51
|
Vance RE, Eichberg MJ, Portnoy DA, Raulet DH. Listening to each other: Infectious disease and cancer immunology. Sci Immunol 2017; 2:eaai9339. [PMID: 28783669 PMCID: PMC5927821 DOI: 10.1126/sciimmunol.aai9339] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/21/2016] [Indexed: 12/21/2022]
Abstract
The immune system provides defense against tumors and pathogens. Here, we propose that by elucidating the shared principles of immunity that underlie cancer and infectious disease, oncologists and microbiologists can learn from each other and achieve the deeper mechanistic understanding critical the development of therapeutic approaches.
Collapse
Affiliation(s)
- Russell E Vance
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
- Cancer Research Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA
- Immunotherapeutics and Vaccine Research Initiative, University of California, Berkeley, Berkeley, CA 94720, USA
- Center for Emerging and Neglected Disease, University of California, Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael J Eichberg
- Immunotherapeutics and Vaccine Research Initiative, University of California, Berkeley, Berkeley, CA 94720, USA
- Center for Emerging and Neglected Disease, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Daniel A Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Cancer Research Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA
- Immunotherapeutics and Vaccine Research Initiative, University of California, Berkeley, Berkeley, CA 94720, USA
- Center for Emerging and Neglected Disease, University of California, Berkeley, Berkeley, CA 94720, USA
- School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David H Raulet
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Cancer Research Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA
- Immunotherapeutics and Vaccine Research Initiative, University of California, Berkeley, Berkeley, CA 94720, USA
- Center for Emerging and Neglected Disease, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
52
|
Abstract
Although genetic transfer between viruses and vertebrate hosts occurs less frequently than gene flow between bacteriophages and prokaryotes, it is extensive and has affected the evolution of both parties. With retroviruses, the integration of proviral DNA into chromosomal DNA can result in the activation of adjacent host gene expression and in the transduction of host transcripts into retroviral genomes as oncogenes. Yet in contrast to lysogenic phage, there is little evidence that viral oncogenes persist in a chain of natural transmission or that retroviral transduction is a significant driver of the horizontal spread of host genes. Conversely, integration of proviruses into the host germ line has generated endogenous retroviral genomes (ERV) in all vertebrate genomes sequenced to date. Some of these genomes retain potential infectivity and upon reactivation may transmit to other host species. During mammalian evolution, sequences of retroviral origin have been repurposed to serve host functions, such as the viral envelope glycoproteins crucial to the development of the placenta. Beyond retroviruses, DNA viruses with complex genomes have acquired numerous genes of host origin which influence replication, pathogenesis and immune evasion, while host species have accumulated germline sequences of both DNA and RNA viruses. A codicil is added on lateral transmission of cancer cells between hosts and on migration of host mitochondria into cancer cells.
Collapse
Affiliation(s)
- Robin A Weiss
- Division of Infection and Immunity, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
53
|
Stefan E, Bister K. MYC and RAF: Key Effectors in Cellular Signaling and Major Drivers in Human Cancer. Curr Top Microbiol Immunol 2017; 407:117-151. [PMID: 28466200 DOI: 10.1007/82_2017_4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The prototypes of the human MYC and RAF gene families are orthologs of animal proto-oncogenes that were originally identified as transduced alleles in the genomes of highly oncogenic retroviruses. MYC and RAF genes are now established as key regulatory elements in normal cellular physiology, but also as major cancer driver genes. Although the predominantly nuclear MYC proteins and the cytoplasmic RAF proteins have different biochemical functions, they are functionally linked in pivotal signaling cascades and circuits. The MYC protein is a transcription factor and together with its dimerization partner MAX holds a central position in a regulatory network of bHLH-LZ proteins. MYC regulates transcription conducted by all RNA polymerases and controls virtually the entire transcriptome. Fundamental cellular processes including distinct catabolic and anabolic branches of metabolism, cell cycle regulation, cell growth and proliferation, differentiation, stem cell regulation, and apoptosis are under MYC control. Deregulation of MYC expression by rearrangement or amplification of the MYC locus or by defects in kinase-mediated upstream signaling, accompanied by loss of apoptotic checkpoints, leads to tumorigenesis and is a hallmark of most human cancers. The critically controlled serine/threonine RAF kinases are central nodes of the cytoplasmic MAPK signaling cascade transducing converted extracellular signals to the nucleus for reshaping transcription factor controlled gene expression profiles. Specific mutations of RAF kinases, such as the prevalent BRAF(V600E) mutation in melanoma, or defects in upstream signaling or feedback loops cause decoupled kinase activities which lead to tumorigenesis. Different strategies for pharmacological interference with MYC- or RAF-induced tumorigenesis are being developed and several RAF kinase inhibitors are already in clinical use.
Collapse
Affiliation(s)
- Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Klaus Bister
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria.
| |
Collapse
|
54
|
Gilbert C, Peccoud J. Les éléments génétiques mobiles d’insectes sautent fréquemment dans les génomes de virus. Med Sci (Paris) 2016; 32:1017-1019. [DOI: 10.1051/medsci/20163211019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
55
|
Sciacovelli M, Frezza C. Oncometabolites: Unconventional triggers of oncogenic signalling cascades. Free Radic Biol Med 2016; 100:175-181. [PMID: 27117029 PMCID: PMC5145802 DOI: 10.1016/j.freeradbiomed.2016.04.025] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/11/2016] [Accepted: 04/19/2016] [Indexed: 01/27/2023]
Abstract
Cancer is a complex and heterogeneous disease thought to be caused by multiple genetic lesions. The recent finding that enzymes of the tricarboxylic acid (TCA) cycle are mutated in cancer rekindled the hypothesis that altered metabolism might also have a role in cellular transformation. Attempts to link mitochondrial dysfunction to cancer uncovered the unexpected role of small molecule metabolites, now known as oncometabolites, in tumorigenesis. In this review, we describe how oncometabolites can contribute to tumorigenesis. We propose that lesions of oncogenes and tumour suppressors are only one of the possible routes to tumorigenesis, which include accumulation of oncometabolites triggered by environmental cues.
Collapse
Affiliation(s)
- Marco Sciacovelli
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge CB2 0XZ, United Kingdom
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge CB2 0XZ, United Kingdom.
| |
Collapse
|
56
|
Abstract
Cancer has been recognized for thousands of years. Egyptians believed that cancer occurred at the will of the gods. Hippocrates believed human disease resulted from an imbalance of the four humors: blood, phlegm, yellow bile, and black bile with cancer being caused by excess black bile. The lymph theory of cancer replaced the humoral theory and the blastema theory replaced the lymph theory. Rudolph Virchow was the first to recognize that cancer cells like all cells came from other cells and believed chronic irritation caused cancer. At the same time there was a belief that trauma caused cancer, though it never evolved after many experiments inducing trauma. The birth of virology occurred in 1892 when Dimitri Ivanofsky demonstrated that diseased tobacco plants remained infective after filtering their sap through a filter that trapped bacteria. Martinus Beijerinck would call the tiny infective agent a virus and both Dimitri Ivanofsky and Marinus Beijerinck would become the fathers of virology. Not to long thereafter, Payton Rous founded the field of tumor virology in 1911 with his discovery of a transmittable sarcoma of chickens by what would come to be called Rous sarcoma virus or RSV for short. The first identified human tumor virus was the Epstein-Barr virus (EBV), named after Tony Epstein and Yvonne Barr who visualized the virus particles in Burkitt's lymphoma cells by electron microscopy in 1965. Since that time, many viruses have been associated with carcinogenesis including the most studied, human papilloma virus associated with cervical carcinoma, many other anogenital carcinomas, and oropharyngeal carcinoma. The World Health Organization currently estimates that approximately 22% of worldwide cancers are attributable to infectious etiologies, of which viral etiologies is estimated at 15-20%. The field of tumor virology/viral carcinogenesis has not only identified viruses as etiologic agents of human cancers, but has also given molecular insights to all human cancers including the oncogene activation and tumor suppressor gene inactivation.
Collapse
Affiliation(s)
- A J Smith
- Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - L A Smith
- Texas Tech University Health Sciences Center, Lubbock, TX, United States.
| |
Collapse
|
57
|
Wang Y, Fang L, Li J, Li Y, Cui S, Sun X, Chang S, Zhao P, Cui Z. Rescue of avian leukosis subgroup-J-associated acutely transforming viruses carrying different lengths of the v-fps oncogene and analysis of their tumorigenicity. Arch Virol 2016; 161:3473-3481. [PMID: 27654667 DOI: 10.1007/s00705-016-3035-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 08/26/2016] [Indexed: 01/14/2023]
Abstract
In our previous study, six subgroup J strains of avian leukosis virus (ALV-J)-associated acutely transforming viruses carrying different lengths of the v-fps oncogene, designated as Fu-J and Fu-J1-5, were isolated and characterized from fibrosarcomas in ALV-J-infected chickens. In the present study, the oncogenic potential of Fu-J and Fu-J1-5 was investigated using a reverse genetics technique. Six replication-defective viruses, named rFu-J and rFu-J1-5, were rescued with the replication-competent rescued ALV-J strain rSDAU1005 as a helper virus by co-transfection of chicken embryo fibroblast monolayers with infectious clone plasmids. Experimental bird studies were performed, demonstrating that only the rescued rFu-J virus carrying the complete v-fps oncogene with rSDAU1005 as the helper virus could induce acute fibrosarcoma after inoculation in specific-pathogen-free (SPF) chickens. These results provide direct evidence that the replication-defective acutely transforming Fu-J virus, with the complete v-fps oncogene, was associated with acute fibrosarcoma in chickens infected with ALV-J in the field, as reported previously.
Collapse
Affiliation(s)
- Yixin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Road No. 61, Tai'an, Shandong, 271018, China
| | - Lichun Fang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Road No. 61, Tai'an, Shandong, 271018, China
| | - Jianliang Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Road No. 61, Tai'an, Shandong, 271018, China
| | - Yang Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Road No. 61, Tai'an, Shandong, 271018, China
| | - Shuai Cui
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Road No. 61, Tai'an, Shandong, 271018, China
| | - Xiaolong Sun
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Road No. 61, Tai'an, Shandong, 271018, China
| | - Shuang Chang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Road No. 61, Tai'an, Shandong, 271018, China
| | - Peng Zhao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Road No. 61, Tai'an, Shandong, 271018, China
| | - Zhizhong Cui
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Road No. 61, Tai'an, Shandong, 271018, China.
| |
Collapse
|
58
|
Fernandes J. Oncogenes: The Passport for Viral Oncolysis Through PKR Inhibition. BIOMARKERS IN CANCER 2016; 8:101-10. [PMID: 27486347 PMCID: PMC4966488 DOI: 10.4137/bic.s33378] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/28/2016] [Accepted: 07/07/2016] [Indexed: 02/07/2023]
Abstract
The transforming properties of oncogenes are derived from gain-of-function mutations, shifting cell signaling from highly regulated homeostatic to an uncontrolled oncogenic state, with the contribution of the inactivating mutations in tumor suppressor genes P53 and RB, leading to tumor resistance to conventional and target-directed therapy. On the other hand, this scenario fulfills two requirements for oncolytic virus infection in tumor cells: inactivation of tumor suppressors and presence of oncoproteins, also the requirements to engage malignancy. Several of these oncogenes have a negative impact on the main interferon antiviral defense, the double-stranded RNA-activated protein kinase (PKR), which helps viruses to spontaneously target tumor cells instead of normal cells. This review is focused on the negative impact of overexpression of oncogenes on conventional and targeted therapy and their positive impact on viral oncolysis due to their ability to inhibit PKR-induced translation blockage, allowing virion release and cell death.
Collapse
Affiliation(s)
- Janaina Fernandes
- NUMPEX-BIO, Campus Xerém, Federal University of Rio de Janeiro, Duque de Caxias, Rio de Janeiro, Brazil.; Institute for Translational Research on Health and Environment in the Amazon Region-INPeTAm, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
59
|
Weiss RA. Human endogenous retroviruses: friend or foe? APMIS 2016; 124:4-10. [PMID: 26818257 DOI: 10.1111/apm.12476] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/12/2015] [Indexed: 01/21/2023]
Abstract
The integration of proviral DNA into host chromosomal DNA as an obligatory step in the replication cycle of retroviruses is a natural event of genetic recombination between virus and host. When integration occurs in cells of the germ line, it results in mendelian inheritance of viral sequences that we call endogenous retroviruses (ERV) and HERV for humans. HERVs and host often establish a symbiotic relationship, especially in the placenta and in pluripotent embryonic stem cells, but HERVs occasionally have deleterious consequences for the host. This special issue of APMIS features the fascinating relationships between HERV and humans in health and disease.
Collapse
Affiliation(s)
- Robin A Weiss
- Division of Infection & Immunity, University College London, London, UK
| |
Collapse
|
60
|
Hartl M. The Quest for Targets Executing MYC-Dependent Cell Transformation. Front Oncol 2016; 6:132. [PMID: 27313991 PMCID: PMC4889588 DOI: 10.3389/fonc.2016.00132] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/20/2016] [Indexed: 12/26/2022] Open
Abstract
MYC represents a transcription factor with oncogenic potential converting multiple cellular signals into a broad transcriptional response, thereby controlling the expression of numerous protein-coding and non-coding RNAs important for cell proliferation, metabolism, differentiation, and apoptosis. Constitutive activation of MYC leads to neoplastic cell transformation, and deregulated MYC alleles are frequently observed in many human cancer cell types. Multiple approaches have been performed to isolate genes differentially expressed in cells containing aberrantly activated MYC proteins leading to the identification of thousands of putative targets. Functional analyses of genes differentially expressed in MYC-transformed cells had revealed that so far more than 40 upregulated or downregulated MYC targets are actively involved in cell transformation or tumorigenesis. However, further systematic and selective approaches are required for determination of the known or yet unidentified targets responsible for processing the oncogenic MYC program. The search for critical targets in MYC-dependent tumor cells is exacerbated by the fact that during tumor development, cancer cells progressively evolve in a multistep process, thereby acquiring their characteristic features in an additive manner. Functional expression cloning, combinatorial gene expression, and appropriate in vivo tests could represent adequate tools for dissecting the complex scenario of MYC-specified cell transformation. In this context, the central goal is to identify a minimal set of targets that suffices to phenocopy oncogenic MYC. Recently developed genomic editing tools could be employed to confirm the requirement of crucial transformation-associated targets. Knowledge about essential MYC-regulated genes is beneficial to expedite the development of specific inhibitors to interfere with growth and viability of human tumor cells in which MYC is aberrantly activated. Approaches based on the principle of synthetic lethality using MYC-overexpressing cancer cells and chemical or RNAi libraries have been employed to search for novel anticancer drugs, also leading to the identification of several druggable targets. Targeting oncogenic MYC effector genes instead of MYC may lead to compounds with higher specificities and less side effects. This class of drugs could also display a wider pharmaceutical window because physiological functions of MYC, which are important for normal cell growth, proliferation, and differentiation would be less impaired.
Collapse
Affiliation(s)
- Markus Hartl
- Institute of Biochemistry and Center of Molecular Biosciences (CMBI), University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
61
|
Wang Y, Li J, Li Y, Fang L, Sun X, Chang S, Zhao P, Cui Z. Identification of ALV-J associated acutely transforming virus Fu-J carrying complete v-fps oncogene. Virus Genes 2016; 52:365-71. [PMID: 27108997 DOI: 10.1007/s11262-016-1301-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/27/2016] [Indexed: 11/30/2022]
Abstract
Transduction of oncogenes by ALVs and generation of acute transforming viruses is common in natural viral infections. In order to understand the molecular basis for the rapid oncogenicity of Fu-J, an acutely transforming avian leukosis virus isolated from fibrosarcomas in crossbreed broilers infected with subgroup J avian leukosis virus (ALV-J) in China, complete genomic structure of Fu-J virus was determined by PCR amplification and compared with those of Fu-J1, Fu-J2, Fu-J3, Fu-J4, and Fu-J5 reported previously. The results showed that the genome of Fu-J was defective, with parts of gag gene replaced by the complete v-fps oncogene and encoded a 137 kDa Gag-fps fusion protein. Sequence analysis revealed that Fu-J and Fu-J1 to Fu-J5 were related quasi-species variants carrying different lengths of v-fps oncogenes generated from recombination between helper virus and c-fps gene. Comparison of virus carrying v-fps oncogene also gave us a glimpse of the molecular characterization and evolution process of the acutely transforming ALV.
Collapse
Affiliation(s)
- Yixin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Road No. 61, Tai'an, 271018, Shandong, China
| | - Jianliang Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Road No. 61, Tai'an, 271018, Shandong, China
| | - Yang Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Road No. 61, Tai'an, 271018, Shandong, China
| | - Lichun Fang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Road No. 61, Tai'an, 271018, Shandong, China
| | - Xiaolong Sun
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Road No. 61, Tai'an, 271018, Shandong, China
| | - Shuang Chang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Road No. 61, Tai'an, 271018, Shandong, China
| | - Peng Zhao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Road No. 61, Tai'an, 271018, Shandong, China.
| | - Zhizhong Cui
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Road No. 61, Tai'an, 271018, Shandong, China.
| |
Collapse
|
62
|
Miciak J, Bunz F. Long story short: p53 mediates innate immunity. Biochim Biophys Acta Rev Cancer 2016; 1865:220-7. [PMID: 26951863 DOI: 10.1016/j.bbcan.2016.03.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/09/2016] [Accepted: 03/02/2016] [Indexed: 12/22/2022]
Abstract
The story of p53 and how we came to understand it is punctuated by fundamental insights into the essence of cancer. In the decades since its discovery, p53 has been shown to be centrally involved in most, if not all, of the cellular processes that maintain tissue homeostasis. Extensive functional analyses of p53 and its tumor-associated mutants have illuminated many of the common defects shared by most cancer cells. As the central character in a tale that continues to unfold, p53 has become increasingly familiar and yet remains surprisingly inscrutable. New relationships periodically come to light, and surprising, novel activities continue to emerge, thereby revealing new dimensions and aspects of its function. What lies at the very core of this complex protagonist? What is its prime motivation? As every avid reader knows, the elements of character are profoundly shaped by adversity--originating from within and without. And so it is with p53. This review will briefly recap the coordinated responses of p53 to viral infection, and outline a hypothetical model that would explain how an abundance of seemingly unrelated phenotypic attributes may in the end reflect a singular function. All stories eventually draw to a conclusion. This epic tale may eventually leave us with the realization that p53, most simply described, is a protein that evolved to mediate immune surveillance.
Collapse
Affiliation(s)
- Jessica Miciak
- Graduate Program in Cellular and Molecular Medicine, Department of Radiation Oncology and Molecular Radiation Sciences, The Kimmel Cancer Center at Johns Hopkins, Baltimore, MD 21287, USA.
| | - Fred Bunz
- Graduate Program in Cellular and Molecular Medicine, Department of Radiation Oncology and Molecular Radiation Sciences, The Kimmel Cancer Center at Johns Hopkins, Baltimore, MD 21287, USA.
| |
Collapse
|
63
|
Youssef G, Wallace WAH, Dagleish MP, Cousens C, Griffiths DJ. Ovine pulmonary adenocarcinoma: a large animal model for human lung cancer. ILAR J 2016; 56:99-115. [PMID: 25991702 DOI: 10.1093/ilar/ilv014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lung cancer is the leading cause of cancer deaths worldwide. Recent progress in understanding the molecular pathogenesis of this disease has resulted in novel therapeutic strategies targeting specific groups of patients. Further studies are required to provide additional advances in diagnosis and treatment. Animal models are valuable tools for studying oncogenesis in lung cancer, particularly during the early stages of disease where tissues are rarely available from human cases. Mice have traditionally been used for studying lung cancer in vivo, and a variety of spontaneous and transgenic models are available. However, it is recognized that other species may also be informative for studies of cancer. Ovine pulmonary adenocarcinoma (OPA) is a naturally occurring lung cancer of sheep caused by retrovirus infection and has several features in common with adenocarcinoma of humans, including a similar histological appearance and activation of common cell signaling pathways. Additionally, the size and organization of human lungs are much closer to those of sheep lungs than to those of mice, which facilitates experimental approaches in sheep that are not available in mice. Thus OPA presents opportunities for studying lung tumor development that can complement conventional murine models. Here we describe the potential applications of OPA as a model for human lung adenocarcinoma with an emphasis on the various in vivo and in vitro experimental systems available.
Collapse
Affiliation(s)
- Gehad Youssef
- Gehad Youssef, BSc, is a research scientist at the Moredun Research Institute, Edinburgh, UK. William A. H. Wallace, MBChB(Hons), PhD, FRCPE, FRCPath, is a consultant pathologist at the Royal Infirmary of Edinburgh and Honorary Reader in Pathology, Edinburgh University, UK; Mark P. Dagleish BVM&S, PhD, MRCVS, FRCPath, is Head of Pathology at the Moredun Research Institute, Edinburgh, UK. Chris Cousens, PhD, is a senior research scientist at the Moredun Research Institute, Edinburgh, UK, and David J. Griffiths, PhD, is a principal research scientist at the Moredun Research Institute, Edinburgh, UK
| | - William A H Wallace
- Gehad Youssef, BSc, is a research scientist at the Moredun Research Institute, Edinburgh, UK. William A. H. Wallace, MBChB(Hons), PhD, FRCPE, FRCPath, is a consultant pathologist at the Royal Infirmary of Edinburgh and Honorary Reader in Pathology, Edinburgh University, UK; Mark P. Dagleish BVM&S, PhD, MRCVS, FRCPath, is Head of Pathology at the Moredun Research Institute, Edinburgh, UK. Chris Cousens, PhD, is a senior research scientist at the Moredun Research Institute, Edinburgh, UK, and David J. Griffiths, PhD, is a principal research scientist at the Moredun Research Institute, Edinburgh, UK
| | - Mark P Dagleish
- Gehad Youssef, BSc, is a research scientist at the Moredun Research Institute, Edinburgh, UK. William A. H. Wallace, MBChB(Hons), PhD, FRCPE, FRCPath, is a consultant pathologist at the Royal Infirmary of Edinburgh and Honorary Reader in Pathology, Edinburgh University, UK; Mark P. Dagleish BVM&S, PhD, MRCVS, FRCPath, is Head of Pathology at the Moredun Research Institute, Edinburgh, UK. Chris Cousens, PhD, is a senior research scientist at the Moredun Research Institute, Edinburgh, UK, and David J. Griffiths, PhD, is a principal research scientist at the Moredun Research Institute, Edinburgh, UK
| | - Chris Cousens
- Gehad Youssef, BSc, is a research scientist at the Moredun Research Institute, Edinburgh, UK. William A. H. Wallace, MBChB(Hons), PhD, FRCPE, FRCPath, is a consultant pathologist at the Royal Infirmary of Edinburgh and Honorary Reader in Pathology, Edinburgh University, UK; Mark P. Dagleish BVM&S, PhD, MRCVS, FRCPath, is Head of Pathology at the Moredun Research Institute, Edinburgh, UK. Chris Cousens, PhD, is a senior research scientist at the Moredun Research Institute, Edinburgh, UK, and David J. Griffiths, PhD, is a principal research scientist at the Moredun Research Institute, Edinburgh, UK
| | - David J Griffiths
- Gehad Youssef, BSc, is a research scientist at the Moredun Research Institute, Edinburgh, UK. William A. H. Wallace, MBChB(Hons), PhD, FRCPE, FRCPath, is a consultant pathologist at the Royal Infirmary of Edinburgh and Honorary Reader in Pathology, Edinburgh University, UK; Mark P. Dagleish BVM&S, PhD, MRCVS, FRCPath, is Head of Pathology at the Moredun Research Institute, Edinburgh, UK. Chris Cousens, PhD, is a senior research scientist at the Moredun Research Institute, Edinburgh, UK, and David J. Griffiths, PhD, is a principal research scientist at the Moredun Research Institute, Edinburgh, UK
| |
Collapse
|
64
|
Wang Y, Li J, Li Y, Fang L, Sun X, Chang S, Zhao P, Cui Z. Identification of avian leukosis virus subgroup J-associated acutely transforming viruses carrying the v-src oncogene in layer chickens. J Gen Virol 2016; 97:1240-1248. [PMID: 26842006 DOI: 10.1099/jgv.0.000420] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To elucidate the molecular basis for the rapid oncogenicity of an acutely transforming avian leukosis virus (ALV), isolated from fibrosarcomas in Hy-Line Brown commercial layer chickens infected with ALV subgroup J (ALV-J), the complete genomic structure of the provirus was determined. In addition to ALV-J replication-complete virus SDAU1102, five proviral DNA genomes, named SJ-1, SJ-2, SJ-3, SJ-4 and SJ-5, carrying different lengths of the v-src oncogene were amplified from original tumours and chicken embryo fibroblasts (CEFs) infected with viral stocks. The genomic sequences of the SJ-1-SJ-5 provirus were closely related to that of SDAU1102 but were defective. The results of Western blot analysis and immunohistochemical staining also showed overexpression of the p60v-src protein in infected CEFs and tumour tissue. To the best of our knowledge, this is the first report of the isolation and identification of acutely transforming viruses carrying the v-src oncogene with ALV-J as the helper virus. It also offers insight into the generation of acutely transforming ALVs carrying the v-src oncogene.
Collapse
Affiliation(s)
- Yixin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University,Daizong Road No. 61, Tai'an, Shandong, 271018, PRChina
| | - Jianliang Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University,Daizong Road No. 61, Tai'an, Shandong, 271018, PRChina
| | - Yang Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University,Daizong Road No. 61, Tai'an, Shandong, 271018, PRChina
| | - Lichun Fang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University,Daizong Road No. 61, Tai'an, Shandong, 271018, PRChina
| | - Xiaolong Sun
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University,Daizong Road No. 61, Tai'an, Shandong, 271018, PRChina
| | - Shuang Chang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University,Daizong Road No. 61, Tai'an, Shandong, 271018, PRChina
| | - Peng Zhao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University,Daizong Road No. 61, Tai'an, Shandong, 271018, PRChina
| | - Zhizhong Cui
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University,Daizong Road No. 61, Tai'an, Shandong, 271018, PRChina
| |
Collapse
|
65
|
Mayfield JE, Burkholder NT, Zhang YJ. Dephosphorylating eukaryotic RNA polymerase II. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:372-87. [PMID: 26779935 DOI: 10.1016/j.bbapap.2016.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/11/2016] [Accepted: 01/14/2016] [Indexed: 12/20/2022]
Abstract
The phosphorylation state of the C-terminal domain of RNA polymerase II is required for the temporal and spatial recruitment of various factors that mediate transcription and RNA processing throughout the transcriptional cycle. Therefore, changes in CTD phosphorylation by site-specific kinases/phosphatases are critical for the accurate transmission of information during transcription. Unlike kinases, CTD phosphatases have been traditionally neglected as they are thought to act as passive negative regulators that remove all phosphate marks at the conclusion of transcription. This over-simplified view has been disputed in recent years and new data assert the active and regulatory role phosphatases play in transcription. We now know that CTD phosphatases ensure the proper transition between different stages of transcription, balance the distribution of phosphorylation for accurate termination and re-initiation, and prevent inappropriate expression of certain genes. In this review, we focus on the specific roles of CTD phosphatases in regulating transcription. In particular, we emphasize how specificity and timing of dephosphorylation are achieved for these phosphatases and consider the various regulatory factors that affect these dynamics.
Collapse
Affiliation(s)
- Joshua E Mayfield
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Nathaniel T Burkholder
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Yan Jessie Zhang
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
66
|
The Extraordinary Progress in Very Early Cancer Diagnosis and Personalized Therapy: The Role of Oncomarkers and Nanotechnology. JOURNAL OF NANOTECHNOLOGY 2016. [DOI: 10.1155/2016/3020361] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The impact of nanotechnology on oncology is revolutionizing cancer diagnosis and therapy and largely improving prognosis. This is mainly due to clinical translation of the most recent findings in cancer research, that is, the application of bio- and nanotechnologies. Cancer genomics and early diagnostics are increasingly playing a key role in developing more precise targeted therapies for most human tumors. In the last decade, accumulation of basic knowledge has resulted in a tremendous breakthrough in this field. Nanooncology, through the discovery of new genetic and epigenetic biomarkers, has facilitated the development of more sensitive biosensors for early cancer detection and cutting-edge multifunctionalized nanoparticles for tumor imaging and targeting. In the near future, nanooncology is expected to enable a very early tumor diagnosis, combined with personalized therapeutic approaches.
Collapse
|
67
|
Lévy P, Bartosch B. Metabolic reprogramming: a hallmark of viral oncogenesis. Oncogene 2015; 35:4155-64. [DOI: 10.1038/onc.2015.479] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/11/2015] [Accepted: 11/14/2015] [Indexed: 02/07/2023]
|
68
|
Discovery of oncogenes: The advent of molecular cancer research. Proc Natl Acad Sci U S A 2015; 112:15259-60. [PMID: 26644573 DOI: 10.1073/pnas.1521145112] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
69
|
Weiss RA. What's the host and what's the microbe? The Marjory Stephenson Prize Lecture 2015. J Gen Virol 2015; 96:2501-2510. [PMID: 26296666 DOI: 10.1099/jgv.0.000220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The interchange between retroviruses and their hosts is an intimate one because retroviruses integrate proviral DNA into host chromosomal DNA as an obligate step in the replication cycle. This has resulted in the occasional transduction of host genes into retroviral genomes as oncogenes, and also led to the integration of viral genomes into the host germ line that gives rise to endogenous retroviruses. I shall reflect on the evolutionary consequences of these events for virus and host. Then, I shall discuss the emergence of non-viral infections of host origin, namely, how malignant cells can give rise to eukaryotic single cell 'parasites' that colonize new hosts and how these in turn have been colonized by host mitochondria.
Collapse
Affiliation(s)
- Robin A Weiss
- Division of Infection & Immunity, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
70
|
Raffeiner P, Röck R, Schraffl A, Hartl M, Hart JR, Janda KD, Vogt PK, Stefan E, Bister K. In vivo quantification and perturbation of Myc-Max interactions and the impact on oncogenic potential. Oncotarget 2015; 5:8869-78. [PMID: 25326649 PMCID: PMC4253403 DOI: 10.18632/oncotarget.2588] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The oncogenic bHLH-LZ transcription factor Myc forms binary complexes with its binding partner Max. These and other bHLH-LZ-based protein-protein interactions (PPI) in the Myc-Max network are essential for the physiological and oncogenic activities of Myc. We have generated a genetically determined and highly specific protein-fragment complementation assay based on Renilla luciferase to analyze the dynamic interplay of bHLH-LZ transcription factors Myc, Max, and Mxd1 in vivo. We also applied this PPI reporter to quantify alterations of nuclear Myc-Max complexes in response to mutational events, competitive binding by the transcriptional repressor Mxd1, or perturbations by small-molecule Myc inhibitors, including recently identified potent PPI inhibitors from a Kröhnke pyridine library. We show that the specificity of Myc-Max PPI reduction by the pyridine inhibitors directly correlates with their efficient and highly specific potential to interfere with the proliferation of human and avian tumor cells displaying deregulated Myc expression. In a direct comparison with known Myc inhibitors using human and avian cell systems, the pyridine compounds reveal a unique inhibitory potential even at sub-micromolar concentrations combined with remarkable specificity for the inhibition of Myc-driven tumor cell proliferation. Furthermore, we show in direct comparisons using defined avian cell systems that different Max PPI profiles for the variant members of the Myc protein family (c-Myc, v-Myc, N-Myc, L-Myc) correlate with their diverse oncogenic potential and their variable sensitivity to the novel pyridine inhibitors.
Collapse
Affiliation(s)
- Philipp Raffeiner
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Ruth Röck
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Andrea Schraffl
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Markus Hartl
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Jonathan R Hart
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA
| | - Kim D Janda
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA
| | - Peter K Vogt
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA
| | - Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Klaus Bister
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
71
|
Affiliation(s)
- Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, Austria
| | - Jonathan R Hart
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Klaus Bister
- Institute of Biochemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, Austria
| |
Collapse
|
72
|
Conformational processing of oncogenic v-Src kinase by the molecular chaperone Hsp90. Proc Natl Acad Sci U S A 2015; 112:E3189-98. [PMID: 26056257 DOI: 10.1073/pnas.1424342112] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hsp90 is a molecular chaperone involved in the activation of numerous client proteins, including many kinases. The most stringent kinase client is the oncogenic kinase v-Src. To elucidate how Hsp90 chaperones kinases, we reconstituted v-Src kinase chaperoning in vitro and show that its activation is ATP-dependent, with the cochaperone Cdc37 increasing the efficiency. Consistent with in vivo results, we find that Hsp90 does not influence the almost identical c-Src kinase. To explain these findings, we designed Src kinase chimeras that gradually transform c-Src into v-Src and show that their Hsp90 dependence correlates with compactness and folding cooperativity. Molecular dynamics simulations and hydrogen/deuterium exchange of Hsp90-dependent Src kinase variants further reveal increased transitions between inactive and active states and exposure of specific kinase regions. Thus, Hsp90 shifts an ensemble of conformations of v-Src toward high activity states that would otherwise be metastable and poorly populated.
Collapse
|
73
|
Fernandes J. The study of homology between tumor progression genes and members of retroviridae as a tool to predict target-directed therapy failure. Front Pharmacol 2015; 6:92. [PMID: 25983693 PMCID: PMC4416442 DOI: 10.3389/fphar.2015.00092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 04/16/2015] [Indexed: 11/30/2022] Open
Abstract
Oncogenes are the primary candidates for target-directed therapy, given that they are involved directly in the progression and resistance of tumors. However, the appearance of point mutations can hinder the treatment of patients with these new molecules, raising costs and the need to development new analogs that target the novel mutations. Based on an analysis of homologies, the present study discusses the possibility of predicting the failure of a protein as a pharmacological target, due to its similarities with retrovirus sequences, which have extremely high mutation rates. This analysis was based on the molecular evidence available in the literature, and widely-used and well-established PSI-BLAST, with two iterations and maximum of 500 aligned sequences. The possibility of predicting which newly-discovered genes involved in tumor progression would likely result in the failure of targeted therapy, using free, simple and automated bioinformatics tools, could provide substantial savings in the time and financial resources needed for long-term drug development.
Collapse
Affiliation(s)
- Janaina Fernandes
- NUMPEX-BIO, Federal University of Rio de Janeiro, Duque de Caxias , Rio de Janeiro, Brazil ; Institute for Translational Research on Health and Environment in the Amazon Region - INPeTAm, Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
| |
Collapse
|
74
|
Keiser S, Schmidt K, Bethge T, Steiger J, Hirsch HH, Schaffner W, Georgiev O. Emergence of infectious simian virus 40 whose AT tract in the replication origin/early promoter region is substituted by cellular or viral DNAs. J Gen Virol 2014; 96:601-606. [PMID: 25385869 DOI: 10.1099/vir.0.071274-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In simian virus 40 (SV40) and several other polyomaviruses, the TATA box of the early promoter is embedded in an AT tract that is also an essential part of the replication origin. We generated an 'AT trap', an SV40 genome lacking the AT tract and unable to grow in CV-1 monkey cells. Co-transfection of the AT trap with oligonucleotides containing AT tracts of human polyomaviruses, a poly(A : T) tract or variants of the SV40 WT sequence all restored infectious virus. In a transfection of the AT trap without a suitable oligonucleotide, an AT-rich segment was incorporated, stemming either from bovine (calf serum) or monkey (host cell) DNA. Similarly, when cells were grown with human serum, a human DNA segment was captured by SV40 to substitute for the missing AT stretch. We conclude that the virus is quite opportunistic in accepting heterologous substitutes, and that even low-abundance DNA from serum can be incorporated into the viral genome.
Collapse
Affiliation(s)
- Simon Keiser
- Institute of Molecular Life Sciences, University of Zürich, Winterthurer Str. 190, CH-8057 Zürich, Switzerland
| | - Katharina Schmidt
- Institute of Molecular Life Sciences, University of Zürich, Winterthurer Str. 190, CH-8057 Zürich, Switzerland
| | - Tobias Bethge
- Transplantation & Clinical Virology, Dept. of Biomedicine, University of Basel, CH-4003 Basel, Switzerland.,Institute of Molecular Life Sciences, University of Zürich, Winterthurer Str. 190, CH-8057 Zürich, Switzerland
| | - Julia Steiger
- Institute of Molecular Life Sciences, University of Zürich, Winterthurer Str. 190, CH-8057 Zürich, Switzerland
| | - Hans H Hirsch
- Transplantation & Clinical Virology, Dept. of Biomedicine, University of Basel, CH-4003 Basel, Switzerland
| | - Walter Schaffner
- Institute of Molecular Life Sciences, University of Zürich, Winterthurer Str. 190, CH-8057 Zürich, Switzerland
| | - Oleg Georgiev
- Institute of Molecular Life Sciences, University of Zürich, Winterthurer Str. 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
75
|
Entrican G, Wattegedera SR, Griffiths DJ. Exploiting ovine immunology to improve the relevance of biomedical models. Mol Immunol 2014; 66:68-77. [PMID: 25263932 PMCID: PMC4368439 DOI: 10.1016/j.molimm.2014.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/19/2014] [Accepted: 09/01/2014] [Indexed: 12/29/2022]
Abstract
Sheep make a valuable contribution to immunology research. Lessons to be learned from studying infections in the natural host. Factors to consider when selecting biomedical models.
Animal models of human disease are important tools in many areas of biomedicine; for example, in infectious disease research and in the development of novel drugs and medical devices. Most studies involving animals use rodents, in particular congenic mice, due to the availability of a wide number of strains and the ease with which they can be genetically manipulated. The use of mouse models has led to major advances in many fields of research, in particular in immunology but despite these advances, no animal model can exactly reproduce all the features of human disease. It is increasingly becoming recognised that in many circumstances mice do not provide the best model and that alternative species may be more appropriate. Here, we describe the relative merits of sheep as biomedical models for human physiology and disease in comparison to mice, with a particular focus on reproductive and respiratory pathogens.
Collapse
Affiliation(s)
- Gary Entrican
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh EH26 0PZ, Scotland, UK.
| | - Sean R Wattegedera
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh EH26 0PZ, Scotland, UK
| | - David J Griffiths
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh EH26 0PZ, Scotland, UK
| |
Collapse
|
76
|
Wegman-Points LJ, Teoh-Fitzgerald MLT, Mao G, Zhu Y, Fath MA, Spitz DR, Domann FE. Retroviral-infection increases tumorigenic potential of MDA-MB-231 breast carcinoma cells by expanding an aldehyde dehydrogenase (ALDH1) positive stem-cell like population. Redox Biol 2014; 2:847-54. [PMID: 25009786 PMCID: PMC4085353 DOI: 10.1016/j.redox.2014.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/01/2014] [Accepted: 06/05/2014] [Indexed: 01/08/2023] Open
Abstract
Retroviral transformation has been associated with pro-proliferative oncogenic signaling in human cells. The current study demonstrates that transduction of human breast carcinoma cells (MDA-MB231) with LXSN and QCXIP retroviral vectors causes significant increases in growth rate, clonogenic fraction, and aldehyde dehydrogenase-1 positive cells (ALDH1+), which is associated with increased steady-state levels of cancer stem cell populations. Furthermore, this retroviral-induced enhancement of cancer cell growth in vitro was also accompanied by a significant increase in xenograft tumor growth rate in vivo. The retroviral induced increases in cancer cell growth rate were partially inhibited by treatment with 100 U/ml polyethylene glycol-conjugated-(PEG)-superoxide dismutase and/or PEG-catalase. These results show that retroviral infection of MDA-MB231 human breast cancer cells is capable of enhancing cell proliferation and cancer stem cell populations as well as suggesting that modulation of reactive oxygen species-induced pro-survival signaling pathways may be involved in these effects. Retroviral infection causes persistent ROS production in breast cancer cells. Retroviral infected cells display increased clonogenic fraction and tumorigenic potential. The ALDH1+ mammary cancer stem cell population is increased in infected cells. The above effects of retroviral infection can be inhibited with antioxidant enzymes.
Collapse
Affiliation(s)
- Lauren J Wegman-Points
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52240, United States ; Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52240, United States
| | - Melissa L T Teoh-Fitzgerald
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, United States ; Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52240, United States
| | - Gaowei Mao
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52240, United States ; University of Pittsburg, United States
| | - Yueming Zhu
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52240, United States ; Northwestern University Medical School, United States
| | - Melissa A Fath
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52240, United States
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52240, United States
| | - Frederick E Domann
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52240, United States
| |
Collapse
|
77
|
Hartl M, Glasauer S, Valovka T, Breuker K, Hobmayer B, Bister K. Hydra myc2, a unique pre-bilaterian member of the myc gene family, is activated in cell proliferation and gametogenesis. Biol Open 2014; 3:397-407. [PMID: 24771621 PMCID: PMC4021362 DOI: 10.1242/bio.20147005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The myc protooncogene encodes the Myc transcription factor which is the essential part of the Myc–Max network controlling fundamental cellular processes. Deregulation of myc leads to tumorigenesis and is a hallmark of many human cancers. We have recently identified homologs of myc (myc1, myc2) and max in the early diploblastic cnidarian Hydra and have characterized myc1 in detail. Here we show that myc2 is transcriptionally activated in the interstitial stem cell system. Furthermore, in contrast to myc1, myc2 expression is also detectable in proliferating epithelial stem cells throughout the gastric region. myc2 but not myc1 is activated in cycling precursor cells during early oogenesis and spermatogenesis, suggesting that the Hydra Myc2 protein has a possible non-redundant function in cell cycle progression. The Myc2 protein displays the principal design and properties of vertebrate Myc proteins. In complex with Max, Myc2 binds to DNA with similar affinity as Myc1–Max heterodimers. Immunoprecipitation of Hydra chromatin revealed that both Myc1 and Myc2 bind to the enhancer region of CAD, a classical Myc target gene in mammals. Luciferase reporter gene assays showed that Myc1 but not Myc2 transcriptionally activates the CAD promoter. Myc2 has oncogenic potential when tested in primary avian fibroblasts but to a lower degree as compared to Myc1. The identification of an additional myc gene in Cnidaria, a phylum that diverged prior to bilaterians, with characteristic expression patterns in tissue homeostasis and developmental processes suggests that principle functions of myc genes have arisen very early in metazoan evolution.
Collapse
Affiliation(s)
- Markus Hartl
- Institute of Biochemistry, University of Innsbruck, A-6020 Innsbruck, Austria Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, A-6020 Innsbruck, Austria
| | - Stella Glasauer
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, A-6020 Innsbruck, Austria Institute of Zoology, University of Innsbruck, A-6020 Innsbruck, Austria Present address: Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Taras Valovka
- Institute of Biochemistry, University of Innsbruck, A-6020 Innsbruck, Austria Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, A-6020 Innsbruck, Austria
| | - Kathrin Breuker
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, A-6020 Innsbruck, Austria Institute of Organic Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Bert Hobmayer
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, A-6020 Innsbruck, Austria Institute of Zoology, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Klaus Bister
- Institute of Biochemistry, University of Innsbruck, A-6020 Innsbruck, Austria Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
78
|
Stephen AG, Esposito D, Bagni RK, McCormick F. Dragging ras back in the ring. Cancer Cell 2014; 25:272-81. [PMID: 24651010 DOI: 10.1016/j.ccr.2014.02.017] [Citation(s) in RCA: 620] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 02/10/2014] [Accepted: 02/21/2014] [Indexed: 12/13/2022]
Abstract
Ras proteins play a major role in human cancers but have not yielded to therapeutic attack. Ras-driven cancers are among the most difficult to treat and often excluded from therapies. The Ras proteins have been termed "undruggable," based on failures from an era in which understanding of signaling transduction, feedback loops, redundancy, tumor heterogeneity, and Ras' oncogenic role was poor. Structures of Ras oncoproteins bound to their effectors or regulators are unsolved, and it is unknown precisely how Ras proteins activate their downstream targets. These knowledge gaps have impaired development of therapeutic strategies. A better understanding of Ras biology and biochemistry, coupled with new ways of targeting undruggable proteins, is likely to lead to new ways of defeating Ras-driven cancers.
Collapse
Affiliation(s)
- Andrew G Stephen
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, P.O. Box B, Frederick, MD 21702, USA
| | - Dominic Esposito
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, P.O. Box B, Frederick, MD 21702, USA
| | - Rachel K Bagni
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, P.O. Box B, Frederick, MD 21702, USA
| | - Frank McCormick
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, P.O. Box B, Frederick, MD 21702, USA; UCSF Helen Diller Family Comprehensive Cancer Center, Room 371, 1450 3(rd) Street, P.O. Box 589001, San Francisco, CA 94158-9001, USA.
| |
Collapse
|
79
|
Potential role of porcine reproductive and respiratory syndrome virus structural protein GP2 in apoptosis inhibition. BIOMED RESEARCH INTERNATIONAL 2014; 2014:160505. [PMID: 24511529 PMCID: PMC3910534 DOI: 10.1155/2014/160505] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 01/08/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a serious threat to the pork industry, and its pathogenesis needs further investigations. To study the role of two structural proteins of PRRSV in virus-host cells interactions, two stable cell lines (MARC-2a and MARC-N) expressing GP2 and N proteins, respectively, were established. We induced apoptosis in these cells by treating them with staurosporine and found a significant reduction in the number of apoptotic cells in MARC-2a as compared to MARC-N and MARC-145 cells. In addition, we found significantly higher activities of transcriptional factors (NF- κ B and AP-1) in both cell lines as compared to MARC-145 (parent cells). Overall, our data suggest that, although both stable cell lines activate NF- κ B and AP-1, GP2 triggers the antiapoptotic process through an intermediate step that needs to be further investigated.
Collapse
|
80
|
Transcriptional control of DNA replication licensing by Myc. Sci Rep 2013; 3:3444. [PMID: 24309437 PMCID: PMC3853707 DOI: 10.1038/srep03444] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/21/2013] [Indexed: 01/12/2023] Open
Abstract
The c-myc protooncogene encodes the Myc transcription factor, a global regulator of fundamental cellular processes. Deregulation of c-myc leads to tumorigenesis, and c-myc is an important driver in human cancer. Myc and its dimerization partner Max are bHLH-Zip DNA binding proteins involved in transcriptional regulation of target genes. Non-transcriptional functions have also been attributed to the Myc protein, notably direct interaction with the pre-replicative complex (pre-RC) controlling the initiation of DNA replication. A key component of the pre-RC is the Cdt1 protein, an essential factor in origin licensing. Here we present data suggesting that the CDT1 gene is a transcriptional target of the Myc-Max complex. Expression of the CDT1 gene in v-myc-transformed cells directly correlates with myc expression. Also, human tumor cells with elevated c-myc expression display increased CDT1 expression. Occupation of the CDT1 promoter by Myc-Max is demonstrated by chromatin immunoprecipitation, and transactivation by Myc-Max is shown in reporter assays. Ectopic expression of CDT1 leads to cell transformation. Our results provide a possible direct mechanistic link of Myc's canonical function as a transcription factor to DNA replication. Furthermore, we suggest that aberrant transcriptional activation of CDT1 by deregulated myc alleles contributes to the genomic instabilities observed in tumor cells.
Collapse
|
81
|
Reynolds AB, Kanner SB, Bouton AH, Schaller MD, Weed SA, Flynn DC, Parsons JT. SRChing for the substrates of Src. Oncogene 2013; 33:4537-47. [PMID: 24121272 DOI: 10.1038/onc.2013.416] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/16/2013] [Accepted: 08/17/2013] [Indexed: 12/12/2022]
Abstract
By the mid 1980's, it was clear that the transforming activity of oncogenic Src was linked to the activity of its tyrosine kinase domain and attention turned to identifying substrates, the putative next level of control in the pathway to transformation. Among the first to recognize the potential of phosphotyrosine-specific antibodies, Parsons and colleagues launched a risky shotgun-based approach that led ultimately to the cDNA cloning and functional characterization of many of today's best-known Src substrates (for example, p85-Cortactin, p110-AFAP1, p130Cas, p125FAK and p120-catenin). Two decades and over 6000 citations later, the original goals of the project may be seen as secondary to the enormous impact of these protein substrates in many areas of biology. At the request of the editors, this review is not restricted to the current status of the substrates, but reflects also on the anatomy of the project itself and some of the challenges and decisions encountered along the way.
Collapse
Affiliation(s)
- A B Reynolds
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - S B Kanner
- Arrowhead Research Corporation, Madison, WI, USA
| | - A H Bouton
- Departments of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - M D Schaller
- Department of Biochemistry, 3124 HSN, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, WV, USA
| | - S A Weed
- Department of Neurobiology and Anatomy, 1833 Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, WV, USA
| | - D C Flynn
- Department of Medical Lab Sciences, College of Health Sciences, University of Delaware, Newark, DE, USA
| | - J T Parsons
- Departments of Microbiology, Immunology and Cancer Biology, University of Virginia Cancer Center, Charlottesville, VA, USA
| |
Collapse
|
82
|
Abstract
The myc oncogene was originally identified as a transduced allele (v-myc) in the genome of a highly oncogenic avian retrovirus. The protein product (Myc) of the cellular c-myc proto-oncogene represents the key component of a transcription factor network controlling the expression of a large fraction of all human genes. Myc regulates fundamental cellular processes like growth, metabolism, proliferation, differentiation, and apoptosis. Mutational deregulation of c-myc leading to increased levels of the Myc protein is a frequent event in the etiology of human cancers. In this chapter, we describe cell systems and experimental strategies to monitor and quantify the oncogenic potential of myc alleles and to isolate and characterize transcriptional targets of Myc that are relevant for the cell transformation process. We also describe experimental procedures to study the evolutionary origin of myc and to analyze structure and function of the ancestral myc proto-oncogenes.
Collapse
Affiliation(s)
- Markus Hartl
- Center for Chemistry and Biomedicine, Institute of Biochemistry, University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|