51
|
Sukhanov I, Caffino L, Efimova EV, Espinoza S, Sotnikova TD, Cervo L, Fumagalli F, Gainetdinov RR. Increased context-dependent conditioning to amphetamine in mice lacking TAAR1. Pharmacol Res 2016; 103:206-14. [DOI: 10.1016/j.phrs.2015.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/05/2015] [Accepted: 11/05/2015] [Indexed: 11/29/2022]
|
52
|
Selective activation of the trace amine-associated receptor 1 decreases cocaine's reinforcing efficacy and prevents cocaine-induced changes in brain reward thresholds. Prog Neuropsychopharmacol Biol Psychiatry 2015; 63:70-5. [PMID: 26048337 DOI: 10.1016/j.pnpbp.2015.05.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/26/2015] [Accepted: 05/26/2015] [Indexed: 01/09/2023]
Abstract
The newly discovered trace amine-associated receptor 1 (TAAR1) has emerged as a promising target for medication development in stimulant addiction due to its ability to regulate dopamine (DA) function and modulate stimulants' effects. Recent findings indicate that TAAR1 activation blocks some of the abuse-related physiological and behavioral effects of cocaine. However, findings from existing self-administration studies are inconclusive due to the very limited range of cocaine unit doses tested. Here, in order to shed light on the influence of TAAR1 on cocaine's reward and reinforcement, we studied the effects of partial and full activation of TAAR1on (1) the dose-response curve for cocaine self-administration and (2) cocaine-induced changes in intracranial self-stimulation (ICSS). In the first experiment, we examined the effects of the selective full and partial TAAR1 agonists, RO5256390 and RO5203648, on self-administration of five unit-injection doses of cocaine (0.03, 0.1, 0.2, 0.45, and 1mg/kg/infusion). Both agonists induced dose-dependent downward shifts in the cocaine dose-response curve, indicating that both partial and full TAAR1 activation decrease cocaine, reinforcing efficacy. In the second experiment, RO5256390 and the partial agonist, RO5263397, dose-dependently prevented cocaine-induced lowering of ICSS thresholds. Taken together, these data demonstrated that TAAR1 stimulation effectively suppresses the rewarding and reinforcing effects of cocaine in self-administration and ICSS models, supporting the candidacy of TAAR1 as a drug discovery target for cocaine addiction.
Collapse
|
53
|
Harmeier A, Obermueller S, Meyer CA, Revel FG, Buchy D, Chaboz S, Dernick G, Wettstein JG, Iglesias A, Rolink A, Bettler B, Hoener MC. Trace amine-associated receptor 1 activation silences GSK3β signaling of TAAR1 and D2R heteromers. Eur Neuropsychopharmacol 2015; 25:2049-61. [PMID: 26372541 DOI: 10.1016/j.euroneuro.2015.08.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 08/03/2015] [Accepted: 08/13/2015] [Indexed: 11/28/2022]
Abstract
Trace amine-associated receptor 1 (TAAR1) activation by selective endogenous agonists modulates dopaminergic neurotransmission. This results in antipsychotic-like behavior in vivo which might be initiated by an interaction of TAAR1 and dopamine D2L receptor (D2R). Here we analyzed the functional link between TAAR1 and D2R using highly potent and selective TAAR1 agonists, and newly generated tools such as TAAR1 knock-out and TAAR1 overexpressing rats as well as specific anti-rat TAAR1 antibodies. We provide data from co-immunoprecipitation experiments supporting a functional interaction of the two receptors in heterologous cells and in brain tissue. Interaction of TAAR1 with D2R altered the subcellular localization of TAAR1 and increased D2R agonist binding affinity. Using specific β-arrestin 2 (βArr2) complementation assays we show that the interaction of TAAR1 with D2R reduced βArr2 recruitment to D2R. In addition, we report that besides Gαs-protein signaling TAAR1 also signals via βArr2. In the presence of D2R, cAMP signaling of TAAR1 was reduced while its βArr2 signaling was enhanced, resulting in reduced GSK3β activation. These results demonstrate that βArr2 signaling may be an important pathway for TAAR1 function and that the activation of the TAAR1-D2R complex negatively modulates GSK3β signaling. Given that patients with schizophrenia or bipolar disorder show increased GSK3β signaling, such a reduction of GSK3β signaling triggered by the interaction of D2R with activated TAAR1 further supports TAAR1 as a target for the treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Anja Harmeier
- Neuroscience, Ophthalmology and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Stefan Obermueller
- Therapeutic Modalities, Discovery Technologies, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Claas A Meyer
- Therapeutic Modalities, Discovery Technologies, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Florent G Revel
- Neuroscience, Ophthalmology and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Daniele Buchy
- Neuroscience, Ophthalmology and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Sylvie Chaboz
- Neuroscience, Ophthalmology and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Gregor Dernick
- Therapeutic Modalities, Discovery Technologies, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Joseph G Wettstein
- Neuroscience, Ophthalmology and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Antonio Iglesias
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Antonius Rolink
- Department of Biomedicine, Developmental and Molecular Immunology, Pharmazentrum, University of Basel, CH-4058 Basel, Switzerland
| | - Bernhard Bettler
- Department of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Marius C Hoener
- Neuroscience, Ophthalmology and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland.
| |
Collapse
|
54
|
Lam VM, Espinoza S, Gerasimov AS, Gainetdinov RR, Salahpour A. In-vivo pharmacology of Trace-Amine Associated Receptor 1. Eur J Pharmacol 2015; 763:136-42. [DOI: 10.1016/j.ejphar.2015.06.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/26/2015] [Accepted: 06/15/2015] [Indexed: 11/30/2022]
|
55
|
TAAR1 Modulates Cortical Glutamate NMDA Receptor Function. Neuropsychopharmacology 2015; 40:2217-27. [PMID: 25749299 PMCID: PMC4613611 DOI: 10.1038/npp.2015.65] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/21/2015] [Accepted: 02/25/2015] [Indexed: 02/04/2023]
Abstract
Trace Amine-Associated Receptor 1 (TAAR1) is a G protein-coupled receptor expressed in the mammalian brain and known to influence subcortical monoaminergic transmission. Monoamines, such as dopamine, also play an important role within the prefrontal cortex (PFC) circuitry, which is critically involved in high-o5rder cognitive processes. TAAR1-selective ligands have shown potential antipsychotic, antidepressant, and pro-cognitive effects in experimental animal models; however, it remains unclear whether TAAR1 can affect PFC-related processes and functions. In this study, we document a distinct pattern of expression of TAAR1 in the PFC, as well as altered subunit composition and deficient functionality of the glutamate N-methyl-D-aspartate (NMDA) receptors in the pyramidal neurons of layer V of PFC in mice lacking TAAR1. The dysregulated cortical glutamate transmission in TAAR1-KO mice was associated with aberrant behaviors in several tests, indicating a perseverative and impulsive phenotype of mutants. Conversely, pharmacological activation of TAAR1 with selective agonists reduced premature impulsive responses observed in the fixed-interval conditioning schedule in normal mice. Our study indicates that TAAR1 plays an important role in the modulation of NMDA receptor-mediated glutamate transmission in the PFC and related functions. Furthermore, these data suggest that the development of TAAR1-based drugs could provide a novel therapeutic approach for the treatment of disorders related to aberrant cortical functions.
Collapse
|
56
|
Jing L, Li JX. Trace amine-associated receptor 1: A promising target for the treatment of psychostimulant addiction. Eur J Pharmacol 2015; 761:345-52. [PMID: 26092759 DOI: 10.1016/j.ejphar.2015.06.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 05/14/2015] [Accepted: 06/12/2015] [Indexed: 11/28/2022]
Abstract
Abuse of and addiction to psychostimulants remains a challenging clinical issue; yet no effective pharmacotherapy is available. Trace amine associated receptor 1 (TAAR 1) is increasingly recognized as a novel drug target that participates in the modulation of drug abuse. This review analyzed existing preclinical evidence from electrophysiological, biochemical to behavioral aspects regarding the functional interactions between TAAR 1 and dopaminergic system. TAAR 1 knockout mice demonstrate increased sensitivity to dopaminergic activation while TAAR 1 agonists reduce the neurochemical effects of cocaine and amphetamines, attenuate abuse- and addiction-related behavioral effects of cocaine and methamphetamine. It is concluded that TAAR 1 activation functionally modulates the dopaminergic activity and TAAR 1 agonists appear to be promising pharmacotherapies against psychostimulant addiction.
Collapse
Affiliation(s)
- Li Jing
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA; Department of Physiology and Pathophysiology, Tianjin Me dical University, Tianjin, China
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
57
|
Rickli A, Hoener MC, Liechti ME. Monoamine transporter and receptor interaction profiles of novel psychoactive substances: para-halogenated amphetamines and pyrovalerone cathinones. Eur Neuropsychopharmacol 2015; 25:365-76. [PMID: 25624004 DOI: 10.1016/j.euroneuro.2014.12.012] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 12/08/2014] [Accepted: 12/24/2014] [Indexed: 10/24/2022]
Abstract
The pharmacology of novel psychoactive substances is mostly unknown. We evaluated the transporter and receptor interaction profiles of a series of para-(4)-substituted amphetamines and pyrovalerone cathinones. We tested the potency of these compounds to inhibit the norepinephrine (NE), dopamine (DA), and serotonin (5-HT) transporters (NET, DAT, and SERT, respectively) using human embryonic kidney 293 cells that express the respective human transporters. We also tested the substance-induced efflux of NE, DA, and 5-HT from monoamine-loaded cells, binding affinities to monoamine receptors, and 5-HT2B receptor activation. Para-(4)-substituted amphetamines, including 4-methylmethcathinone (mephedrone), 4-ethylmethcathinone, 4-fluoroamphetamine, 4-fluoromethamphetamine, 4-fluoromethcatinone (flephedrone), and 4-bromomethcathinone, were relatively more serotonergic (lower DAT:SERT ratio) compared with their analogs amphetamine, methamphetamine, and methcathinone. The 4-methyl, 4-ethyl, and 4-bromo groups resulted in enhanced serotonergic properties compared with the 4-fluoro group. The para-substituted amphetamines released NE and DA. 4-Fluoramphetamine, 4-flouromethamphetamine, 4-methylmethcathinone, and 4-ethylmethcathinone also released 5-HT similarly to 3,4-methylenedioxymethamphetamine. The pyrovalerone cathinones 3,4-methylenedioxypyrovalerone, pyrovalerone, α-pyrrolidinovalerophenone, 3,4-methylenedioxy-α-pyrrolidinopropiophenone, and 3,4-methylenedioxy-α-pyrrolidinobutiophenone potently inhibited the NET and DAT but not the SERT. Naphyrone was the only pyrovalerone that also inhibited the SERT. The pyrovalerone cathinones did not release monoamines. Most of the para-substituted amphetamines exhibited affinity for the 5-HT2A receptor but no relevant activation of the 5-HT2B receptor. All the cathinones exhibited reduced trace amine-associated receptor 1 binding compared with the non-β-keto-amphetamines. In conclusion, para-substituted amphetamines exhibited enhanced direct and indirect serotonergic agonist properties and are likely associated with more MDMA-like effects. The pharmacological profile of the pyrovalerone cathinones predicts pronounced stimulant effects and high abuse liability.
Collapse
Affiliation(s)
- Anna Rickli
- Psychopharmacology Research, Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Marius C Hoener
- Pharmaceuticals Division, F. Hoffmann-La Roche Ltd., Basel, CH-4070, Switzerland
| | - Matthias E Liechti
- Psychopharmacology Research, Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland.
| |
Collapse
|
58
|
Cotter R, Pei Y, Mus L, Harmeier A, Gainetdinov RR, Hoener MC, Canales JJ. The trace amine-associated receptor 1 modulates methamphetamine's neurochemical and behavioral effects. Front Neurosci 2015; 9:39. [PMID: 25762894 PMCID: PMC4327507 DOI: 10.3389/fnins.2015.00039] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/27/2015] [Indexed: 11/13/2022] Open
Abstract
The newly discovered trace amine-associated receptor 1 (TAAR1) has the ability to regulate both dopamine function and psychostimulant action. Here, we tested in rats the ability of RO5203648, a selective TAAR1 partial agonist, to modulate the physiological and behavioral effects of methamphetamine (METH). In experiment 1, RO5203468 dose- and time-dependently altered METH-induced locomotor activity, manifested as an early attenuation followed by a late potentiation of METH's stimulating effects. In experiment 2, rats received a 14-day treatment regimen during which RO5203648 was co-administered with METH. RO5203648 dose-dependently attenuated METH-stimulated hyperactivity, with the effects becoming more apparent as the treatments progressed. After chronic exposure and 3-day withdrawal, rats were tested for locomotor sensitization. RO5203648 administration during the sensitizing phase prevented the development of METH sensitization. However, RO5203648, at the high dose, cross-sensitized with METH. In experiment 3, RO5203648 dose-dependently blocked METH self-administration without affecting operant responding maintained by sucrose, and exhibited lack of reinforcing efficacy when tested as a METH's substitute. Neurochemical data showed that RO5203648 did not affect METH-mediated DA efflux and uptake inhibition in striatal synaptosomes. In vivo, however, RO5203648 was able to transiently inhibit METH-induced accumulation of extracellular DA levels in the nucleus accumbens. Taken together, these data highlight the significant potential of TAAR1 to modulate METH's neurochemical and behavioral effects.
Collapse
Affiliation(s)
- Rachel Cotter
- Department of Psychology, University of Canterbury Christchurch, New Zealand
| | - Yue Pei
- Department of Psychology, University of Canterbury Christchurch, New Zealand ; Behavioural Neuroscience, School of Psychology, University of Leicester Leicester, UK
| | - Liudmila Mus
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genoa, Italy
| | - Anja Harmeier
- Neuroscience Research, Pharmaceuticals Division, F. Hoffmann-La Roche Ltd. Basel, Switzerland
| | - Raul R Gainetdinov
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genoa, Italy ; Skolkovo Institute of Science and Technology Skolkovo, Moscow, Russia ; Faculty of Biology, St. Petersburg State University St. Petersburg, Russia
| | - Marius C Hoener
- Neuroscience Research, Pharmaceuticals Division, F. Hoffmann-La Roche Ltd. Basel, Switzerland
| | - Juan J Canales
- Behavioural Neuroscience, School of Psychology, University of Leicester Leicester, UK
| |
Collapse
|
59
|
Jing L, Zhang Y, Li JX. Effects of the trace amine associated receptor 1 agonist RO5263397 on abuse-related behavioral indices of methamphetamine in rats. Int J Neuropsychopharmacol 2015; 18:pyu060. [PMID: 25522401 PMCID: PMC4360231 DOI: 10.1093/ijnp/pyu060] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Methamphetamine is a major drug of abuse with no effective pharmacotherapy available. Trace amine associated receptor 1 is implicated in cocaine addiction and represents a potential therapeutic target. However, the effects of trace amine associated receptor 1 agonists on addiction-related behavioral effects of methamphetamine are unknown. METHODS This study examined the effects of a trace amine associated receptor 1 agonist RO5263397 on methamphetamine-induced behavioral sensitization, methamphetamine self-administration, cue- and methamphetamine-induced reinstatement of drug seeking, and cue-induced reinstatement of sucrose-seeking behaviors in rats. Male Sprague-Dawley rats were used to examine the effects of methamphetamine alone and in combination with the trace amine associated receptor 1 agonist RO5263397 (3.2-10mg/kg). RESULTS RO5263397 dose-dependently attenuated the expression of behavioral sensitization to methamphetamine, reduced methamphetamine self-administration, and decreased both cue- and a priming dose of methamphetamine-induced reinstatement of drug-seeking behaviors. However, RO5263397 did not alter cue-induced reinstatement of sucrose-seeking behavior. CONCLUSIONS Taken together, trace amine associated receptor 1 agonists attenuate some abuse-related behavioral effects of methamphetamine, strongly suggesting that drugs activating trace amine associated receptor 1 may be potentially useful for the treatment of methamphetamine addiction and warrant further studies.
Collapse
Affiliation(s)
| | | | - Jun-Xu Li
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY (Drs Jing and Li); Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China (Dr Jing); Research Triangle Institute, Research Triangle Park, NC (Dr Zhang).
| |
Collapse
|
60
|
Hamilton J, Lee J, Canales JJ. Chronic unilateral stimulation of the nucleus accumbens at high or low frequencies attenuates relapse to cocaine seeking in an animal model. Brain Stimul 2014; 8:57-63. [PMID: 25457212 DOI: 10.1016/j.brs.2014.09.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 09/23/2014] [Accepted: 09/28/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS), a form of neurosurgical intervention that is used to modulate the electrophysiological activity of specific brain areas, has emerged as a form of therapy for severe cases of treatment-refractory addiction. OBJECTIVE/HYPOTHESIS Recent research suggests that the nucleus accumbens (NAC) is a promising target area for DBS in addiction. The current experiments were designed to determine optimal parameters of stimulation and long-term efficacy of NAC DBS in an animal model of cocaine addiction. METHODS Rats were implanted with a stimulating electrode in the right NAC and exposed to chronic cocaine self-administration (0.5 mg/kg/infusion). Rats underwent drug seeking tests by exposing them to the self-administration context paired with cocaine challenge (5 mg/kg i.p.) on days 1, 15 and 30 after withdrawal from cocaine self-administration. Low-frequency (LF, 20 Hz) or high-frequency (HF, 160 Hz) DBS was applied for 30 min daily for 14 consecutive days starting one day after drug withdrawal. RESULTS Rats exhibited robust drug-seeking 1, 15 and 30 days after withdrawal from cocaine self-administration, with responding being highest on day 15. Both LF and HF attenuated cocaine seeking on day 15 post-withdrawal by 36 and 48%, respectively. Both forms of stimulation were ineffective on the tests conducted on days 1 and 30. CONCLUSION The present data showed that unilateral DBS of the NAC effectively attenuated cocaine relapse after 15 days of drug withdrawal, with therapeutic-like effects seemingly diminishing after DBS discontinuation. This evidence provides support for DBS as a promising intervention in intractable cases of stimulant addiction.
Collapse
Affiliation(s)
- J Hamilton
- Department of Psychology, University of Canterbury, Christchurch, New Zealand
| | - J Lee
- Department of Psychology, University of Canterbury, Christchurch, New Zealand
| | - J J Canales
- School of Psychology, University of Leicester, Leicester, United Kingdom.
| |
Collapse
|
61
|
Abstract
Cocaine addiction remains a clinical challenge with no effective pharmacotherapy available. Trace amine associated receptor (TAAR) 1 represents a promising drug target for the modulation of dopaminergic system and stimulant abuse. This Viewpoint discusses the emerging data which strongly suggest that TAAR 1 functions as a molecular "brake" that controls the addiction-related effects of cocaine and could be a novel drug target for the development of efficacious pharmacotherapy to treat cocaine addiction.
Collapse
Affiliation(s)
- Jun-Xu Li
- Department of Pharmacology
and Toxicology, University at Buffalo, Buffalo, New York 14214, United States
| |
Collapse
|
62
|
Neuronal Functions and Emerging Pharmacology of TAAR1. TOPICS IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1007/7355_2014_78] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|