51
|
Suenaga H. Targeted metagenomics: a high-resolution metagenomics approach for specific gene clusters in complex microbial communities. Environ Microbiol 2011; 14:13-22. [PMID: 21366818 DOI: 10.1111/j.1462-2920.2011.02438.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A major research goal in microbial ecology is to understand the relationship between gene organization and function involved in environmental processes of potential interest. Given that more than an estimated 99% of microorganisms in most environments are not amenable to culturing, methods for culture-independent studies of genes of interest have been developed. The wealth of metagenomic approaches allows environmental microbiologists to directly explore the enormous genetic diversity of microbial communities. However, it is extremely difficult to obtain the appropriate sequencing depth of any particular gene that can entirely represent the complexity of microbial metagenomes and be able to draw meaningful conclusions about these communities. This review presents a summary of the metagenomic approaches that have been useful for collecting more information about specific genes. Specific subsets of metagenomes that focus on sequence analysis were selected in each metagenomic studies. This 'targeted metagenomics' approach will provide extensive insight into the functional, ecological and evolutionary patterns of important genes found in microorganisms from various ecosystems.
Collapse
Affiliation(s)
- Hikaru Suenaga
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba 305-8566, Japan.
| |
Collapse
|
52
|
Park J, Kerner A, Burns MA, Lin XN. Microdroplet-enabled highly parallel co-cultivation of microbial communities. PLoS One 2011; 6:e17019. [PMID: 21364881 PMCID: PMC3045426 DOI: 10.1371/journal.pone.0017019] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 01/18/2011] [Indexed: 12/19/2022] Open
Abstract
Microbial interactions in natural microbiota are, in many cases, crucial for the sustenance of the communities, but the precise nature of these interactions remain largely unknown because of the inherent complexity and difficulties in laboratory cultivation. Conventional pure culture-oriented cultivation does not account for these interactions mediated by small molecules, which severely limits its utility in cultivating and studying "unculturable" microorganisms from synergistic communities. In this study, we developed a simple microfluidic device for highly parallel co-cultivation of symbiotic microbial communities and demonstrated its effectiveness in discovering synergistic interactions among microbes. Using aqueous micro-droplets dispersed in a continuous oil phase, the device could readily encapsulate and co-cultivate subsets of a community. A large number of droplets, up to ∼1,400 in a 10 mm × 5 mm chamber, were generated with a frequency of 500 droplets/sec. A synthetic model system consisting of cross-feeding E. coli mutants was used to mimic compositions of symbionts and other microbes in natural microbial communities. Our device was able to detect a pair-wise symbiotic relationship when one partner accounted for as low as 1% of the total population or each symbiont was about 3% of the artificial community.
Collapse
Affiliation(s)
- Jihyang Park
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alissa Kerner
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Mark A. Burns
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Xiaoxia Nina Lin
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
53
|
Antidiatom and antibacterial activity of epiphytic bacteria isolated from Ulva lactuca in tropical waters. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0606-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
54
|
Stark M, Berger SA, Stamatakis A, von Mering C. MLTreeMap--accurate Maximum Likelihood placement of environmental DNA sequences into taxonomic and functional reference phylogenies. BMC Genomics 2010; 11:461. [PMID: 20687950 PMCID: PMC3091657 DOI: 10.1186/1471-2164-11-461] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 08/05/2010] [Indexed: 02/05/2023] Open
Abstract
Background Shotgun sequencing of environmental DNA is an essential technique for characterizing uncultivated microbes in situ. However, the taxonomic and functional assignment of the obtained sequence fragments remains a pressing problem. Results Existing algorithms are largely optimized for speed and coverage; in contrast, we present here a software framework that focuses on a restricted set of informative gene families, using Maximum Likelihood to assign these with the best possible accuracy. This framework ('MLTreeMap'; http://mltreemap.org/) uses raw nucleotide sequences as input, and includes hand-curated, extensible reference information. Conclusions We discuss how we validated our pipeline using complete genomes as well as simulated and actual environmental sequences.
Collapse
Affiliation(s)
- Manuel Stark
- Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Switzerland
| | | | | | | |
Collapse
|
55
|
Joint I, Mühling M, Querellou J. Culturing marine bacteria - an essential prerequisite for biodiscovery. Microb Biotechnol 2010; 3:564-75. [PMID: 21255353 PMCID: PMC3815769 DOI: 10.1111/j.1751-7915.2010.00188.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The potential for using marine microbes for biodiscovery is severely limited by the lack of laboratory cultures. It is a long-standing observation that standard microbiological techniques only isolate a very small proportion of the wide diversity of microbes that are known in natural environments from DNA sequences. A number of explanations are reviewed. The process of establishing laboratory cultures may destroy any cell-to-cell communication that occurs between organisms in the natural environment and that are vital for growth. Bacteria probably grow as consortia in the sea and reliance on other bacteria for essential nutrients and substrates is not possible with standard microbiological approaches. Such interactions should be considered when designing programmes for the isolation of marine microbes. The benefits of novel technologies for manipulating cells are reviewed, including single cell encapsulation in gel micro-droplets. Although novel technologies offer benefits for bringing previously uncultured microbes into laboratory culture, many useful bacteria can still be isolated using variations of plating techniques. Results are summarized for a study to culture bacteria from a long-term observatory station in the English Channel. Bacterial biodiversity in this assemblage has recently been characterized using high-throughput sequencing techniques. Although Alphaproteobacteria dominated the natural bacterial assemblage throughout the year, Gammaproteobacteria were the most frequent group isolated by plating techniques. The use of different gelling agents and the addition of ammonium to seawater-based agar did lead to the isolation of a higher proportion of Alphaproteobacteria. Variation in medium composition was also able to increase the recovery of other groups of particular interest for biodiscovery, such as Actinobacteria.
Collapse
Affiliation(s)
- Ian Joint
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK.
| | | | | |
Collapse
|
56
|
Abstract
Molecular ecology methods are now well established for the culture-independent characterization of complex bacterial communities associated with various environmental and animal habitats and are revealing the extent of their diversity. By comparison, it has become clear that only a small minority of microorganisms are readily cultivated in vitro, with the majority of all bacteria remaining 'unculturable' using standard methods. Yet, it is only through the isolation of bacterial species in pure culture that they may be fully characterized, both for their physiological and pathological properties. Hence, the endeavour to devise novel cultivation methods for microorganisms that appear to be inherently resistant to artificial culture is a most important one. This minireview discusses the possible reasons for 'unculturability' and evaluates advances in the cultivation of previously unculturable bacteria from complex bacterial communities. Methods include the use of dilute nutrient media particularly suited for the growth of bacteria adapted to oligotrophic conditions, and the provision of simulated natural environmental conditions for bacterial culture. This has led to the recovery of 'unculturables' from soil and aquatic environments, likely to be due to the inclusion of essential nutrients and/or signalling molecules from the native environment.
Collapse
Affiliation(s)
- Sonia R Vartoukian
- King's College London Dental Institute, Infection Research Group, London, UK
| | | | | |
Collapse
|
57
|
Molecular monitoring and isolation of previously uncultured bacterial strains from the sheep rumen. Appl Environ Microbiol 2010; 76:1887-94. [PMID: 20118379 DOI: 10.1128/aem.02606-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To estimate the contribution of uncultured bacterial groups to fiber degradation, we attempted to retrieve both ecological and functional information on uncultured groups in the rumen. Among previously reported uncultured bacteria, fiber-associated groups U2 and U3, belonging to the low-GC Gram-positive bacterial group, were targeted. PCR primers and fluorescence in situ hybridization (FISH) probe targeting 16S rRNA genes or rRNA were designed and used to monitor the distribution of targets. The population size of group U2 in the rumen was as high as 1.87%, while that of group U3 was only 0.03%. Strong fluorescence signals were observed from group U2 cells attached to plant fibers in the rumen. These findings indicate the ecological significance of group U2 in the rumen. We succeeded in enriching group U2 using rumen-incubated rice straw as the inoculum followed by incubation in an appropriate medium with an agent inhibitory for Gram-negative bacteria. Consequently, we successfully isolated two strains, designated B76 and R-25, belonging to group U2. Both strains were Gram-positive short rods or cocci that were 0.5 to 0.8 mum in size. Strain B76 possessed xylanase and alpha-l-arabinofuranosidase activity. In particular, the xylanase activity of strain B76 was higher than that of xylanolytic Butyrivibrio fibrisolvens H17c grown on cellobiose. Strain R-25 showed an alpha-l-arabinofuranosidase activity higher than that of strain B76. These results suggest that strains B76 and R-25 contribute to hemicellulose degradation in the rumen.
Collapse
|
58
|
Vartoukian SR, Palmer RM, Wade WG. Cultivation of a Synergistetes strain representing a previously uncultivated lineage. Environ Microbiol 2010; 12:916-28. [PMID: 20074237 PMCID: PMC2916210 DOI: 10.1111/j.1462-2920.2009.02135.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Subgingival plaque samples obtained from human subjects with periodontitis, shown to include previously uncultivable members of the phylum Synergistetes, were used to inoculate Cooked Meat Medium (CMM). The presence of Cluster A (uncultivable) Synergistetes was monitored by fluorescent in situ hybridization (FISH) and quantitative PCR (Q-PCR). Cluster A Synergistetes were found to grow in CMM in co-culture with other plaque bacteria and growth was stimulated by the addition of mucin and serum. Plaque samples were also used to inoculate Blood Agar (BA) plates and growth of Cluster A Synergistetes was revealed after anaerobic incubation, by colony hybridization with specific probes. Surface growth on the plates in regions identified by colony hybridization was harvested and used to inoculate fresh plates, thus enriching for Cluster A Synergistetes. Cross-streaks of other plaque bacteria were also used to stimulate Synergistetes growth. In the early passages, no discrete Synergistetes colonies were seen, but after eight passages and the use of cross-streaks of other bacteria present in the enriched community, colonies arose, which consisted solely of Cluster A Synergistetes cells, as determined by 16S rRNA gene PCR and cloning. This is the first report of the successful culture of a member of the uncultivable branch of this phylum.
Collapse
Affiliation(s)
- S R Vartoukian
- King's College London Dental Institute, Infection Research Group, Guy's Campus, London SE1 9RT, UK
| | | | | |
Collapse
|
59
|
Alain K, Querellou J. Cultivating the uncultured: limits, advances and future challenges. Extremophiles 2009; 13:583-94. [PMID: 19548063 DOI: 10.1007/s00792-009-0261-3] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 06/04/2009] [Indexed: 10/20/2022]
|
60
|
Bergquist PL, Hardiman EM, Ferrari BC, Winsley T. Applications of flow cytometry in environmental microbiology and biotechnology. Extremophiles 2009; 13:389-401. [PMID: 19301090 DOI: 10.1007/s00792-009-0236-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 02/26/2009] [Indexed: 10/21/2022]
Abstract
Flow cytometry (FCM) is a technique for counting, examining and sorting microscopic particles suspended in a stream of fluid. It uses the principles of light scattering, light excitation and the emission from fluorescent molecules to generate specific multiparameter data from particles and cells. The cells are hydrodynamically focussed in a sheath solution before being intercepted by a focused light source provided by a laser. FCM has been used primarily in medical applications but is being used increasingly for the examination of individual cells from environmental samples. It has found uses in the isolation of both culturable and hitherto non-culturable bacteria present infrequently in environmental samples using appropriate growth conditions. FCM lends itself to high-throughput applications in directed evolution for the analysis of single cells or cell populations carrying mutant genes. It is also suitable for encapsulation studies where individual bacteria are compartmentalised with substrate in water-in-oil-in-water emulsions or with individual genes in transcriptional/translational mixtures for the production of mutant enzymes. The sensitivity of the technique has allowed the examination of gene optimisation by a procedure known as random or neutral drift where screening and selection is based on the retention of some predetermined level of activity through multiple rounds of mutagenesis.
Collapse
Affiliation(s)
- Peter L Bergquist
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia.
| | | | | | | |
Collapse
|
61
|
Cultivation of fastidious bacteria by viability staining and micromanipulation in a soil substrate membrane system. Appl Environ Microbiol 2009; 75:3352-4. [PMID: 19304839 DOI: 10.1128/aem.02407-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Soil substrate membrane systems allow for microcultivation of fastidious soil bacteria as mixed microbial communities. We isolated established microcolonies from these membranes by using fluorescence viability staining and micromanipulation. This approach facilitated the recovery of diverse, novel isolates, including the recalcitrant bacterium Leifsonia xyli, a plant pathogen that has never been isolated outside the host.
Collapse
|