51
|
Ngo TA, Dinh H, Nguyen TM, Liew FF, Nakata E, Morii T. Protein adaptors assemble functional proteins on DNA scaffolds. Chem Commun (Camb) 2019; 55:12428-12446. [PMID: 31576822 DOI: 10.1039/c9cc04661e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
DNA is an attractive molecular building block to construct nanoscale structures for a variety of applications. In addition to their structure and function, modification the DNA nanostructures by other molecules opens almost unlimited possibilities for producing functional DNA-based architectures. Among the molecules to functionalize DNA nanostructures, proteins are one of the most attractive candidates due to their vast functional variations. DNA nanostructures loaded with various types of proteins hold promise for applications in the life and material sciences. When loading proteins of interest on DNA nanostructures, the nanostructures by themselves act as scaffolds to specifically control the location and number of protein molecules. The methods to arrange proteins of interest on DNA scaffolds at high yields while retaining their activity are still the most demanding task in constructing usable protein-modified DNA nanostructures. Here, we provide an overview of the existing methods applied for assembling proteins of interest on DNA scaffolds. The assembling methods were categorized into two main classes, noncovalent and covalent conjugation, with both showing pros and cons. The recent advance of DNA-binding adaptor mediated assembly of proteins on the DNA scaffolds is highlighted and discussed in connection with the future perspectives of protein assembled DNA nanoarchitectures.
Collapse
Affiliation(s)
- Tien Anh Ngo
- Vinmec Biobank, Hi-tech Center, Vinmec Healthcare System, 458 Minh Khai, Ha Noi, Vietnam
| | - Huyen Dinh
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Thang Minh Nguyen
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Fong Fong Liew
- MAHSA University, Faculty of Dentistry, Bandar Saujana Putra, 42610 Jenjarom, Selangor, Malaysia
| | - Eiji Nakata
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Takashi Morii
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
52
|
Ellis GA, Klein WP, Lasarte-Aragonés G, Thakur M, Walper SA, Medintz IL. Artificial Multienzyme Scaffolds: Pursuing in Vitro Substrate Channeling with an Overview of Current Progress. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02413] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Gregory A. Ellis
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - William P. Klein
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- National Research Council, Washington, D.C. 20001, United States
| | - Guillermo Lasarte-Aragonés
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University, Fairfax, Virginia 22030, United States
| | - Meghna Thakur
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University, Fairfax, Virginia 22030, United States
| | - Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
53
|
Nguyen TM, Nakata E, Zhang Z, Saimura M, Dinh H, Morii T. Rational design of a DNA sequence-specific modular protein tag by tuning the alkylation kinetics. Chem Sci 2019; 10:9315-9325. [PMID: 32110294 PMCID: PMC7006624 DOI: 10.1039/c9sc02990g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/19/2019] [Indexed: 01/03/2023] Open
Abstract
Sequence-selective chemical modification of DNA by synthetic ligands has been a long-standing challenge in the field of chemistry. Even when the ligand consists of a sequence-specific DNA binding domain and reactive group, sequence-selective reactions by these ligands are often accompanied by off-target reactions. A basic principle to design DNA modifiers that react at specific sites exclusively governed by DNA sequence recognition remains to be established. We have previously reported selective DNA modification by a self-ligating protein tag conjugated with a DNA-binding domain, termed as a modular adaptor, and orthogonal application of modular adaptors by relying on the chemoselectivity of the protein tag. The sequence-specific crosslinking reaction by the modular adaptor is thought to proceed in two steps: the first step involves the formation of a DNA-protein complex, while in the second step, a proximity-driven intermolecular crosslinking occurs. According to this scheme, the specific crosslinking reaction of a modular adaptor would be driven by the DNA recognition process only when the dissociation rate of the DNA complex is much higher than the rate constant for the alkylation reaction. In this study, as a proof of principle, a set of combinations for modular adaptors and their substrates were utilized to evaluate the reactions. Three types of modular adaptors consisting of a single type of self-ligating tag and three types of DNA binding proteins fulfill the kinetic requirements for the reaction of the self-ligating tag with a substrate and the dissociation of the DNA-protein complex. These modular adaptors actually undergo sequence-specific crosslinking reactions exclusively driven by the recognition of a specific DNA sequence. The design principle of sequence-specific modular adaptors based on the kinetic aspects of complex formation and chemical modification is applicable for developing recognition-driven selective modifiers for proteins and other biological macromolecules.
Collapse
Affiliation(s)
- Thang Minh Nguyen
- Institute of Advanced Energy , Kyoto University , Uji , Kyoto 611-0011 , Japan .
| | - Eiji Nakata
- Institute of Advanced Energy , Kyoto University , Uji , Kyoto 611-0011 , Japan .
| | - Zhengxiao Zhang
- Institute of Advanced Energy , Kyoto University , Uji , Kyoto 611-0011 , Japan .
| | - Masayuki Saimura
- Institute of Advanced Energy , Kyoto University , Uji , Kyoto 611-0011 , Japan .
| | - Huyen Dinh
- Institute of Advanced Energy , Kyoto University , Uji , Kyoto 611-0011 , Japan .
| | - Takashi Morii
- Institute of Advanced Energy , Kyoto University , Uji , Kyoto 611-0011 , Japan .
| |
Collapse
|
54
|
Abstract
In nature, DNA molecules carry the hereditary information. But DNA has physical and chemical properties that make it attractive for uses beyond heredity. In this Review, we discuss the potential of DNA for creating machines that are both encoded by and built from DNA molecules. We review the main methods of DNA nanostructure assembly, describe recent advances in building increasingly complex molecular structures and discuss strategies for creating machine-like nanostructures that can be actuated and move. We highlight opportunities for applications of custom DNA nanostructures as scientific tools to address challenges across biology, chemistry and engineering.
Collapse
|
55
|
Xiao M, Lai W, Man T, Chang B, Li L, Chandrasekaran AR, Pei H. Rationally Engineered Nucleic Acid Architectures for Biosensing Applications. Chem Rev 2019; 119:11631-11717. [DOI: 10.1021/acs.chemrev.9b00121] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Tiantian Man
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Binbin Chang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| |
Collapse
|
56
|
Zhang T, Nong J, Alzahrani N, Wang Z, Oh SW, Meier T, Yang DG, Ke Y, Zhong Y, Fu J. Self-Assembly of DNA-Minocycline Complexes by Metal Ions with Controlled Drug Release. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29512-29521. [PMID: 31397552 DOI: 10.1021/acsami.9b08126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Here we reported a study of metal ions-assisted assembly of DNA-minocycline (MC) complexes and their potential application for controlling MC release. In the presence of divalent cations of magnesium or calcium ions (M2+), MC, a zwitterionic tetracycline analogue, was found to bind to phosphate groups of nucleic acids via an electrostatic bridge of phosphate (DNA)-M2+-MC. We investigated multiple parameters for affecting the formation of DNA-Mg2+-MC complex, including metal ion concentrations, base composition, DNA length, and single- versus double-stranded DNA. For different nitrogen bases, single-stranded poly(A)20 and poly(T)20 showed a higher MC entrapment efficiency of DNA-Mg2+-MC complex than poly(C)20 and poly(G)20. Single-stranded DNA was also found to form a more stable DNA-Mg2+-MC complex than double-stranded DNA. Between different divalent metal ions, we observed that the formation of DNA-Ca2+-MC complex was more stable and efficient than the formation of DNA-Mg2+-MC complex. Toward drug release, we used agarose gel to encapsulate DNA-Mg2+-MC complexes and monitored MC release. Some DNA-Mg2+-MC complexes could prolong MC release from agarose gel to more than 10 days as compared with the quick release of free MC from agarose gel in less than 1 day. The released MC from DNA-Mg2+-MC complexes retained the anti-inflammatory bioactivity to inhibit nitric oxide production from pro-inflammatory macrophages. The reported study of metal ion-assisted DNA-MC assembly not only increased our understanding of biochemical interactions between tetracycline molecules and nucleic acids but also contributed to the development of a highly tunable drug delivery system to mediate MC release for clinical applications.
Collapse
Affiliation(s)
- Ting Zhang
- Center for Computational and Integrative Biology , Rutgers University-Camden , 315 Penn Street , Camden , New Jersey 08102 , United States
- Department of Chemistry , Rutgers University-Camden , 315 Penn Street , Camden , New Jersey 08102 , United States
| | - Jia Nong
- School of Biomedical Engineering, Science and Health Systems , Drexel University , 3141 Chestnut Street , Philadelphia , Pennsylvania 19104 , United States
| | - Nouf Alzahrani
- Department of Chemistry , Rutgers University-Camden , 315 Penn Street , Camden , New Jersey 08102 , United States
| | - Zhicheng Wang
- School of Biomedical Engineering, Science and Health Systems , Drexel University , 3141 Chestnut Street , Philadelphia , Pennsylvania 19104 , United States
| | - Sung Won Oh
- Center for Computational and Integrative Biology , Rutgers University-Camden , 315 Penn Street , Camden , New Jersey 08102 , United States
| | - Tristan Meier
- Eastern Regional High School , 1401 Laurel Oak Road , Voorhees , New Jersey 08043 , United States
| | - Dong Gyu Yang
- Department of Chemistry , Rutgers University-Camden , 315 Penn Street , Camden , New Jersey 08102 , United States
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering , Emory School of Medicine , 1760 Haygood Drive , Atlanta , Georgia 30322 , United States
| | - Yinghui Zhong
- School of Biomedical Engineering, Science and Health Systems , Drexel University , 3141 Chestnut Street , Philadelphia , Pennsylvania 19104 , United States
| | - Jinglin Fu
- Center for Computational and Integrative Biology , Rutgers University-Camden , 315 Penn Street , Camden , New Jersey 08102 , United States
- Department of Chemistry , Rutgers University-Camden , 315 Penn Street , Camden , New Jersey 08102 , United States
| |
Collapse
|
57
|
Single-Step FRET-Based Detection of Femtomoles DNA. SENSORS 2019; 19:s19163495. [PMID: 31405068 PMCID: PMC6719117 DOI: 10.3390/s19163495] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022]
Abstract
Sensitive detection of nucleic acids and identification of single nucleotide polymorphism (SNP) is crucial in diagnosis of genetic diseases. Many strategies have been developed for detection and analysis of DNA, including fluorescence, electrical, optical, and mechanical methods. Recent advances in fluorescence resonance energy transfer (FRET)-based sensing have provided a new avenue for sensitive and quantitative detection of various types of biomolecules in simple, rapid, and recyclable platforms. Here, we report single-step FRET-based DNA sensors designed to work via a toehold-mediated strand displacement (TMSD) process, leading to a distinct change in the FRET efficiency upon target binding. Using single-molecule FRET (smFRET), we show that these sensors can be regenerated in situ, and they allow detection of femtomoles DNA without the need for target amplification while still using a dramatically small sample size (fewer than three orders of magnitude compared to the typical sample size of bulk fluorescence). In addition, these single-molecule sensors exhibit a dynamic range of approximately two orders of magnitude. Using one of the sensors, we demonstrate that the single-base mismatch sequence can be discriminated from a fully matched DNA target, showing a high specificity of the method. These sensors with simple and recyclable design, sensitive detection of DNA, and the ability to discriminate single-base mismatch sequences may find applications in quantitative analysis of nucleic acid biomarkers.
Collapse
|
58
|
Jiang Q, Zhao S, Liu J, Song L, Wang ZG, Ding B. Rationally designed DNA-based nanocarriers. Adv Drug Deliv Rev 2019; 147:2-21. [PMID: 30769047 DOI: 10.1016/j.addr.2019.02.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 01/08/2019] [Accepted: 02/08/2019] [Indexed: 01/01/2023]
Abstract
Nanomaterials employed for enhanced drug delivery and therapeutic effects have been extensively investigated in the past decade. The outcome of current anticancer treatments based on conventional nanoparticles is suboptimal, due to the lack of biocompatibility, the deficient tumor targeting, the limited drug accumulation in the diseased region, etc. Alternatively, DNA-based nanocarriers have emerged as a novel and versatile platform to integrate the advantages of nanotechnologies and biological sciences, which shows great promise in addressing the key issues for biomedical studies. Rather than a genetic information carrier, DNA molecules can work as building blocks to fabricate programmable and bio-functional nanostructures based on Watson Crick base-pairing rules. The DNA-based materials have demonstrated unique properties, such as uniform sizes and shapes, pre-designable and programmable nanostructures, site-specific surface functionality and excellent biocompatibility. These intrigue features allow DNA nanostructures to carry functional moieties to realize precise tumor recognition, customized therapeutic functions and stimuli-responsive drug release, making them highly attractive in many aspects of cancer treatment. In this review, we focus on the recent progress in DNA-based self-assembled materials for the biomedical applications, such as molecular imaging, drug delivery for in vitro or in vivo cancer treatments. We introduce the general strategies and essential requirements for fabricating DNA-based nanocarriers. We summarize the advances of DNA-based nanocarriers according to their functionalities and structural properties for cancer diagnosis and therapy. Finally, we discuss the challenges and future perspectives regarding the detailed in vivo parameters of DNA materials and the design of intelligent DNA nanomedicine for individualized cancer therapy.
Collapse
|
59
|
DNAzyme-Functionalized R-Phycoerythrin as a Cost-Effective and Environment-Friendly Fluorescent Biosensor for Aqueous Pb 2+ Detection. SENSORS 2019; 19:s19122732. [PMID: 31216658 PMCID: PMC6630308 DOI: 10.3390/s19122732] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/10/2019] [Accepted: 06/16/2019] [Indexed: 01/28/2023]
Abstract
The sensitive detection of Pb2+ is of significant importance for food safety, environmental monitoring, and human health care. To this end, a novel fluorescent biosensor, DNAzyme-functionalized R-phycoerythrin (DNAzyme-R-PE), was presented for Pb2+ analysis. The biosensor was prepared via the immobilization of Iowa Black® FQ-modified DNAzyme–substrate complex onto the surface of SPDP-functionalized R-PE. The biosensor produced a minimal fluorescence signal in the absence of Pb2+. However, Pb2+ recognition can induce the cleavage of substrate, resulting in a fluorescence restoration of R-PE. The fluorescence changes were used to measure sensitively Pb2+ and the limit of detection was 0.16 nM with a linear range from 0.5–75 nM. Furthermore, the proposed biosensor showed excellent selectivity towards Pb2+ even in the presence of other metal ions interferences and was demonstrated to successfully determine Pb2+ in spiked lake water samples.
Collapse
|
60
|
Fu J, Oh SW, Monckton K, Arbuckle-Keil G, Ke Y, Zhang T. Biomimetic Compartments Scaffolded by Nucleic Acid Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900256. [PMID: 30884139 DOI: 10.1002/smll.201900256] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/19/2019] [Indexed: 05/28/2023]
Abstract
The behaviors of living cells are governed by a series of regulated and confined biochemical reactions. The design and successful construction of synthetic cellular reactors can be useful in a broad range of applications that will bring significant scientific and economic impact. Over the past few decades, DNA self-assembly has enabled the design and fabrication of sophisticated 1D, 2D, and 3D nanostructures, and is applied to organizing a variety of biomolecular components into prescribed 2D and 3D patterns. In this Concept, the recent and exciting progress in DNA-scaffolded compartmentalizations and their applications in enzyme encapsulation, lipid membrane assembly, artificial transmembrane nanopores, and smart drug delivery are in focus. Taking advantage of these features promises to deliver breakthroughs toward the attainment of new synthetic and biomimetic reactors.
Collapse
Affiliation(s)
- Jinglin Fu
- Department of Chemistry and Center for Computational and Integrative Biology, Rutgers University-Camden, 315 Penn Street, Camden, NJ, 08102, USA
| | - Sung Won Oh
- Department of Chemistry and Center for Computational and Integrative Biology, Rutgers University-Camden, 315 Penn Street, Camden, NJ, 08102, USA
| | - Kristin Monckton
- Department of Chemistry and Center for Computational and Integrative Biology, Rutgers University-Camden, 315 Penn Street, Camden, NJ, 08102, USA
| | - Georgia Arbuckle-Keil
- Department of Chemistry and Center for Computational and Integrative Biology, Rutgers University-Camden, 315 Penn Street, Camden, NJ, 08102, USA
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30322, USA
| | - Ting Zhang
- Department of Chemistry and Center for Computational and Integrative Biology, Rutgers University-Camden, 315 Penn Street, Camden, NJ, 08102, USA
| |
Collapse
|
61
|
Hui L, Zhang Q, Deng W, Liu H. DNA-Based Nanofabrication: Pathway to Applications in Surface Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805428. [PMID: 30811832 DOI: 10.1002/smll.201805428] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/30/2019] [Indexed: 05/28/2023]
Abstract
This Concept provides an overview of recent developments of DNA-based nanofabrication and discusses its potential applications in the area of surface engineering. The first part of the paper discusses the strength and limitations of existing DNA-based nanofabrication methods. The second part highlights several examples of surface engineering applications involving nano- and microscale surface textures. It finishes with a discussion of the opportunities and remaining challenges of applying DNA-based nanofabrication in surface engineering applications.
Collapse
Affiliation(s)
- Liwei Hui
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Qinmei Zhang
- College of Chemistry and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
| | - Wei Deng
- College of Chemistry and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
| | - Haitao Liu
- College of Chemistry and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| |
Collapse
|
62
|
Bilal M, Cui J, Iqbal HMN. Tailoring enzyme microenvironment: State-of-the-art strategy to fulfill the quest for efficient bio-catalysis. Int J Biol Macromol 2019; 130:186-196. [PMID: 30817963 DOI: 10.1016/j.ijbiomac.2019.02.141] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/15/2019] [Accepted: 02/23/2019] [Indexed: 02/08/2023]
Abstract
Enzymes as green industrial biocatalysts have become a powerful norm that offers several advantages over traditional catalytic agents with regard to process efficiency, reusability, sustainability, and overall cost-effective ratio. However, enzymes obtained from natural origins are often engineered/tailored since their native forms do not fulfill the acute need for the industrial application. Revolutionary developments in protein engineering provide excellent opportunities for designing and constructing novel industrial biocatalysts with improved functional properties including catalytic activity, stability, substrate specificity, and reaction product inhibition. Momentum in enzyme immobilization has enabled robustness and optimal functions in extreme industrial environments, such as high temperature or organic solvents. The emergence of multi-enzyme catalytic cascade based on a combination of biocatalysts presents multifarious opportunities in biosynthesis, biocatalysis, and biotransformation. This review focuses on the emerging and state-of-the-art enzyme engineering trends and approaches to constructing innovative nano- and microstructured biocatalysts with enhanced catalytic activity and stability features requisite for industrial exploitation. Continuous key developments in this direction together with protein engineering in unique ways might offer ever-increasing opportunities for future biocatalysis-based industrial bioprocesses.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
63
|
Shen H, Wang Y, Wang J, Li Z, Yuan Q. Emerging Biomimetic Applications of DNA Nanotechnology. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13859-13873. [PMID: 29939004 DOI: 10.1021/acsami.8b06175] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Re-engineering cellular components and biological processes has received great interest and promised compelling advantages in applications ranging from basic cell biology to biomedicine. With the advent of DNA nanotechnology, the programmable self-assembly ability makes DNA an appealing candidate for rational design of artificial components with different structures and functions. This Forum Article summarizes recent developments of DNA nanotechnology in mimicking the structures and functions of existing cellular components. We highlight key successes in the achievements of DNA-based biomimetic membrane proteins and discuss the assembly behavior of these artificial proteins. Then, we focus on the construction of higher-order structures by DNA nanotechnology to recreate cell-like structures. Finally, we explore the current challenges and speculate on future directions of DNA nanotechnology in biomimetics.
Collapse
Affiliation(s)
- Haijing Shen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , 430072 , China
| | - Yingqian Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , 430072 , China
| | - Jie Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , 430072 , China
| | - Zhihao Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , 430072 , China
| | - Quan Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , 430072 , China
| |
Collapse
|
64
|
Zhou X, Mandal S, Jiang S, Lin S, Yang J, Liu Y, Whitten DG, Woodbury NW, Yan H. Efficient Long-Range, Directional Energy Transfer through DNA-Templated Dye Aggregates. J Am Chem Soc 2019; 141:8473-8481. [DOI: 10.1021/jacs.9b01548] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xu Zhou
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Sarthak Mandal
- Center for Innovations in Medicine at the Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
| | - Shuoxing Jiang
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Su Lin
- Center for Innovations in Medicine at the Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Jianzhong Yang
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Yan Liu
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - David G. Whitten
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Neal W. Woodbury
- Center for Innovations in Medicine at the Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Hao Yan
- Center for Molecular Design and Biomimetics at the Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
65
|
Abstract
Multiplex detection of biomolecules is important in bionanotechnology and clinical diagnostics. Multiplexing using engineered solutions such as microarrays, synthetic nanopores, and DNA barcodes is promising, but they require sophisticated design/engineering and typically yield semiquantitative information. Single-molecule fluorescence resonance energy transfer (smFRET) is an attractive tool in this regard as it enables both sensitive and quantitative detection. However, multiplexing with smFRET remains a great challenge as it requires either multiple excitation sources, an antenna system created by multiple FRET pairs, or multiple acceptors of the donor fluorophore, which complicates not only the labeling schemes but also data analysis, due to overlapping of FRET efficiencies ( EFRET). Here, we address these currently outstanding issues by designing interconvertible hairpin-based sensors (iHabSs) with nonoverlapping EFRET utilizing a single donor/acceptor pair and demonstrate a high-confidence multiplex detection of unlabeled nucleic acid sequences. We validated the reliability of our approach by systematically omitting one target at a time. Further, we demonstrate that these iHabSs are fully recyclable, sensitive with a limit of detection of ∼200 pM, and able to discriminate against single base mismatches. The multiplexed approach developed here has the potential to benefit the fields of biosensing and diagnostics by allowing simultaneous and quantitative detection of unlabeled nucleic acid biomarkers.
Collapse
Affiliation(s)
- Anisa Kaur
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284, United States
| | - Kumar Sapkota
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284, United States
| | - Soma Dhakal
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284, United States
| |
Collapse
|
66
|
Wang D, Chai Y, Yuan Y, Yuan R. Precise Regulation of Enzyme Cascade Catalytic Efficiency with DNA Tetrahedron as Scaffold for Ultrasensitive Electrochemical Detection of DNA. Anal Chem 2019; 91:3561-3566. [DOI: 10.1021/acs.analchem.8b05407] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
67
|
Chen Z, Cao H, Tan T. Preparation of functionalized star polymer nanoparticles by RAFT polymerization and their application in positionally assembled enzymes for cascade reactions. NEW J CHEM 2019. [DOI: 10.1039/c9nj01122f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel multienzyme nanoreactor with excellent substrate affinity – functionalized star polymer nanoparticles was prepared by RAFT polymerization as a scaffold.
Collapse
Affiliation(s)
- Zhiwu Chen
- Beijing Key Laboratory of Bioprocess
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Hui Cao
- Beijing Key Laboratory of Bioprocess
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Tianwei Tan
- Beijing Key Laboratory of Bioprocess
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
68
|
Kuan SL, Bergamini FRG, Weil T. Functional protein nanostructures: a chemical toolbox. Chem Soc Rev 2018; 47:9069-9105. [PMID: 30452046 PMCID: PMC6289173 DOI: 10.1039/c8cs00590g] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Indexed: 01/08/2023]
Abstract
Nature has evolved an optimal synthetic factory in the form of translational and posttranslational processes by which millions of proteins with defined primary sequences and 3D structures can be built. Nature's toolkit gives rise to protein building blocks, which dictates their spatial arrangement to form functional protein nanostructures that serve a myriad of functions in cells, ranging from biocatalysis, formation of structural networks, and regulation of biochemical processes, to sensing. With the advent of chemical tools for site-selective protein modifications and recombinant engineering, there is a rapid development to develop and apply synthetic methods for creating structurally defined, functional protein nanostructures for a broad range of applications in the fields of catalysis, materials and biomedical sciences. In this review, design principles and structural features for achieving and characterizing functional protein nanostructures by synthetic approaches are summarized. The synthetic customization of protein building blocks, the design and introduction of recognition units and linkers and subsequent assembly into structurally defined protein architectures are discussed herein. Key examples of these supramolecular protein nanostructures, their unique functions and resultant impact for biomedical applications are highlighted.
Collapse
Affiliation(s)
- Seah Ling Kuan
- Max-Planck Institute for Polymer Research
,
Ackermannweg 10
, 55128 Mainz
, Germany
.
;
- Institute of Inorganic Chemistry I – Ulm University
,
Albert-Einstein-Allee 11
, 89081 Ulm
, Germany
| | - Fernando R. G. Bergamini
- Institute of Chemistry
, Federal University of Uberlândia – UFU
,
38400-902 Uberlândia
, MG
, Brazil
| | - Tanja Weil
- Max-Planck Institute for Polymer Research
,
Ackermannweg 10
, 55128 Mainz
, Germany
.
;
- Institute of Inorganic Chemistry I – Ulm University
,
Albert-Einstein-Allee 11
, 89081 Ulm
, Germany
| |
Collapse
|
69
|
Yan Y, Li J, Li W, Wang Y, Song W, Bi S. DNA flower-encapsulated horseradish peroxidase with enhanced biocatalytic activity synthesized by an isothermal one-pot method based on rolling circle amplification. NANOSCALE 2018; 10:22456-22465. [PMID: 30478460 DOI: 10.1039/c8nr07294a] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
DNA nanotechnology has been developed to construct a variety of functional two- and three-dimensional structures for versatile applications. Rolling circle amplification (RCA) has become prominent in the assembly of DNA-inorganic composites with hierarchical structures and attractive properties. Here, we demonstrate a one-pot method to directly encapsulate horseradish peroxidase (HRP) in DNA flowers (DFs) during RCA. The growing DNA strands and Mg2PPi crystals lead to the construction of porous DFs, which provide sufficient interaction sites for spontaneously incorporating HRP molecules into DFs with high loading capacity and good stability. Furthermore, in comparison with free HRP, the DNA flower-encapsulated HRP (termed HRP-DFs) demonstrate enhanced enzymatic activity, which can efficiently biocatalyze the H2O2-mediated etching of gold nanorods (AuNRs) to generate distinct color changes since the longitudinal localized surface plasmon resonance (LSPR) frequency of AuNRs is highly sensitive to the changes in the AuNR aspect ratio. Through rationally incorporating the complementary thrombin aptamer sequence into the circular template, the synthesized HRP-DF composites are readily used as amplified labels for visual and colorimetric detection of thrombin with ultrahigh sensitivity and excellent selectivity. Therefore, our proposed strategy for direct encapsulation of enzyme molecules into DNA structures shows considerable potential applications in biosensing, biocatalysis, and point-of-care diagnostics.
Collapse
Affiliation(s)
- Yongcun Yan
- College of Chemistry and Chemical Engineering, Shandong Demonstration Center for Experimental Chemistry Education, Qingdao University, Qingdao 266071, P. R. China.
| | | | | | | | | | | |
Collapse
|
70
|
Affiliation(s)
- Simona Ranallo
- Department of Chemical Sciences and Technologies , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 Rome , Italy
| | - Alessandro Porchetta
- Department of Chemical Sciences and Technologies , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 Rome , Italy
| | - Francesco Ricci
- Department of Chemical Sciences and Technologies , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 Rome , Italy
| |
Collapse
|
71
|
Gibbs DR, Kaur A, Megalathan A, Sapkota K, Dhakal S. Build Your Own Microscope: Step-By-Step Guide for Building a Prism-Based TIRF Microscope. Methods Protoc 2018; 1:mps1040040. [PMID: 31164580 PMCID: PMC6481079 DOI: 10.3390/mps1040040] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 01/09/2023] Open
Abstract
Prism-based total internal reflection fluorescence (pTIRF) microscopy is one of the most widely used techniques for the single molecule analysis of a vast range of samples including biomolecules, nanostructures, and cells, to name a few. It allows for excitation of surface bound molecules/particles/quantum dots via evanescent field of a confined region of space, which is beneficial not only for single molecule detection but also for analysis of single molecule dynamics and for acquiring kinetics data. However, there is neither a commercial microscope available for purchase nor a detailed guide dedicated for building this microscope. Thus far, pTIRF microscopes are custom-built with the use of a commercially available inverted microscope, which requires high level of expertise in selecting and handling sophisticated instrument-parts. To directly address this technology gap, here we describe a step-by-step guide on how to build and characterize a pTIRF microscope for in vitro single-molecule imaging, nanostructure analysis and other life sciences research.
Collapse
Affiliation(s)
- Dalton R Gibbs
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, VA 23284, USA.
| | - Anisa Kaur
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, VA 23284, USA.
| | - Anoja Megalathan
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, VA 23284, USA.
| | - Kumar Sapkota
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, VA 23284, USA.
| | - Soma Dhakal
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, VA 23284, USA.
| |
Collapse
|
72
|
Kou B, Chai Y, Yuan Y, Yuan R. Dynamical Regulation of Enzyme Cascade Amplification by a Regenerated DNA Nanotweezer for Ultrasensitive Electrochemical DNA Detection. Anal Chem 2018; 90:10701-10706. [DOI: 10.1021/acs.analchem.8b00477] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Beibei Kou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yaqin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yali Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
73
|
Loescher S, Groeer S, Walther A. 3D DNA Origami Nanoparticles: From Basic Design Principles to Emerging Applications in Soft Matter and (Bio‐)Nanosciences. Angew Chem Int Ed Engl 2018; 57:10436-10448. [DOI: 10.1002/anie.201801700] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/11/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Sebastian Loescher
- Institute for Macromolecular Chemistry, Stefan-Meier-Strasse 31University of Freiburg 79104 Freiburg Germany
- Freiburg Materials Research Center, Stefan-Meier-Strasse 21University of Freiburg 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105University of Freiburg 79110 Freiburg Germany
- Freiburg Institute for Advanced Studies (FRIAS), Albertstrasse 19University of Freiburg 79104 Freiburg Germany
| | - Saskia Groeer
- Institute for Macromolecular Chemistry, Stefan-Meier-Strasse 31University of Freiburg 79104 Freiburg Germany
- Freiburg Materials Research Center, Stefan-Meier-Strasse 21University of Freiburg 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105University of Freiburg 79110 Freiburg Germany
- Freiburg Institute for Advanced Studies (FRIAS), Albertstrasse 19University of Freiburg 79104 Freiburg Germany
| | - Andreas Walther
- Institute for Macromolecular Chemistry, Stefan-Meier-Strasse 31University of Freiburg 79104 Freiburg Germany
- Freiburg Materials Research Center, Stefan-Meier-Strasse 21University of Freiburg 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105University of Freiburg 79110 Freiburg Germany
- Freiburg Institute for Advanced Studies (FRIAS), Albertstrasse 19University of Freiburg 79104 Freiburg Germany
| |
Collapse
|
74
|
Loescher S, Groeer S, Walther A. 3D‐DNA‐Origami‐Nanopartikel: von grundlegenden Designprinzipien hin zu neuartigen Anwendungen in der weichen Materie und den (Bio‐)Nanowissenschaften. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Sebastian Loescher
- Institut für Makromolekulare Chemie, Stefan-Meier-Straße 31Albert-Ludwigs-Universität Freiburg 79104 Freiburg Deutschland
- Freiburger MaterialforschungszentrumAlbert-Ludwigs-Universität Freiburg Deutschland
- Freiburger Zentrum für interaktive Werkstoffe und bioinspirierte TechnologienAlbert-Ludwigs-Universität Freiburg Deutschland
- Freiburg Institute for Advanced Studies (FRIAS)Albert-Ludwigs-Universität Freiburg Deutschland
| | - Saskia Groeer
- Institut für Makromolekulare Chemie, Stefan-Meier-Straße 31Albert-Ludwigs-Universität Freiburg 79104 Freiburg Deutschland
- Freiburger MaterialforschungszentrumAlbert-Ludwigs-Universität Freiburg Deutschland
- Freiburger Zentrum für interaktive Werkstoffe und bioinspirierte TechnologienAlbert-Ludwigs-Universität Freiburg Deutschland
- Freiburg Institute for Advanced Studies (FRIAS)Albert-Ludwigs-Universität Freiburg Deutschland
| | - Andreas Walther
- Institut für Makromolekulare Chemie, Stefan-Meier-Straße 31Albert-Ludwigs-Universität Freiburg 79104 Freiburg Deutschland
- Freiburger MaterialforschungszentrumAlbert-Ludwigs-Universität Freiburg Deutschland
- Freiburger Zentrum für interaktive Werkstoffe und bioinspirierte TechnologienAlbert-Ludwigs-Universität Freiburg Deutschland
- Freiburg Institute for Advanced Studies (FRIAS)Albert-Ludwigs-Universität Freiburg Deutschland
| |
Collapse
|
75
|
Zhou YC, Ran XX, Chen AY, Chai YQ, Yuan R, Zhuo Y. Efficient Electrochemical Self-Catalytic Platform Based on l-Cys-hemin/G-quadruplex and Its Application for Bioassay. Anal Chem 2018; 90:9109-9116. [PMID: 29974748 DOI: 10.1021/acs.analchem.8b01526] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Commonly, in the artificial enzyme-involved signal amplification approach, the catalytic efficiency was limited by the relatively low binding affinity between artificial enzyme and substrate. In this work, substrate l-cysteine (l-Cys) and hemin were combined into one molecule to form l-Cys-hemin/G-quadruplex as an artificial self-catalytic complex for the improvement of the binding affinity between l-Cys-hemin/G-quadruplex and l-Cys. The apparent Michaelis-Menten constant ( Km = 2.615 μM) on l-Cys-hemin/G-quadruplex for l-Cys was further investigated to assess the affinity, which was much lower than that of hemin/G-quadruplex ( Km = 8.640 μM), confirming l-Cys-hemin/G-quadruplex possessed better affinity to l-Cys compared with that of hemin/G-quadruplex. Meanwhile, l-Cys bilayer could be further assembled onto the surface of l-Cys-hemin/G-quadruplex based on hydrogen-bond and electrostatic interaction to concentrate l-Cys around the active center, which was beneficial to the catalytic enhancement. Through this efficient electrochemical self-catalytic platform, a sensitive thrombin aptasensor was constructed. The results exhibited good sensitivity from 0.1 pM to 80 nM and the detection limit was calculated to be 0.032 pM. This self-catalytic strategy with improved binding affinity between l-Cys-hemin/G-quadruplex and l-Cys could provide an efficient approach to improve artificial enzymatic catalytic efficiency.
Collapse
Affiliation(s)
- Yu-Cheng Zhou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China
| | - Xiao-Xue Ran
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China
| | - An-Yi Chen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China
| | - Ya-Qin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China
| | - Ying Zhuo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China
| |
Collapse
|
76
|
Chen Y, Ke G, Ma Y, Zhu Z, Liu M, Liu Y, Yan H, Yang CJ. A Synthetic Light-Driven Substrate Channeling System for Precise Regulation of Enzyme Cascade Activity Based on DNA Origami. J Am Chem Soc 2018; 140:8990-8996. [DOI: 10.1021/jacs.8b05429] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yahong Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Guoliang Ke
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yanli Ma
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhi Zhu
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Minghui Liu
- Center for Molecular Design and Biomimetics, Biodesign Institute and School of Molecular Sciences at Arizona State University, Tempe, Arizona 85287, United States
| | - Yan Liu
- Center for Molecular Design and Biomimetics, Biodesign Institute and School of Molecular Sciences at Arizona State University, Tempe, Arizona 85287, United States
| | - Hao Yan
- Center for Molecular Design and Biomimetics, Biodesign Institute and School of Molecular Sciences at Arizona State University, Tempe, Arizona 85287, United States
| | - Chaoyong James Yang
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, China
| |
Collapse
|
77
|
Zhang Y, Tu J, Wang D, Zhu H, Maity SK, Qu X, Bogaert B, Pei H, Zhang H. Programmable and Multifunctional DNA-Based Materials for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1703658. [PMID: 29389041 DOI: 10.1002/adma.201703658] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/09/2017] [Indexed: 06/07/2023]
Abstract
DNA encodes the genetic information; recently, it has also become a key player in material science. Given the specific Watson-Crick base-pairing interactions between only four types of nucleotides, well-designed DNA self-assembly can be programmable and predictable. Stem-loops, sticky ends, Holliday junctions, DNA tiles, and lattices are typical motifs for forming DNA-based structures. The oligonucleotides experience thermal annealing in a near-neutral buffer containing a divalent cation (usually Mg2+ ) to produce a variety of DNA nanostructures. These structures not only show beautiful landscape, but can also be endowed with multifaceted functionalities. This Review begins with the fundamental characterization and evolutionary trajectory of DNA-based artificial structures, but concentrates on their biomedical applications. The coverage spans from controlled drug delivery to high therapeutic profile and accurate diagnosis. A variety of DNA-based materials, including aptamers, hydrogels, origamis, and tetrahedrons, are widely utilized in different biomedical fields. In addition, to achieve better performance and functionality, material hybridization is widely witnessed, and DNA nanostructure modification is also discussed. Although there are impressive advances and high expectations, the development of DNA-based structures/technologies is still hindered by several commonly recognized challenges, such as nuclease instability, lack of pharmacokinetics data, and relatively high synthesis cost.
Collapse
Affiliation(s)
- Yuezhou Zhang
- Department of Pharmaceutical Science Laboratory, Åbo Akademi University, 20520, Turku, Finland
| | - Jing Tu
- Department of Pharmaceutical Science Laboratory, Åbo Akademi University, 20520, Turku, Finland
| | - Dongqing Wang
- Department of Radiology, Affiliated Hospital of Jiangsu University Jiangsu University, 212001, Zhenjiang, P. R. China
| | - Haitao Zhu
- Department of Radiology, Affiliated Hospital of Jiangsu University Jiangsu University, 212001, Zhenjiang, P. R. China
| | | | - Xiangmeng Qu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, P. R. China
| | - Bram Bogaert
- Department of Pharmaceutical Science Laboratory, Åbo Akademi University, 20520, Turku, Finland
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, P. R. China
| | - Hongbo Zhang
- Department of Pharmaceutical Science Laboratory, Åbo Akademi University, 20520, Turku, Finland
- Department of Radiology, Affiliated Hospital of Jiangsu University Jiangsu University, 212001, Zhenjiang, P. R. China
- Turku Center for Biotechnology, Åbo Akademi University, 20520, Turku, Finland
| |
Collapse
|
78
|
Valero J, Pal N, Dhakal S, Walter NG, Famulok M. A bio-hybrid DNA rotor-stator nanoengine that moves along predefined tracks. NATURE NANOTECHNOLOGY 2018; 13:496-503. [PMID: 29632399 PMCID: PMC5994166 DOI: 10.1038/s41565-018-0109-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/01/2018] [Indexed: 05/25/2023]
Abstract
Biological motors are highly complex protein assemblies that generate linear or rotary motion, powered by chemical energy. Synthetic motors based on DNA nanostructures, bio-hybrid designs or synthetic organic chemistry have been assembled. However, unidirectionally rotating biomimetic wheel motors with rotor-stator units that consume chemical energy are elusive. Here, we report a bio-hybrid nanoengine consisting of a catalytic stator that unidirectionally rotates an interlocked DNA wheel, powered by NTP hydrolysis. The engine consists of an engineered T7 RNA polymerase (T7RNAP-ZIF) attached to a dsDNA nanoring that is catenated to a rigid rotating dsDNA wheel. The wheel motor produces long, repetitive RNA transcripts that remain attached to the engine and are used to guide its movement along predefined ssDNA tracks arranged on a DNA nanotube. The simplicity of the design renders this walking nanoengine adaptable to other biological nanoarchitectures, facilitating the construction of complex bio-hybrid structures that achieve NTP-driven locomotion.
Collapse
Affiliation(s)
- Julián Valero
- LIMES Program Unit Chemical Biology & Medicinal Chemistry, c/o Kekulé Institut für Organische Chemie und Biochemie, University of Bonn, Bonn, Germany
- Center of Advanced European Studies and Research (CAESAR), Bonn, Germany
| | - Nibedita Pal
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Soma Dhakal
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Michael Famulok
- LIMES Program Unit Chemical Biology & Medicinal Chemistry, c/o Kekulé Institut für Organische Chemie und Biochemie, University of Bonn, Bonn, Germany.
- Center of Advanced European Studies and Research (CAESAR), Bonn, Germany.
| |
Collapse
|
79
|
Abstract
Nucleic acids have been actively exploited to develop various exquisite nanostructures due to their unparalleled programmability. Especially, framework nucleic acids (FNAs) with tailorable functionality and precise addressability hold great promise for biomedical applications. In this review, we summarize recent progress of FNA-enabled biosensing in homogeneous solutions, on heterogeneous surfaces, and inside cells. We describe the strategies to translate the structural order and rigidity of FNAs to interfacial engineering with high controllability, and approaches to realize multiplexing for highly parallel in vitro detection. We also envision the marriage of the currently available FNA tool sets with other emerging technologies to develop a new generation of biosensors for precision diagnosis and bioimaging.
Collapse
Affiliation(s)
- Fan Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan 430065, China
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Qian Li
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan 430065, China
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
80
|
Gibbs DR, Dhakal S. Single-Molecule Imaging Reveals Conformational Manipulation of Holliday Junction DNA by the Junction Processing Protein RuvA. Biochemistry 2018; 57:3616-3624. [PMID: 29767969 DOI: 10.1021/acs.biochem.8b00404] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Interactions between DNA and motor proteins regulate nearly all biological functions of DNA such as gene expression, DNA replication and repair, and transcription. During the late stages of homologous recombination (HR), the Escherichia coli recombination machinery, RuvABC, resolves the four-way DNA motifs called Holliday junctions (HJs) that are formed during exchange of nucleotide sequences between two homologous duplex DNA. Although the formation of the RuvA-HJ complex is known to be the first critical step in the RuvABC pathway, the mechanism for the binding interaction between RuvA and HJ has remained elusive. Here, using single-molecule fluorescence resonance energy transfer (smFRET) and ensemble analyses, we show that RuvA stably binds to the HJ, halting its conformational dynamics. Our FRET experiments in different ionic environments created by Mg2+ and Na+ ions suggest that RuvA binds to the HJ via electrostatic interaction. Further, while recent studies have indicated that the HR process can be modulated for therapeutic applications by selective targeting of the HJ by chemotherapeutic drugs, we investigated the effect of drug-modified HJ on binding. Using cisplatin as a proof-of-concept drug, we show that RuvA binds to the cisplatin-modified HJ as efficiently as to the unmodified HJ, demonstrating that RuvA accommodates for the cisplatin-introduced charges and/or topological changes on the HJ.
Collapse
Affiliation(s)
- Dalton R Gibbs
- Department of Chemistry , Virginia Commonwealth University , 1001 West Main Street , Richmond , Virginia 23284 , United States
| | - Soma Dhakal
- Department of Chemistry , Virginia Commonwealth University , 1001 West Main Street , Richmond , Virginia 23284 , United States
| |
Collapse
|
81
|
Kuzyk A, Jungmann R, Acuna GP, Liu N. DNA Origami Route for Nanophotonics. ACS PHOTONICS 2018; 5:1151-1163. [PMID: 30271812 PMCID: PMC6156112 DOI: 10.1021/acsphotonics.7b01580] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/06/2018] [Accepted: 02/11/2018] [Indexed: 05/21/2023]
Abstract
The specificity and simplicity of the Watson-Crick base pair interactions make DNA one of the most versatile construction materials for creating nanoscale structures and devices. Among several DNA-based approaches, the DNA origami technique excels in programmable self-assembly of complex, arbitrary shaped structures with dimensions of hundreds of nanometers. Importantly, DNA origami can be used as templates for assembly of functional nanoscale components into three-dimensional structures with high precision and controlled stoichiometry. This is often beyond the reach of other nanofabrication techniques. In this Perspective, we highlight the capability of the DNA origami technique for realization of novel nanophotonic systems. First, we introduce the basic principles of designing and fabrication of DNA origami structures. Subsequently, we review recent advances of the DNA origami applications in nanoplasmonics, single-molecule and super-resolution fluorescent imaging, as well as hybrid photonic systems. We conclude by outlining the future prospects of the DNA origami technique for advanced nanophotonic systems with tailored functionalities.
Collapse
Affiliation(s)
- Anton Kuzyk
- Max
Planck Institute for Intelligent Systems, Heisenbergstrasse 3, D-70569 Stuttgart, Germany
- Department
of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O. Box 12200, FI-00076 Aalto, Finland
| | - Ralf Jungmann
- Department
of Physics and Center for Nanoscience, Ludwig
Maximilian University, 80539 Munich, Germany
- Max
Planck Institute of Biochemistry, 82152 Martinsried near Munich, Germany
| | - Guillermo P. Acuna
- Institute
for Physical & Theoretical Chemistry, and Braunschweig Integrated
Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology
(LENA), Braunschweig University of Technology, Rebenring 56, 38106 Braunschweig, Germany
| | - Na Liu
- Max
Planck Institute for Intelligent Systems, Heisenbergstrasse 3, D-70569 Stuttgart, Germany
- Kirchhoff
Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, D-69120 Heidelberg, Germany
| |
Collapse
|
82
|
Yang S, Liu W, Nixon R, Wang R. Metal-ion responsive reversible assembly of DNA origami dimers: G-quadruplex induced intermolecular interaction. NANOSCALE 2018; 10:3626-3630. [PMID: 29411830 DOI: 10.1039/c7nr09458b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present a novel metal-ion stimulated organization of DNA origami nanostructures by employing G-quadruplexes as stimuli-responsive bridges. The reversible assembly process of DNA origami was the result of conformational changes between the G-quadruplex and its single-strand state induced by monovalent cations. This study might stimulate a new design of responsive DNA-based intelligent nanomaterials.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA.
| | | | | | | |
Collapse
|
83
|
Yang YR, Fu J, Wootten S, Qi X, Liu M, Yan H, Liu Y. 2D Enzyme Cascade Network with Efficient Substrate Channeling by Swinging Arms. Chembiochem 2018; 19:212-216. [DOI: 10.1002/cbic.201700613] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Yuhe R. Yang
- Center for Molecular Design and Biomimetics The Biodesign Institute Arizona State University 1001 S. McAllister Avenue Tempe AZ 85287 USA
- School of Molecular Sciences Arizona State University Physical Sciences Building Room D-102 P. O. Box 871604 Tempe AZ 85287-1604 USA
| | - Jinglin Fu
- Department of Chemistry and Center for Computational and Integrative Biology Rutgers University–Camden 315 Penn Street Camden NJ 08102 USA
| | - Shaun Wootten
- Center for Molecular Design and Biomimetics The Biodesign Institute Arizona State University 1001 S. McAllister Avenue Tempe AZ 85287 USA
| | - Xiaodong Qi
- Center for Molecular Design and Biomimetics The Biodesign Institute Arizona State University 1001 S. McAllister Avenue Tempe AZ 85287 USA
- School of Molecular Sciences Arizona State University Physical Sciences Building Room D-102 P. O. Box 871604 Tempe AZ 85287-1604 USA
| | - Minghui Liu
- Center for Molecular Design and Biomimetics The Biodesign Institute Arizona State University 1001 S. McAllister Avenue Tempe AZ 85287 USA
- School of Molecular Sciences Arizona State University Physical Sciences Building Room D-102 P. O. Box 871604 Tempe AZ 85287-1604 USA
| | - Hao Yan
- Center for Molecular Design and Biomimetics The Biodesign Institute Arizona State University 1001 S. McAllister Avenue Tempe AZ 85287 USA
- School of Molecular Sciences Arizona State University Physical Sciences Building Room D-102 P. O. Box 871604 Tempe AZ 85287-1604 USA
| | - Yan Liu
- Center for Molecular Design and Biomimetics The Biodesign Institute Arizona State University 1001 S. McAllister Avenue Tempe AZ 85287 USA
- School of Molecular Sciences Arizona State University Physical Sciences Building Room D-102 P. O. Box 871604 Tempe AZ 85287-1604 USA
| |
Collapse
|
84
|
Kou BB, Chai YQ, Yuan YL, Yuan R. PtNPs as Scaffolds to Regulate Interenzyme Distance for Construction of Efficient Enzyme Cascade Amplification for Ultrasensitive Electrochemical Detection of MMP-2. Anal Chem 2017; 89:9383-9387. [PMID: 28726378 DOI: 10.1021/acs.analchem.7b02210] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The high catalytic efficiency of enzyme cascade reaction mainly depends on optimal interenzyme distance regulated by the special scaffolds. In this work, the rigid PtNPs with different sizes were employed as scaffolds to regulate interenzyme distance for efficient enzyme cascade amplification to construct electrochemical biosensor for sensitive detection of matrix metalloproteinases-2 (MMP-2), which overcame the drawbacks of instable construction and sophisticated preparation induced by conventional scaffolds such as metal-organic frameworks (MOFs), DNA nanostructures. Here, cucurbit[7]uril functionalized PtNPs (CB[7]@PtNPs) was utilized to load ferrocene (Fc)-labeled horseradish peroxidase (HRP) and glucose oxidase (GOx) via host-guest interaction between Fc and CB[7], respectively, resulting in the formation of a stable three-dimensional netlike structure containing amounts of enzymes. Interestingly, the enzyme cascade reaction regulated by 10 nm PtNPs as scaffold showed highly catalytic efficiency. Meanwhile, the PtNPs could also serve as catalyst to accelerate the enzyme cascade reaction with further enhanced catalytic efficiency. As a result, the proposed biosensor exhibited excellent sensitivity with a wide linear range of 0.1 pg·mL-1 to 20 ng·mL-1 and a detection limit of 0.03 pg·mL-1 for MMP-2. Such a strategy opened a new avenue for adopting metal nanoparticles to regulate interenzyme distance for efficient enzyme cascade amplification, thus providing a universal and easy operating method for sensitively detecting various targets such as DNA, metal ion, and protein.
Collapse
Affiliation(s)
- Bei-Bei Kou
- Key Labortary of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, PR China
| | - Ya-Qin Chai
- Key Labortary of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, PR China
| | - Ya-Li Yuan
- Key Labortary of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, PR China
| | - Ruo Yuan
- Key Labortary of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, PR China
| |
Collapse
|
85
|
Hong F, Zhang F, Liu Y, Yan H. DNA Origami: Scaffolds for Creating Higher Order Structures. Chem Rev 2017; 117:12584-12640. [DOI: 10.1021/acs.chemrev.6b00825] [Citation(s) in RCA: 645] [Impact Index Per Article: 92.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Fan Hong
- The Biodesign Institute and
School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Fei Zhang
- The Biodesign Institute and
School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Yan Liu
- The Biodesign Institute and
School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Hao Yan
- The Biodesign Institute and
School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
86
|
Collins J, Zhang T, Oh SW, Maloney R, Fu J. DNA-crowded enzyme complexes with enhanced activities and stabilities. Chem Commun (Camb) 2017; 53:13059-13062. [DOI: 10.1039/c7cc07361e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We present a robust and simple method to prepare DNA-crowded enzyme complexes by directly assembling long DNA duplexes on the enzyme surface.
Collapse
Affiliation(s)
- John Collins
- Department of Chemistry
- Rutgers University – Camden
- Camden
- USA
| | - Ting Zhang
- Department of Chemistry
- Rutgers University – Camden
- Camden
- USA
| | - Sung Won Oh
- Center for Computational and Integrative Biology
- Rutgers University – Camden
- Camden
- USA
| | - Robert Maloney
- Department of Chemistry
- Rutgers University – Camden
- Camden
- USA
| | - Jinglin Fu
- Department of Chemistry
- Rutgers University – Camden
- Camden
- USA
- Center for Computational and Integrative Biology
| |
Collapse
|