the pore domain of TRPV1 into Shaker gives rise to functional channels that can be activated by a TRPV1-selective tarantula toxin that binds to the outer pore of the channel. This pore-domain chimera is permeable to Na+, K+, and Ca2+ ions, and remarkably, is also robustly activated by noxious heat. Our results demonstrate that the pore of TRPV1 is a transportable domain that contains the structural elements sufficient for activation by noxious heat.
Collapse
Affiliation(s)
- Feng Zhang
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Andres Jara-Oseguera
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Tsg-Hui Chang
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Chanhyung Bae
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Sonya M Hanson
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Kenton J Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
75
|
Zheng W, Hu R, Cai R, Hofmann L, Hu Q, Fatehi M, Long W, Kong T, Tang J, Light P, Flockerzi V, Cao Y, Chen X. Identification and characterization of hydrophobic gate residues in TRP channels. FASEB J 2018; 32:639-653. [DOI: 10.1096/fj.201700599rr] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wang Zheng
- Institute of Biomedical and Pharmaceutical SciencesKey Laboratory of Fermentation Engineering of Ministry of EducationCollege of BioengineeringHubei University of TechnologyWuhanChina
- Membrane Protein Disease Research GroupDepartment of PhysiologyTongji UniversityShanghaiChina
| | - Ruikun Hu
- School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Ruiqi Cai
- Membrane Protein Disease Research GroupDepartment of PhysiologyTongji UniversityShanghaiChina
| | - Laura Hofmann
- Experimentelle und Klinische Pharmakologie und ToxikologieUniversität des SaarlandesHomburgGermany
| | - Qiaolin Hu
- Membrane Protein Disease Research GroupDepartment of PhysiologyTongji UniversityShanghaiChina
| | - Mohammad Fatehi
- Department of PharmacologyFaculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Wentong Long
- Department of PharmacologyFaculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Tim Kong
- Membrane Protein Disease Research GroupDepartment of PhysiologyTongji UniversityShanghaiChina
| | - Jingfeng Tang
- Institute of Biomedical and Pharmaceutical SciencesKey Laboratory of Fermentation Engineering of Ministry of EducationCollege of BioengineeringHubei University of TechnologyWuhanChina
| | - Peter Light
- Department of PharmacologyFaculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Veit Flockerzi
- Experimentelle und Klinische Pharmakologie und ToxikologieUniversität des SaarlandesHomburgGermany
| | - Ying Cao
- School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Xing‐Zhen Chen
- Membrane Protein Disease Research GroupDepartment of PhysiologyTongji UniversityShanghaiChina
| |
Collapse
|
76
|
Fazzari J, Linher-Melville K, Singh G. Tumour-Derived Glutamate: Linking Aberrant Cancer Cell Metabolism to Peripheral Sensory Pain Pathways. Curr Neuropharmacol 2018; 15:620-636. [PMID: 27157265 PMCID: PMC5543678 DOI: 10.2174/1570159x14666160509123042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/16/2016] [Accepted: 04/17/2016] [Indexed: 01/22/2023] Open
Abstract
Background Chronic pain is a major symptom that develops in cancer patients, most commonly emerging during advanced stages of the disease. The nature of cancer-induced pain is complex, and the efficacy of current therapeutic interventions is restricted by the dose-limiting side-effects that accompany common centrally targeted analgesics. Methods This review focuses on how up-regulated glutamate production and export by the tumour converge at peripheral afferent nerve terminals to transmit nociceptive signals through the transient receptor cation channel, TRPV1, thereby initiating central sensitization in response to peripheral disease-mediated stimuli. Results Cancer cells undergo numerous metabolic changes that include increased glutamine catabolism and over-expression of enzymes involved in glutaminolysis, including glutaminase. This mitochondrial enzyme mediates glutaminolysis, producing large pools of intracellular glutamate. Up-regulation of the plasma membrane cystine/glutamate antiporter, system xc-, promotes aberrant glutamate release from cancer cells. Increased levels of extracellular glutamate have been associated with the progression of cancer-induced pain and we discuss how this can be mediated by activation of TRPV1. Conclusion With a growing population of patients receiving inadequate treatment for intractable pain, new targets need to be considered to better address this largely unmet clinical need for improving their quality of life. A better understanding of the mechanisms that underlie the unique qualities of cancer pain will help to identify novel targets that are able to limit the initiation of pain from a peripheral source–the tumour.
Collapse
Affiliation(s)
| | | | - Gurmit Singh
- Department of Pathology and Molecular Medicine; Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON. Canada
| |
Collapse
|
77
|
Jiang M, Taghizadeh F, Steyger PS. Potential Mechanisms Underlying Inflammation-Enhanced Aminoglycoside-Induced Cochleotoxicity. Front Cell Neurosci 2017; 11:362. [PMID: 29209174 PMCID: PMC5702304 DOI: 10.3389/fncel.2017.00362] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/03/2017] [Indexed: 12/20/2022] Open
Abstract
Aminoglycoside antibiotics remain widely used for urgent clinical treatment of life-threatening infections, despite the well-recognized risk of permanent hearing loss, i.e., cochleotoxicity. Recent studies show that aminoglycoside-induced cochleotoxicity is exacerbated by bacteriogenic-induced inflammation. This implies that those with severe bacterial infections (that induce systemic inflammation), and are treated with bactericidal aminoglycosides are at greater risk of drug-induced hearing loss than previously recognized. Incorporating this novel comorbid factor into cochleotoxicity risk prediction models will better predict which individuals are more predisposed to drug-induced hearing loss. Here, we review the cellular and/or signaling mechanisms by which host-mediated inflammatory responses to infection could enhance the trafficking of systemically administered aminoglycosides into the cochlea to enhance the degree of cochleotoxicity over that in healthy preclinical models. Once verified, these mechanisms will be potential targets for novel pharmacotherapeutics that reduce the risk of drug-induced hearing loss (and acute kidney damage) without compromising the life-saving bactericidal efficacy of aminoglycosides.
Collapse
Affiliation(s)
- Meiyan Jiang
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Farshid Taghizadeh
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Peter S Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States.,National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, OR, United States
| |
Collapse
|
78
|
Burke RC, Bardet SM, Carr L, Romanenko S, Arnaud-Cormos D, Leveque P, O'Connor RP. Nanosecond pulsed electric fields depolarize transmembrane potential via voltage-gated K+, Ca2+ and TRPM8 channels in U87 glioblastoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2040-2050. [DOI: 10.1016/j.bbamem.2017.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 12/20/2022]
|
79
|
Solé-Magdalena A, Martínez-Alonso M, Coronado CA, Junquera LM, Cobo J, Vega JA. Molecular basis of dental sensitivity: The odontoblasts are multisensory cells and express multifunctional ion channels. Ann Anat 2017; 215:20-29. [PMID: 28954208 DOI: 10.1016/j.aanat.2017.09.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/22/2017] [Accepted: 09/10/2017] [Indexed: 12/26/2022]
Abstract
Odontoblasts are the dental pulp cells responsible for the formation of dentin. In addition, accumulating data strongly suggest that they can also function as sensory cells that mediate the early steps of mechanical, thermic, and chemical dental sensitivity. This assumption is based on the expression of different families of ion channels involved in various modalities of sensitivity and the release of putative neurotransmitters in response to odontoblast stimulation which are able to act on pulp sensory nerve fibers. This review updates the current knowledge on the expression of transient-potential receptor ion channels and acid-sensing ion channels in odontoblasts, nerve fibers innervating them and trigeminal sensory neurons, as well as in pulp cells. Moreover, the innervation of the odontoblasts and the interrelationship been odontoblasts and nerve fibers mediated by neurotransmitters was also revisited. These data might provide the basis for novel therapeutic approaches for the treatment of dentin sensibility and/or dental pain.
Collapse
Affiliation(s)
- A Solé-Magdalena
- Departamento de Morfología y Biología Celular Universidad de Oviedo, Spain
| | - M Martínez-Alonso
- Departamento de Morfología y Biología Celular Universidad de Oviedo, Spain
| | - C A Coronado
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile
| | - L M Junquera
- Departamento de Especialidades Médico-Quirúrgicas, Universidad de Oviedo, Spain; Servicio de Cirugía Maxilofacial, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - J Cobo
- Departamento de Especialidades Médico-Quirúrgicas, Universidad de Oviedo, Spain; Instituto Asturiano de Odontología, Oviedo, Spain
| | - J A Vega
- Departamento de Morfología y Biología Celular Universidad de Oviedo, Spain; Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile.
| |
Collapse
|
80
|
Alvarez O, Latorre R. The enduring legacy of the "constant-field equation" in membrane ion transport. J Gen Physiol 2017; 149:911-920. [PMID: 28931632 PMCID: PMC5688357 DOI: 10.1085/jgp.201711839] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In 1943, David Goldman published a seminal paper in The Journal of General Physiology that reported a concise expression for the membrane current as a function of ion concentrations and voltage. This body of work was, and still is, the theoretical pillar used to interpret the relationship between a cell's membrane potential and its external and/or internal ionic composition. Here, we describe from an historical perspective the theory underlying the constant-field equation and its application to membrane ion transport.
Collapse
Affiliation(s)
- Osvaldo Alvarez
- Departamento de Biología, Facultad de Ciencias, Santiago, Chile
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
81
|
Nakato J, Ho YY, Omae R, Mizushige T, Uchida K, Tominaga M, Kim M, Goto T, Takahashi N, Kawada T, Akiduki S, Kanamoto R, Ohinata K. l-Ornithine and l-lysine stimulate gastrointestinal motility via transient receptor potential vanilloid 1. Mol Nutr Food Res 2017; 61. [PMID: 28722259 DOI: 10.1002/mnfr.201700230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/15/2017] [Accepted: 07/04/2017] [Indexed: 01/09/2023]
Abstract
SCOPE The gastrointestinal (GI) tract senses and responds to intraluminal nutrients and these interactions often affect GI functions. We found that, among basic amino acids, l-ornithine (Orn) and l-lysine (Lys) stimulated but l-arginine (Arg) suppressed GI motility after oral administration (24 mmol/kg) in mice (Orn and Lys, 14.3 and 26.4% promotion; Arg, 7.7% suppression). We investigated the mechanism of the action of Orn and Lys on GI motility. METHODS AND RESULTS Orn-induced promotion of small intestinal transit was significantly inhibited (p<0.05) by oral administration of capsazepine, a transient receptor potential vanilloid 1 (TRPV1) antagonist. Moreover, the stimulatory effect of Orn and Lys was abolished in TRPV1-knockout mice. In TRPV1-transfected HEK293 cells, Orn and Lys (10 mM) evoked Ca2+ influx, which was blocked by ruthenium red, a TRP channel antagonist. These results suggest that Orn and Lys promote GI motility via activation of TRPV1. The GI motility stimulation by Orn and Lys was also blocked by atropine, a muscarinic acetylcholine receptor (mAChR) antagonist, or NG -nitro-l-arginine methyl ester, a nitric oxide (NO) synthase inhibitor. CONCLUSION Orally administered Orn and Lys stimulate GI motility via TRPV1, mAChR and NO synthase in mice.
Collapse
Affiliation(s)
- Junya Nakato
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Yee Yin Ho
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Ryo Omae
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Takafumi Mizushige
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto, Japan.,Research Unit for Physiological Chemistry, C-PIER, Kyoto University, Kyoto, Japan
| | - Kunitoshi Uchida
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), Okazaki, Aichi, Japan.,Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), Okazaki, Aichi, Japan.,Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Minji Kim
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Tsuyoshi Goto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto, Japan.,Research Unit for Physiological Chemistry, C-PIER, Kyoto University, Kyoto, Japan
| | - Nobuyuki Takahashi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto, Japan.,Research Unit for Physiological Chemistry, C-PIER, Kyoto University, Kyoto, Japan
| | - Teruo Kawada
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto, Japan.,Research Unit for Physiological Chemistry, C-PIER, Kyoto University, Kyoto, Japan
| | - Saori Akiduki
- Healthcare Products Development Center, KYOWA HAKKO BIO CO., LTD., Tsukuba, Ibaraki, Japan
| | - Ryuhei Kanamoto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Kousaku Ohinata
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto, Japan
| |
Collapse
|
82
|
Mostinski Y, Noy G, Kumar R, Tsvelikhovsky D, Priel A. Tricyclic Spirolactones as Modular TRPV1 Synthetic Agonists. ACS Chem Neurosci 2017; 8:1688-1696. [PMID: 28520395 DOI: 10.1021/acschemneuro.7b00127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
TRPV1 is a prominent signal integrator of the pain system, known to be activated by vanilloids, a family of endogenous and exogenous pain-evoking molecules, through the vanilloid-binding site (VBS). The extensive preclinical profiling of small molecule inhibitors provides intriguing evidence that TRPV1 inhibition can be a useful therapeutic approach. However, the dissimilarity of chemical species that activate TRPV1 creates a major obstacle to understanding the molecular mechanism of pain induction, which is viewed as a pivotal trait of the somatosensory system. Here, we establish the existence of a unique family of synthetic agonists that interface with TRPV1 through the VBS, containing none of the molecular domains previously believed to be required for this interaction. The overarching value obtained from our inquiry is the novel advancement of the existing TRPV1 activation model. These findings uncover new potential in the area of pain treatment, providing a novel synthetic platform.
Collapse
Affiliation(s)
- Yelena Mostinski
- The
Institute for Drug Research, Division of Medicinal Chemistry, School
of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Gilad Noy
- The
Institute for Drug Research, Division of Pharmacology, School of Pharmacy,
Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Rakesh Kumar
- The
Institute for Drug Research, Division of Pharmacology, School of Pharmacy,
Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Dmitry Tsvelikhovsky
- The
Institute for Drug Research, Division of Medicinal Chemistry, School
of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Avi Priel
- The
Institute for Drug Research, Division of Pharmacology, School of Pharmacy,
Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
83
|
Sun MY, Chisari M, Eisenman LN, Zorumski CF, Mennerick SJ. Contributions of space-clamp errors to apparent time-dependent loss of Mg 2+ block induced by NMDA. J Neurophysiol 2017; 118:532-543. [PMID: 28356471 DOI: 10.1152/jn.00106.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/17/2017] [Accepted: 03/27/2017] [Indexed: 11/22/2022] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) govern synaptic plasticity, development, and neuronal response to insult. Prolonged activation of NMDARs such as during an insult may activate secondary currents or modulate Mg2+ sensitivity, but the conditions under which these occur are not fully defined. We reexamined the effect of prolonged NMDAR activation in juvenile mouse hippocampal slices. NMDA (10 μM) elicited current with the expected negative-slope conductance in the presence of 1.2 mM Mg2+ However, several minutes of continued NMDA exposure elicited additional inward current at -70 mV. A higher concentration of NMDA (100 µM) elicited the current more rapidly. The additional current was not dependent on Ca2+, network activity, or metabotropic NMDAR function and did not persist on agonist removal. Voltage ramps revealed no alteration of either reversal potential or NMDA-elicited conductance between -30 mV and +50 mV. The result was a more linear NMDA current-voltage relationship. The current linearization was also induced in interneurons and in mature dentate granule neurons but not immature dentate granule cells, dissociated cultured hippocampal neurons, or nucleated patches excised from CA1 pyramidal neurons. Comparative simulations of NMDA application to a CA1 pyramidal neuron and to a cultured neuron revealed that linearization can be explained by space-clamp errors arising from gradual recruitment of distal dendritic NMDARs. We conclude that persistent secondary currents do not strongly contribute to NMDAR responses in juvenile mouse hippocampus and careful discernment is needed to exclude contributions of clamp artifacts to apparent secondary currents.NEW & NOTEWORTHY We report that upon sustained activation of NMDARs in juvenile mouse hippocampal neurons there is apparent loss of Mg2+ block at negative membrane potentials. However, the phenomenon is explained by loss of dendritic voltage clamp, leading to a linear current-voltage relationship. Our results give a specific example of how spatial voltage errors in voltage-clamp recordings can readily be misinterpreted as biological modulation.
Collapse
Affiliation(s)
- Min-Yu Sun
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Mariangela Chisari
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Lawrence N Eisenman
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Charles F Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri.,Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri.,Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri.,Center for Brain Research in Mood Disorders, Washington University School of Medicine, St. Louis, Missouri; and
| | - Steven J Mennerick
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; .,Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri.,Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
84
|
Fenwick AJ, Fowler DK, Wu SW, Shaffer FJ, Lindberg JEM, Kinch DC, Peters JH. Direct Anandamide Activation of TRPV1 Produces Divergent Calcium and Current Responses. Front Mol Neurosci 2017; 10:200. [PMID: 28680392 PMCID: PMC5478686 DOI: 10.3389/fnmol.2017.00200] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/07/2017] [Indexed: 01/22/2023] Open
Abstract
In the brainstem nucleus of the solitary tract (NTS), primary vagal afferent neurons express the transient receptor potential vanilloid subfamily member 1 (TRPV1) at their central terminals where it contributes to quantal forms of glutamate release. The endogenous membrane lipid anandamide (AEA) is a putative TRPV1 agonist in the brain, yet the extent to which AEA activation of TRPV1 has a neurophysiological consequence is not well established. We investigated the ability of AEA to activate TRPV1 in vagal afferent neurons in comparison to capsaicin (CAP). Using ratiometric calcium imaging and whole-cell patch clamp recordings we confirmed that AEA excitatory activity requires TRPV1, binds competitively at the CAP binding site, and has low relative affinity. While AEA-induced increases in peak cytosolic calcium were similar to CAP, AEA-induced membrane currents were significantly smaller. Removal of bath calcium increased the AEA current with no change in peak CAP currents revealing a calcium sensitive difference in specific ligand activation of TRPV1. Both CAP- and AEA-activated TRPV1 currents maintained identical reversal potentials, arguing against a major difference in ion selectivity to resolve the AEA differences in signaling. In contrast with CAP, AEA did not alter spontaneous glutamate release at NTS synapses. We conclude: (1) AEA activation of TRPV1 is markedly different from CAP and produces different magnitudes of calcium influx from whole-cell current; and (2) exogenous AEA does not alter spontaneous glutamate release onto NTS neurons. As such, AEA may convey modulatory changes to calcium-dependent processes, but does not directly facilitate glutamate release.
Collapse
Affiliation(s)
- Axel J Fenwick
- Department of Integrative Physiology and Neuroscience, Washington State UniversityPullman, WA, United States
| | - Daniel K Fowler
- Department of Integrative Physiology and Neuroscience, Washington State UniversityPullman, WA, United States
| | - Shaw-Wen Wu
- Department of Integrative Physiology and Neuroscience, Washington State UniversityPullman, WA, United States
| | - Forrest J Shaffer
- Department of Integrative Physiology and Neuroscience, Washington State UniversityPullman, WA, United States
| | - Jonathan E M Lindberg
- Department of Integrative Physiology and Neuroscience, Washington State UniversityPullman, WA, United States
| | - Dallas C Kinch
- Department of Integrative Physiology and Neuroscience, Washington State UniversityPullman, WA, United States
| | - James H Peters
- Department of Integrative Physiology and Neuroscience, Washington State UniversityPullman, WA, United States
| |
Collapse
|
85
|
Transient receptor potential vanilloid 4 (TRPV4) channel as a target of crotamiton and its bimodal effects. Pflugers Arch 2017; 469:1313-1323. [PMID: 28612138 DOI: 10.1007/s00424-017-1998-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 05/02/2017] [Accepted: 05/12/2017] [Indexed: 10/19/2022]
Abstract
The sensation of itching can be defined as "an unpleasant cutaneous sensation that provokes a desire to scratch." The perception of itching is not critical for the maintenance of life, but persistent itching can be extremely irritating and decreases the quality of life. Crotamiton (N-ethyl-o-crotonotoluidide) has been used as an anti-itch agent for humans for around 70 years. In spite of the long use of crotamiton, its mechanism of action remains unknown. We hypothesized that crotamiton might have effects on transient receptor potential (TRP) channels expressed in the peripheral nervous system and the skin. We first examined the effects of crotamiton on TRP channels by whole-cell patch-clamp recordings. We found that crotamiton strongly inhibited TRPV (vanilloid) 4 channels followed by large currents after crotamiton washout. In mice, crotamiton inhibited itch-related behaviors induced by a TRPV4-selective agonist (GSK1016790A). We biophysically investigated the large TRPV4 currents after crotamiton washout. Comparing single-channel open probabilities and current amplitudes of TRPV4, increases in both parameters were found to contribute to the large washout currents of TRPV4. Because the change in current amplitudes suggested pore dilation of TRPV4, we examined this possibility with cation replacement experiments and by measuring changes in reversal potentials. Greater cation influxes and changes in reversal potentials upon crotamiton washout were observed, suggesting that the TRPV4 pore dilated in its uninhibited state. From these results, we identified the molecular target of crotamiton as TRPV4 and demonstrated pore dilation of TRPV4 upon crotamiton washout.
Collapse
|
86
|
Systemic QX-314 Reduces Bone Cancer Pain through Selective Inhibition of Transient Receptor Potential Vanilloid Subfamily 1-expressing Primary Afferents in Mice. Anesthesiology 2017; 125:204-18. [PMID: 27176211 DOI: 10.1097/aln.0000000000001152] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND The aim of this study was to determine whether systemic administration of QX-314 reduces bone cancer pain through selective inhibition of transient receptor potential vanilloid subfamily 1 (TRPV1)-expressing afferents. METHODS A mouse model of bone cancer pain was used. The authors examined the effects of bolus (0.01 to 3 mg/kg, n = 6 to 10) and continuous (5 mg kg h, n = 5) administration of QX-314 on both bone cancer pain-related behaviors and phosphorylated cyclic adenosine monophosphate response element-binding protein expression in dorsal root ganglion neurons (n = 3 or 6) and the effects of ablation of TRPV1-expressing afferents on bone cancer pain-related behaviors (n = 10). RESULTS The numbers of flinches indicative of ongoing pain in QX-314-treated mice were smaller than those in vehicle-treated mice at 10 min (3 mg/kg, 4 ± 3; 1 mg/kg, 5 ± 3 vs. 12 ± 3; P < 0.001; n = 8 to 9), 24 h (3 ± 2 vs. 13 ± 3, P < 0.001), and 48 h (4 ± 1 vs. 12 ± 2, P < 0.001; n = 5 in each group) after QX-314 administration, but impaired limb use, weight-bearing including that examined by the CatWalk system, and rotarod performance indicative of movement-evoked pain were comparable. QX-314 selectively inhibited the increase in phosphorylated cyclic adenosine monophosphate response element-binding protein expression in TRPV1-positive, but not in TRPV1-negative, dorsal root ganglion neurons compared to that in the case of vehicle administration (32.2 ± 3.0% vs. 52.6 ± 5.9%, P < 0.001; n = 6 in each group). Ablation of TRPV1-expressing afferents mimicked the effects of QX-314. CONCLUSION This study showed that systemic administration of QX-314 in mice inhibits some behavioral aspects of bone cancer pain through selective inhibition of TRPV1-expressing afferents without coadministration of TRPV1 agonists.
Collapse
|
87
|
Stokes L, Layhadi JA, Bibic L, Dhuna K, Fountain SJ. P2X4 Receptor Function in the Nervous System and Current Breakthroughs in Pharmacology. Front Pharmacol 2017; 8:291. [PMID: 28588493 PMCID: PMC5441391 DOI: 10.3389/fphar.2017.00291] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/05/2017] [Indexed: 12/18/2022] Open
Abstract
Adenosine 5′-triphosphate is a well-known extracellular signaling molecule and neurotransmitter known to activate purinergic P2X receptors. Information has been elucidated about the structure and gating of P2X channels following the determination of the crystal structure of P2X4 (zebrafish), however, there is still much to discover regarding the role of this receptor in the central nervous system (CNS). In this review we provide an overview of what is known about P2X4 expression in the CNS and discuss evidence for pathophysiological roles in neuroinflammation and neuropathic pain. Recent advances in the development of pharmacological tools including selective antagonists (5-BDBD, PSB-12062, BX430) and positive modulators (ivermectin, avermectins, divalent cations) of P2X4 will be discussed.
Collapse
Affiliation(s)
- Leanne Stokes
- School of Pharmacy, University of East Anglia, Norwich Research ParkNorwich, United Kingdom.,School of Biomedical and Health Sciences, RMIT University, BundooraVIC, Australia
| | - Janice A Layhadi
- Biomedical Research Centre, School of Biological Sciences, University of East AngliaNorwich, United Kingdom
| | - Lucka Bibic
- School of Pharmacy, University of East Anglia, Norwich Research ParkNorwich, United Kingdom
| | - Kshitija Dhuna
- School of Biomedical and Health Sciences, RMIT University, BundooraVIC, Australia
| | - Samuel J Fountain
- Biomedical Research Centre, School of Biological Sciences, University of East AngliaNorwich, United Kingdom
| |
Collapse
|
88
|
Zhang Y, Yang J, Yin Q, Yang L, Liu J, Zhang W. QX-OH, a QX-314 derivative agent, produces long-acting local anesthesia in rats. Eur J Pharm Sci 2017; 105:212-218. [PMID: 28529036 DOI: 10.1016/j.ejps.2017.05.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 02/05/2023]
Abstract
QX-314 has been shown to produce long-acting local anesthesia in vivo in animals; however, translation to humans has been impeded by concerns about toxicity. We investigated whether the newly emerged QX-OH molecule could confer long-lasting anesthesia with a low local toxicity in rats. In rat sciatic nerve block model, QX-OH 25mM produced a longer sensory block than QX-314 25mM (median [25th, 75th percentiles], 5.5 [4.25, 6] h vs. 3 [3, 4] h; P=0.03). QX-OH 35mM produced a longer sensory block than QX-314 35mM (8 [6, 12] h vs. 6 [4, 6.5] h, P=0.038). QX-OH at 35 and 45mM generated longer motor blocks than QX-314, with tissue toxicity less than that of QX-314 at the same concentration. In contrast with bupivacaine, QX-OH was clearly superior in terms of sensory and motor blockade durations after a single bolus injection. There was no significant difference in tissue toxicity between QX-OH (25 and 35mM) and bupivacaine. In rat cutaneous trunci pinprick model, the QX-OH-induced pain threshold remained significantly different from baseline at 6h (25mM, P<0.0001), 10h (35mM, P<0.0001), and 12h (45mM, P<0.0001). The time required for full recovery from the subcutaneous anesthetic effect was significantly longer for QX-OH than for QX-314 and bupivacaine. So QX-OH produced concentration-dependent, reversible, and long-acting local anesthesia in animal models with a moderate local toxicity.
Collapse
Affiliation(s)
- YuJun Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China; Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Jun Yang
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - QinQin Yin
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - LingHui Yang
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China; Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - WenSheng Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China; Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China.
| |
Collapse
|
89
|
Agonist-dependence of functional properties for common nonsynonymous variants of human transient receptor potential vanilloid 1. Pain 2017; 157:1515-1524. [PMID: 26967694 DOI: 10.1097/j.pain.0000000000000556] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is a polymodal receptor activated by capsaicin, heat, and acid, which plays critical roles in thermosensation and pain. In addition, TRPV1 also contributes to multiple pathophysiological states in respiratory, cardiovascular, metabolic, and renal systems. These contributions are further supported by evidence that variations in the human TRPV1 (hTRPV1) gene are associated with various physiological and pathological phenotypes. However, it is not well understood how the variations in hTRPV1 affect channel functions. In this study, we examined functional consequences of amino acid variations of hTRPV1 induced by 5 nonsynonymous single-nucleotide polymorphisms (SNPs) that most commonly exist in the human population. Using electrophysiological assays in HEK293 cells, we examined 9 parameters: activation, Ca permeation, and desensitization after activation by capsaicin, acid, and heat. Our results demonstrated that the 5 SNPs differentially affected functional properties of hTRPV1 in an agonist-dependent manner. Based upon the directionality of change of each phenotype and cumulative changes in each SNP, we classified the 5 SNPs into 3 presumptive functional categories: gain of function (hTRPV1 Q85R, P91S, and T469I), loss of function (I585V), and mixed (M315I). These results reveal a spectrum of functional variation among common hTRPV1 polymorphisms in humans and may aid mechanistic interpretation of phenotypes associated with nonsynonymous hTRPV1 SNPs under pathophysiological conditions.
Collapse
|
90
|
Localization of the gate and selectivity filter of the full-length P2X7 receptor. Proc Natl Acad Sci U S A 2017; 114:E2156-E2165. [PMID: 28235784 DOI: 10.1073/pnas.1610414114] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The P2X7 receptor (P2X7R) belongs to the P2X family of ATP-gated cation channels. P2X7Rs are expressed in epithelial cells, leukocytes, and microglia, and they play important roles in immunological and inflammatory processes. P2X7Rs are obligate homotrimers, with each subunit having two transmembrane helices, TM1 and TM2. Structural and functional data regarding the P2X2 and P2X4 receptors indicate that the central trihelical TM2 bundle forms the intrinsic transmembrane channel of P2X receptors. Here, we studied the accessibility of single cysteines substituted along the pre-TM2 and TM2 helix (residues 327-357) of the P2X7R using as readouts (i) the covalent maleimide fluorescence accessibility of the surface-bound P2X7R and (ii) covalent modulation of macroscopic and single-channel currents using extracellularly and intracellularly applied methanethiosulfonate (MTS) reagents. We found that the channel opening extends from the pre-TM2 region through the outer half of the trihelical TM2 channel. Covalently adducted MTS ethylammonium+ (MTSEA+) strongly increased the probability that the channel was open by delaying channel closing of seven of eight responsive human P2X7R (hP2X7R) mutants. Structural modeling, as supported by experimental probing, suggested that resulting intraluminal hydrogen bonding interactions stabilize the open-channel state. The additional decrease in single-channel conductance by MTSEA+ in five of seven positions identified Y336, S339, L341C, Y343, and G345 as the narrowest part of the channel lumen. The gate and ion-selectivity filter of the P2X7R could be colocalized at and around residue S342. None of our results provided any evidence for dilation of the hP2X7R channel on sustained stimulation with ATP4.
Collapse
|
91
|
Morales-Lázaro SL, Rosenbaum T. Multiple Mechanisms of Regulation of Transient Receptor Potential Ion Channels by Cholesterol. CURRENT TOPICS IN MEMBRANES 2017; 80:139-161. [DOI: 10.1016/bs.ctm.2017.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
92
|
Omari SA, Adams MJ, Geraghty DP. TRPV1 Channels in Immune Cells and Hematological Malignancies. ADVANCES IN PHARMACOLOGY 2017; 79:173-198. [DOI: 10.1016/bs.apha.2017.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
93
|
Cellular permeation of large molecules mediated by TRPM8 channels. Neurosci Lett 2016; 639:59-67. [PMID: 28038937 DOI: 10.1016/j.neulet.2016.12.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/23/2016] [Accepted: 12/24/2016] [Indexed: 11/24/2022]
Abstract
While most membrane channels are only capable of passing small ions, certain non-selective cation channels have been recently shown to have the capacity to permeate large cations. The mechanisms underlying large molecule permeation are unclear, but this property has been exploited pharmacologically to target molecules, such as nerve conduction blockers, to specific subsets of pain-sensing neurons (nociceptors) expressing the heat-gated transient receptor potential (TRP) channel TRPV1. However, it is not clear if the principal mediator of cold stimuli TRPM8 is capable of mediating the permeation large molecules across cell membranes, suggesting that TRPM8-positive nerves cannot be similarly targeted. Here we show that both heterologous cells and native sensory neurons expressing TRPM8 channels allow the permeation of the large fluorescent cation Po-Pro3. Po-Pro3 influx is blocked by TRPM8-specific antagonism and when channel activity is desensitized. The effects of the potent agonist WS-12 are TRPM8-specific and dye uptake mediated by TRPM8 channels is similar to that observed with TRPV1. Lastly, we find that as with TRPV1, activation of TRPM8 channels can be used as a means to target intracellular uptake of cell-impermeable sodium channel blockers. In a neuronal cell line expressing TRPM8 channels, voltage-gated sodium currents are blocked in the presence of the cell-impermeable, charged lidocaine derivative QX-314 and WS-12. These results show that the ability of somatosensory TRP channels to promote the permeation of large cations also includes TRPM8, thereby suggesting that novel approaches to alter cold pain can also be employed via conduction block in TRPM8-positive sensory neurons.
Collapse
|
94
|
Aghazadeh Tabrizi M, Baraldi PG, Baraldi S, Gessi S, Merighi S, Borea PA. Medicinal Chemistry, Pharmacology, and Clinical Implications of TRPV1 Receptor Antagonists. Med Res Rev 2016; 37:936-983. [PMID: 27976413 DOI: 10.1002/med.21427] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/24/2016] [Accepted: 11/01/2016] [Indexed: 12/28/2022]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is an ion channel expressed on sensory neurons triggering an influx of cations. TRPV1 receptors function as homotetramers responsive to heat, proinflammatory substances, lipoxygenase products, resiniferatoxin, endocannabinoids, protons, and peptide toxins. Its phosphorylation increases sensitivity to both chemical and thermal stimuli, while desensitization involves a calcium-dependent mechanism resulting in receptor dephosphorylation. TRPV1 functions as a sensor of noxious stimuli and may represent a target to avoid pain and injury. TRPV1 activation has been associated to chronic inflammatory pain and peripheral neuropathy. Its expression is also detected in nonneuronal areas such as bladder, lungs, and cochlea where TRPV1 activation is responsible for pathology development of cystitis, asthma, and hearing loss. This review offers a comprehensive overview about TRPV1 receptor in the pathophysiology of chronic pain, epilepsy, cough, bladder disorders, diabetes, obesity, and hearing loss, highlighting how drug development targeting this channel could have a clinical therapeutic potential. Furthermore, it summarizes the advances of medicinal chemistry research leading to the identification of highly selective TRPV1 antagonists and their analysis of structure-activity relationships (SARs) focusing on new strategies to target this channel.
Collapse
Affiliation(s)
- Mojgan Aghazadeh Tabrizi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Pier Giovanni Baraldi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Stefania Baraldi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Stefania Gessi
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Stefania Merighi
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Pier Andrea Borea
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| |
Collapse
|
95
|
Mickle AD, Shepherd AJ, Mohapatra DP. Nociceptive TRP Channels: Sensory Detectors and Transducers in Multiple Pain Pathologies. Pharmaceuticals (Basel) 2016; 9:ph9040072. [PMID: 27854251 PMCID: PMC5198047 DOI: 10.3390/ph9040072] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 02/07/2023] Open
Abstract
Specialized receptors belonging to the transient receptor potential (TRP) family of ligand-gated ion channels constitute the critical detectors and transducers of pain-causing stimuli. Nociceptive TRP channels are predominantly expressed by distinct subsets of sensory neurons of the peripheral nervous system. Several of these TRP channels are also expressed in neurons of the central nervous system, and in non-neuronal cells that communicate with sensory nerves. Nociceptive TRPs are activated by specific physico-chemical stimuli to provide the excitatory trigger in neurons. In addition, decades of research has identified a large number of immune and neuromodulators as mediators of nociceptive TRP channel activation during injury, inflammatory and other pathological conditions. These findings have led to aggressive targeting of TRP channels for the development of new-generation analgesics. This review summarizes the complex activation and/or modulation of nociceptive TRP channels under pathophysiological conditions, and how these changes underlie acute and chronic pain conditions. Furthermore, development of small-molecule antagonists for several TRP channels as analgesics, and the positive and negative outcomes of these drugs in clinical trials are discussed. Understanding the diverse functional and modulatory properties of nociceptive TRP channels is critical to function-based drug targeting for the development of evidence-based and efficacious new generation analgesics.
Collapse
Affiliation(s)
- Aaron D Mickle
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| | - Andrew J Shepherd
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| | - Durga P Mohapatra
- Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
- Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
- Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
96
|
Nguyen M, Higashi R, Ohta K, Nakamura KI, Hashitani H, Lang R. Autonomic and sensory nerve modulation of peristalsis in the upper urinary tract. Auton Neurosci 2016; 200:1-10. [DOI: 10.1016/j.autneu.2015.07.425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 07/20/2015] [Accepted: 07/28/2015] [Indexed: 11/24/2022]
|
97
|
Bidaux G, Sgobba M, Lemonnier L, Borowiec AS, Noyer L, Jovanovic S, Zholos AV, Haider S. Functional and Modeling Studies of the Transmembrane Region of the TRPM8 Channel. Biophys J 2016; 109:1840-51. [PMID: 26536261 DOI: 10.1016/j.bpj.2015.09.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/18/2015] [Accepted: 09/28/2015] [Indexed: 12/15/2022] Open
Abstract
Members of the transient receptor potential (TRP) ion channel family act as polymodal cellular sensors, which aid in regulating Ca(2+) homeostasis. Within the TRP family, TRPM8 is the cold receptor that forms a nonselective homotetrameric cation channel. In the absence of TRPM8 crystal structure, little is known about the relationship between structure and function. Inferences of TRPM8 structure have come from mutagenesis experiments coupled to electrophysiology, mainly regarding the fourth transmembrane helix (S4), which constitutes a moderate voltage-sensing domain, and about cold sensor and phosphatidylinositol 4,5-bisphosphate binding sites, which are both located in the C-terminus of TRPM8. In this study, we use a combination of molecular modeling and experimental techniques to examine the structure of the TRPM8 transmembrane and pore helix region including the conducting conformation of the selectivity filter. The model is consistent with a large amount of functional data and was further tested by mutagenesis. We present structural insight into the role of residues involved in intra- and intersubunit interactions and their link with the channel activity, sensitivity to icilin, menthol and cold, and impact on channel oligomerization.
Collapse
Affiliation(s)
- Gabriel Bidaux
- Inserm, U1003, Laboratoire de Physiologie Cellulaire, Equipe labellisée par la Ligue contre le Cancer, Villeneuve d'Ascq, France; Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille 1, Villeneuve d'Ascq, France; Laboratoire Biophotonique Cellulaire Fonctionnelle. Institut de Recherche Interdisciplinaire, Villeneuve d'Ascq, France
| | - Miriam Sgobba
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom
| | - Loic Lemonnier
- Inserm, U1003, Laboratoire de Physiologie Cellulaire, Equipe labellisée par la Ligue contre le Cancer, Villeneuve d'Ascq, France; Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille 1, Villeneuve d'Ascq, France
| | - Anne-Sophie Borowiec
- Inserm, U1003, Laboratoire de Physiologie Cellulaire, Equipe labellisée par la Ligue contre le Cancer, Villeneuve d'Ascq, France; Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille 1, Villeneuve d'Ascq, France
| | - Lucile Noyer
- Inserm, U1003, Laboratoire de Physiologie Cellulaire, Equipe labellisée par la Ligue contre le Cancer, Villeneuve d'Ascq, France; Laboratory of Excellence, Ion Channels Science and Therapeutics, Université de Lille 1, Villeneuve d'Ascq, France
| | | | - Alexander V Zholos
- Department of Biophysics, Educational and Scientific Centre, "Institute of Biology" Taras Shevchenko, Kiev National University, Kiev, Ukraine.
| | | |
Collapse
|
98
|
Bukhari M, Burm H, Samways DSK. Ion channel-mediated uptake of cationic vital dyes into live cells: a potential source of error when assessing cell viability. Cell Biol Toxicol 2016; 32:363-71. [PMID: 27423453 DOI: 10.1007/s10565-016-9344-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/09/2016] [Indexed: 10/21/2022]
Abstract
Ionic "vital dyes" are commonly used to assess cell viability based on the idea that their permeation is contingent on a loss of membrane integrity. However, the possibility that dye entry is conducted into live cells by endogenous membrane transporters must be recognized and controlled for. Several cation-selective plasma membrane-localized ion channels, including the adenosine 5'-triphosphate (ATP)-gated P2X receptors, have been reported to conduct entry of the DNA-binding fluorescence dye, YO-PRO-1, into live cells. Extracellular ATP often becomes elevated as a result of release from dying cells, and so it is possible that activation of P2X channels on neighboring live cells could lead to exaggerated estimation of cytotoxicity. Here, we screened a number of fluorescent vital dyes for ion channel-mediated uptake in HEK293 cells expressing recombinant P2X2, P2X7, or TRPV1 channels. Our data shows that activation of all three channels caused substantial uptake and nuclear accumulation of YO-PRO-1, 4',6-diamidino-2-phenylindole (DAPI), and Hoechst 33258 into transfected cells and did so well within the time period usually used for incubation of cells with vital dyes. In contrast, channel activation in the presence of propidium iodide and SYTOX Green caused no measurable uptake and accumulation during a 20-min exposure, suggesting that these dyes are not likely to exhibit measurable uptake through these particular ion channels during a conventional cell viability assay. Caution is encouraged when choosing and employing cationic dyes for the purpose of cell viability assessment, particularly when there is a likelihood of cells expressing ion channels permeable to large ions.
Collapse
Affiliation(s)
- Maurish Bukhari
- Department of Biology, Clarkson University, 177 Science Center, Box 5805, Potsdam, NY, 13699-5805, USA
| | - Hayley Burm
- School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, USA
| | - Damien S K Samways
- Department of Biology, Clarkson University, 177 Science Center, Box 5805, Potsdam, NY, 13699-5805, USA.
| |
Collapse
|
99
|
Diaz-Franulic I, Poblete H, Miño-Galaz G, González C, Latorre R. Allosterism and Structure in Thermally Activated Transient Receptor Potential Channels. Annu Rev Biophys 2016; 45:371-98. [DOI: 10.1146/annurev-biophys-062215-011034] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ignacio Diaz-Franulic
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago 8370146, Chile
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile; ,
- Fraunhofer Chile Research, Las Condes 7550296, Santiago, Chile
| | - Horacio Poblete
- Institute of Computational Comparative Medicine, Nanotechnology Innovation Center of Kansas State, Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506-5802
| | - Germán Miño-Galaz
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago 8370146, Chile
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile; ,
| | - Carlos González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile; ,
| | - Ramón Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile; ,
| |
Collapse
|
100
|
Lerch MM, Hansen MJ, van Dam GM, Szymanski W, Feringa BL. Emerging Targets in Photopharmacology. Angew Chem Int Ed Engl 2016; 55:10978-99. [DOI: 10.1002/anie.201601931] [Citation(s) in RCA: 413] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/29/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Michael M. Lerch
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Mickel J. Hansen
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Gooitzen M. van Dam
- Department of Surgery, Nuclear Medicine and Molecular Imaging and Intensive Care, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen The Netherlands
| | - Wiktor Szymanski
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
- Department of Radiology, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen The Netherlands
| | - Ben L. Feringa
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 7 9747 AG Groningen The Netherlands
- Department of Radiology, University of Groningen; University Medical Center Groningen; Hanzeplein 1, P.O. Box 30001 9700 RB Groningen The Netherlands
| |
Collapse
|