51
|
Sinitski D, Gruner K, Brandhofer M, Kontos C, Winkler P, Reinstädler A, Bourilhon P, Xiao Z, Cool R, Kapurniotu A, Dekker FJ, Panstruga R, Bernhagen J. Cross-kingdom mimicry of the receptor signaling and leukocyte recruitment activity of a human cytokine by its plant orthologs. J Biol Chem 2020; 295:850-867. [PMID: 31811089 PMCID: PMC6970916 DOI: 10.1074/jbc.ra119.009716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/17/2019] [Indexed: 01/07/2023] Open
Abstract
Human macrophage migration-inhibitory factor (MIF) is an evolutionarily-conserved protein that has both extracellular immune-modulating and intracellular cell-regulatory functions. MIF plays a role in various diseases, including inflammatory diseases, atherosclerosis, autoimmunity, and cancer. It serves as an inflammatory cytokine and chemokine, but also exhibits enzymatic activity. Secreted MIF binds to cell-surface immune receptors such as CD74 and CXCR4. Plants possess MIF orthologs but lack the associated receptors, suggesting functional diversification across kingdoms. Here, we characterized three MIF orthologs (termed MIF/d-dopachrome tautomerase-like proteins or MDLs) of the model plant Arabidopsis thaliana Recombinant Arabidopsis MDLs (AtMDLs) share similar secondary structure characteristics with human MIF, yet only have minimal residual tautomerase activity using either p-hydroxyphenylpyruvate or dopachrome methyl ester as substrate. Site-specific mutagenesis suggests that this is due to a distinct amino acid difference at the catalytic cavity-defining residue Asn-98. Surprisingly, AtMDLs bind to the human MIF receptors CD74 and CXCR4. Moreover, they activate CXCR4-dependent signaling in a receptor-specific yeast reporter system and in CXCR4-expressing human HEK293 transfectants. Notably, plant MDLs exert dose-dependent chemotactic activity toward human monocytes and T cells. A small molecule MIF inhibitor and an allosteric CXCR4 inhibitor counteract this function, revealing its specificity. Our results indicate cross-kingdom conservation of the receptor signaling and leukocyte recruitment capacities of human MIF by its plant orthologs. This may point toward a previously unrecognized interplay between plant proteins and the human innate immune system.
Collapse
Affiliation(s)
- Dzmitry Sinitski
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), 81377 Munich, Germany
| | - Katrin Gruner
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Markus Brandhofer
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), 81377 Munich, Germany
| | - Christos Kontos
- Division of Peptide Biochemistry, Technische Universität München (TUM), 85354 Freising, Germany
| | - Pascal Winkler
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Anja Reinstädler
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Priscila Bourilhon
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), 81377 Munich, Germany
| | - Zhangping Xiao
- Division of Chemical and Pharmaceutical Biology, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Robbert Cool
- Division of Chemical and Pharmaceutical Biology, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Aphrodite Kapurniotu
- Division of Peptide Biochemistry, Technische Universität München (TUM), 85354 Freising, Germany
| | - Frank J. Dekker
- Division of Chemical and Pharmaceutical Biology, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany, To whom correspondence may be addressed:
Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany. Tel.:
49-241-80-26655; Fax:
49-241-80-22637; E-mail:
| | - Jürgen Bernhagen
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), 81377 Munich, Germany,Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany, To whom correspondence may be addressed:
Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU) Munich, Feodor-Lynen-Strasse 17, 81377 Munich, Germany. Tel.:
49-89-4400–46151; Fax:
49-89-4400–46010; E-mail:
| |
Collapse
|
52
|
Renard I, Archibald SJ. CXCR4-targeted metal complexes for molecular imaging. Med Chem 2020. [DOI: 10.1016/bs.adioch.2019.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
53
|
Cross-kingdom mimicry of the receptor signaling and leukocyte recruitment activity of a human cytokine by its plant orthologs. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49940-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
54
|
Curing Hemoglobinopathies: Challenges and Advances of Conventional and New Gene Therapy Approaches. Mediterr J Hematol Infect Dis 2019; 11:e2019067. [PMID: 31700592 PMCID: PMC6827604 DOI: 10.4084/mjhid.2019.067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/22/2019] [Indexed: 12/16/2022] Open
Abstract
Inherited hemoglobin disorders, including beta-thalassemia (BT) and sickle-cell disease (SCD), are the most common monogenic diseases worldwide, with a global carrier frequency of over 5%.1 With migration, they are becoming more common worldwide, making their management and care an increasing concern for health care systems. BT is characterized by an imbalance in the α/β-globin chain ratio, ineffective erythropoiesis, chronic hemolytic anemia, and compensatory hemopoietic expansion.1 Globally, there are over 25,000 births each year with transfusion-dependent thalassemia (TDT). The currently available treatment for TDT is lifelong transfusions and iron chelation therapy or allogenic bone marrow transplantation as a curative option. SCD affects 300 million people worldwide2 and severely impacts the quality of life of patients who experience unpredictable, recurrent acute and chronic severe pain, stroke, infections, pulmonary disease, kidney disease, retinopathy, and other complications. While survival has been dramatically extended, quality of life is markedly reduced by disease- and treatment-associated morbidity. The development of safe, tissue-specific and efficient vectors, and efficient gene-editing technologies have led to the development of several gene therapy trials for BT and SCD. However, the complexity of the approach presents its hurdles. Fundamental factors at play include the requirement for myeloablation on a patient with benign disease, the age of the patient, and the consequent bone marrow microenvironment. A successful path from proof-ofconcept studies to commercialization must render gene therapy a sustainable and accessible approach for a large number of patients. Furthermore, the cost of these therapies is a considerable challenge for the health care system. While new promising therapeutic options are emerging,3,4 and many others are on the pipeline,5 gene therapy can potentially cure patients. We herein provide an overview of the most recent, likely potentially curative therapies for hemoglobinopathies and a summary of the challenges that these approaches entail.
Collapse
|
55
|
Brylka LJ, Schinke T. Chemokines in Physiological and Pathological Bone Remodeling. Front Immunol 2019; 10:2182. [PMID: 31572390 PMCID: PMC6753917 DOI: 10.3389/fimmu.2019.02182] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022] Open
Abstract
The bone matrix is constantly remodeled by bone-resorbing osteoclasts and bone-forming osteoblasts. These two cell types are fundamentally different in terms of progenitor cells, mode of action and regulation by specific molecules, acting either systemically or locally. Importantly, there is increasing evidence for an impact of cell types or molecules of the adaptive and innate immune system on bone remodeling. Understanding these influences is the major goal of a novel research area termed osteoimmunology, which is of key relevance in the context of inflammation-induced bone loss, skeletal metastases, and diseases of impaired bone remodeling, such as osteoporosis. This review article aims at summarizing the current knowledge on one particular aspect of osteoimmunology, namely the impact of chemokines on skeletal cells in order to regulate bone remodeling under physiological and pathological conditions. Chemokines have key roles in the adaptive immune system by controlling migration, localization, and function of immune cells during inflammation. The vast majority of chemokines are divided into two subgroups based on the pattern of cysteine residues. More specifically, there are 27 known C-C-chemokines, binding to 10 different C-C receptors, and 17 known C-X-C-chemokines binding to seven different C-X-C receptors. Three additional chemokines do not fall into this category, and only one of them, i.e., CX3CL1, has been shown to influence bone remodeling cell types. There is a large amount of published studies demonstrating specific effects of certain chemokines on differentiation and function of osteoclasts and/or osteoblasts. Chemokine signaling by skeletal cells or by other cells of the bone marrow niche regulates bone formation and resorption through autocrine and paracrine mechanisms. In vivo evidence from mouse deficiency models strongly supports the role of certain chemokine signaling pathways in bone remodeling. We will summarize these data in the present review with a special focus on the most established subsets of chemokines. In combination with the other review articles of this issue, the knowledge presented here confirms that there is a physiologically relevant crosstalk between the innate immune system and bone remodeling cell types, whose molecular understanding is of high clinical relevance.
Collapse
Affiliation(s)
- Laura J Brylka
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
56
|
Bobkov V, Arimont M, Zarca A, De Groof TWM, van der Woning B, de Haard H, Smit MJ. Antibodies Targeting Chemokine Receptors CXCR4 and ACKR3. Mol Pharmacol 2019; 96:753-764. [PMID: 31481460 DOI: 10.1124/mol.119.116954] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/03/2019] [Indexed: 12/19/2022] Open
Abstract
Dysregulation of the chemokine system is implicated in a number of autoimmune and inflammatory diseases, as well as cancer. Modulation of chemokine receptor function is a very promising approach for therapeutic intervention. Despite interest from academic groups and pharmaceutical companies, there are currently few approved medicines targeting chemokine receptors. Monoclonal antibodies (mAbs) and antibody-based molecules have been successfully applied in the clinical therapy of cancer and represent a potential new class of therapeutics targeting chemokine receptors belonging to the class of G protein-coupled receptors (GPCRs). Besides conventional mAbs, single-domain antibodies and antibody scaffolds are also gaining attention as promising therapeutics. In this review, we provide an extensive overview of mAbs, single-domain antibodies, and other antibody fragments targeting CXCR4 and ACKR3, formerly referred to as CXCR7. We discuss their unique properties and advantages over small-molecule compounds, and also refer to the molecules in preclinical and clinical development. We focus on single-domain antibodies and scaffolds and their utilization in GPCR research. Additionally, structural analysis of antibody binding to CXCR4 is discussed. SIGNIFICANCE STATEMENT: Modulating the function of GPCRs, and particularly chemokine receptors, draws high interest. A comprehensive review is provided for monoclonal antibodies, antibody fragments, and variants directed at CXCR4 and ACKR3. Their advantageous functional properties, versatile applications as research tools, and use in the clinic are discussed.
Collapse
Affiliation(s)
- Vladimir Bobkov
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (V.B., M.A., A.Z., T.W.M.D.G., M.J.S.); and argenx BVBA, Zwijnaarde, Belgium (V.B., B.W., H.H.)
| | - Marta Arimont
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (V.B., M.A., A.Z., T.W.M.D.G., M.J.S.); and argenx BVBA, Zwijnaarde, Belgium (V.B., B.W., H.H.)
| | - Aurélien Zarca
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (V.B., M.A., A.Z., T.W.M.D.G., M.J.S.); and argenx BVBA, Zwijnaarde, Belgium (V.B., B.W., H.H.)
| | - Timo W M De Groof
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (V.B., M.A., A.Z., T.W.M.D.G., M.J.S.); and argenx BVBA, Zwijnaarde, Belgium (V.B., B.W., H.H.)
| | - Bas van der Woning
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (V.B., M.A., A.Z., T.W.M.D.G., M.J.S.); and argenx BVBA, Zwijnaarde, Belgium (V.B., B.W., H.H.)
| | - Hans de Haard
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (V.B., M.A., A.Z., T.W.M.D.G., M.J.S.); and argenx BVBA, Zwijnaarde, Belgium (V.B., B.W., H.H.)
| | - Martine J Smit
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (V.B., M.A., A.Z., T.W.M.D.G., M.J.S.); and argenx BVBA, Zwijnaarde, Belgium (V.B., B.W., H.H.)
| |
Collapse
|
57
|
Abstract
Gene therapy for β-thalassemia and sickle-cell disease is based on transplantation of genetically corrected, autologous hematopoietic stem cells. Preclinical and clinical studies have shown the safety and efficacy of this therapeutic approach, currently based on lentiviral vectors to transfer a β-globin gene under the transcriptional control of regulatory elements of the β-globin locus. Nevertheless, a number of factors are still limiting its efficacy, such as limited stem-cell dose and quality, suboptimal gene transfer efficiency and gene expression levels, and toxicity of myeloablative regimens. In addition, the cost and complexity of the current vector and cell manufacturing clearly limits its application to patients living in less favored countries, where hemoglobinopathies may reach endemic proportions. Gene-editing technology may provide a therapeutic alternative overcoming some of these limitations, though proving its safety and efficacy will most likely require extensive clinical investigation.
Collapse
Affiliation(s)
- Marina Cavazzana
- University of Paris Descartes-Sorbonne Paris Cité, IMAGINE Institute, Paris, France
- Correspondence: Marina Cavazzana, Imagine Institute, 24 Boulevard de Montparnasse, 75015 Paris, France.
| | - Fulvio Mavilio
- University of Paris Descartes-Sorbonne Paris Cité, IMAGINE Institute, Paris, France
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Fulvio Mavilio, Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41100 Modena, Italy.
| |
Collapse
|
58
|
Heusinkveld LE, Majumdar S, Gao JL, McDermott DH, Murphy PM. WHIM Syndrome: from Pathogenesis Towards Personalized Medicine and Cure. J Clin Immunol 2019; 39:532-556. [PMID: 31313072 PMCID: PMC6698215 DOI: 10.1007/s10875-019-00665-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022]
Abstract
WHIM syndrome is a rare combined primary immunodeficiency disease named by acronym for the diagnostic tetrad of warts, hypogammaglobulinemia, infections, and myelokathexis. Myelokathexis is a unique form of non-cyclic severe congenital neutropenia caused by accumulation of mature and degenerating neutrophils in the bone marrow; monocytopenia and lymphopenia, especially B lymphopenia, also commonly occur. WHIM syndrome is usually caused by autosomal dominant mutations in the G protein-coupled chemokine receptor CXCR4 that impair desensitization, resulting in enhanced and prolonged G protein- and β-arrestin-dependent responses. Accordingly, CXCR4 antagonists have shown promise as mechanism-based treatments in phase 1 clinical trials. This review is based on analysis of all 105 published cases of WHIM syndrome and covers current concepts, recent advances, unresolved enigmas and controversies, and promising future research directions.
Collapse
Affiliation(s)
- Lauren E Heusinkveld
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Cleveland Clinic, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, 44195, USA
| | - Shamik Majumdar
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ji-Liang Gao
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David H McDermott
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
59
|
Transmigration Assays for the Determination of Molecular Interactions Between Hematopoietic Stem Cells and Niche Cells. Methods Mol Biol 2019. [PMID: 31197768 DOI: 10.1007/978-1-4939-9574-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The transmigration capacity of hematopoietic stem and progenitor cells (HSPC) is characteristically associated with their ability to home to sites of hematopoiesis in the transplanted host, to proliferate, to differentiate, and to successfully repopulate the hematopoietic system of a transplanted host. Stimulating agents shown to induce the transmigration of HSPC were often later identified to play significant roles in mobilization of HSPC or their interaction with niche cells in the hematopoietic microenvironment. Transwell migration assays through microporous membranes have been developed in various forms to determine the migration capacity of HSPC or mesenchymal stromal cells (MSCs) toward chemoattractants. We describe here a method of a multi-well reusable transmigration assay using a small volume and low numbers of HSPC, allowing the simple and reproducible determination of HSPC transmigration capacity which enable researchers to obtain rapid answers at limited costs with high reliability.
Collapse
|
60
|
Breun M, Monoranu CM, Kessler AF, Matthies C, Löhr M, Hagemann C, Schirbel A, Rowe SP, Pomper MG, Buck AK, Wester HJ, Ernestus RI, Lapa C. [ 68Ga]-Pentixafor PET/CT for CXCR4-Mediated Imaging of Vestibular Schwannomas. Front Oncol 2019; 9:503. [PMID: 31245296 PMCID: PMC6581743 DOI: 10.3389/fonc.2019.00503] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/28/2019] [Indexed: 12/25/2022] Open
Abstract
We have recently demonstrated CXCR4 overexpression in vestibular schwannomas (VS). This study investigated the feasibility of CXCR4-directed positron emission tomography/computed tomography (PET/CT) imaging of VS using the radiolabeled chemokine ligand [68Ga]Pentixafor. Methods: 4 patients with 6 primarily diagnosed or pre-treated/observed VS were enrolled. All subjects underwent [68Ga]Pentixafor PET/CT prior to surgical resection. Images were analyzed visually and semi-quantitatively for CXCR4 expression including calculation of tumor-to-background ratios (TBR). Immunohistochemistry served as standard of reference in three patients. Results: [68Ga]Pentixafor PET/CT was visually positive in all cases. SUVmean and SUVmax were 3.0 ± 0.3 and 3.8 ± 0.4 and TBRmean and TBRmax were 4.0 ± 1.4 and 5.0 ± 1.7, respectively. Histological analysis confirmed CXCR4 expression in tumors. Conclusion: Non-invasive imaging of CXCR4 expression using [68Ga]Pentixafor PET/CT of VS is feasible and could prove useful for in vivo assessment of CXCR4 expression.
Collapse
Affiliation(s)
- Maria Breun
- Department of Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | - Camelia M Monoranu
- Department of Neuropathology, University of Würzburg, Institute of Pathology, Würzburg, Germany.,Comprehensive Cancer Center (CCC) Mainfranken, Würzburg, Germany
| | - Almuth F Kessler
- Department of Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | - Cordula Matthies
- Department of Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | - Mario Löhr
- Department of Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | - Carsten Hagemann
- Department of Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | - Andreas Schirbel
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Steven P Rowe
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Martin G Pomper
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Andreas K Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Hans-Jürgen Wester
- Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany
| | - Ralf-Ingo Ernestus
- Department of Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | - Constantin Lapa
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
61
|
Brickute D, Braga M, Kaliszczak MA, Barnes C, Lau D, Carroll L, Stevens E, Trousil S, Alam IS, Nguyen QD, Aboagye EO. Development and Evaluation of an 18F-Radiolabeled Monocyclam Derivative for Imaging CXCR4 Expression. Mol Pharm 2019; 16:2106-2117. [PMID: 30883140 PMCID: PMC6522096 DOI: 10.1021/acs.molpharmaceut.9b00069] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 01/02/2023]
Abstract
In humans, C-X-C chemokine receptor type 4 (CXCR4) is a protein that is encoded by the CXCR4 gene and binds the ligand CXCL12 (also known as SDF-1). The CXCR4-CXCL12 interaction in cancer elicits biological activities that result in tumor progression and has accordingly been the subject of significant investigation for detection and treatment of the disease. Peptidic antagonists have been labeled with a variety of radioisotopes for the detection of CXCR4, but the methodology utilizing small molecules has predominantly used radiometals. We report here the development of a 18F-radiolabeled cyclam-based small molecule radioprobe, [18F]MCFB, for imaging CXCR4 expression. The IC50 value of [19F]MCFB for CXCR4 was similar to that of AMD3465 (111.3 and 89.8 nM, respectively). In vitro binding assays show that the tracer depicted a differential CXCR4 expression, which was blocked in the presence of AMD3465, demonstrating the specificity of [18F]MCFB. Positron emission tomography (PET) imaging studies showed a distinct uptake of the radioprobe in lymphoma and breast cancer xenografts. High liver and kidney uptakes were seen with [18F]MCFB, leading us to further examine the basis of its pharmacokinetics in relation to the tracer's cationic nature and thus the role of organic cation transporters (OCTs). Substrate competition following the intravenous injection of metformin led to a marked decrease in the urinary excretion of [18F]MCFB, with moderate changes observed in other organs, including the liver. Our results suggest involvement of OCTs in the renal elimination of the tracer. In conclusion, the 18F-radiolabeled monocyclam, [18F]MCFB, has potential to detect tumor CXCR4 in nonhepatic tissues.
Collapse
Affiliation(s)
| | | | - Maciej A. Kaliszczak
- Cancer Imaging Centre, Department
of
Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, U.K.
| | - Chris Barnes
- Cancer Imaging Centre, Department
of
Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, U.K.
| | - Doreen Lau
- Cancer Imaging Centre, Department
of
Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, U.K.
| | - Laurence Carroll
- Cancer Imaging Centre, Department
of
Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, U.K.
| | - Elizabeth Stevens
- Cancer Imaging Centre, Department
of
Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, U.K.
| | - Sebastian Trousil
- Cancer Imaging Centre, Department
of
Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, U.K.
| | - Israt S. Alam
- Cancer Imaging Centre, Department
of
Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, U.K.
| | - Quang-Dé Nguyen
- Cancer Imaging Centre, Department
of
Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, U.K.
| | - Eric O. Aboagye
- Cancer Imaging Centre, Department
of
Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, U.K.
| |
Collapse
|
62
|
De Clercq E. Mozobil® (Plerixafor, AMD3100), 10 years after its approval by the US Food and Drug Administration. Antivir Chem Chemother 2019; 27:2040206619829382. [PMID: 30776910 PMCID: PMC6379795 DOI: 10.1177/2040206619829382] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AMD3100 (plerixafor, Mozobil®) was first identified as an anti-HIV agent
specifically active against the T4-lymphotropic HIV strains, as it selectively
blocked the CXCR4 receptor. Through interference with the interaction of CXCR4
with its natural ligand, SDF-1 (also named CXCL12), it also mobilized the
CD34+stem cells from the bone marrow into the peripheral blood
stream. In December 2008, AMD3100 was formally approved by the US FDA for
autologous transplantation in patients with Non-Hodgkin’s Lymphoma or multiple
myeloma. It may be beneficially used in various other malignant diseases as well
as hereditary immunological disorders such as WHIM syndrome, and
physiopathological processes such as hepatopulmonary syndrome.
Collapse
|
63
|
Abstract
Fifty years of research (1968-2018) toward the identification of selective antiviral drugs have been primarily focused on antiviral compounds active against DNA viruses (HSV, VZV, CMV, HBV) and retroviruses (HIV). For the treatment of HSV infections the aminoacyl esters of acyclovir were designed, and valacyclovir became the successor of acyclovir in the treatment of HSV and VZV infections. BVDU (brivudin) still stands out as the most potent among the marketed compounds for the treatment of VZV infections (i.e., herpes zoster). In the treatment of HIV infections 10 tenofovir-based drug combinations have been marketed, and tenofovir disoproxil fumarate (TDF) and tenofovir alafenamide (TAF) have also proved effective in the treatment of HBV infections. As a spin-off of our anti-HIV research, a CXCR4 antagonist AMD-3100 was found to be therapeutically useful as a stem cell mobilizer, and has since 10 years been approved for the treatment of some hematological malignancies.
Collapse
Affiliation(s)
- Erik De Clercq
- Department of Microbiology and Immunology, Rega Institute for Medical Research , KU Leuven , Herestraat 49 , 3000 Leuven , Belgium
| |
Collapse
|
64
|
Wang Y, Dembowsky K, Chevalier E, Stüve P, Korf-Klingebiel M, Lochner M, Napp LC, Frank H, Brinkmann E, Kanwischer A, Bauersachs J, Gyöngyösi M, Sparwasser T, Wollert KC. C-X-C Motif Chemokine Receptor 4 Blockade Promotes Tissue Repair After Myocardial Infarction by Enhancing Regulatory T Cell Mobilization and Immune-Regulatory Function. Circulation 2019; 139:1798-1812. [PMID: 30696265 PMCID: PMC6467561 DOI: 10.1161/circulationaha.118.036053] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Acute myocardial infarction (MI) elicits an inflammatory response that drives tissue repair and adverse cardiac remodeling. Inflammatory cell trafficking after MI is controlled by C-X-C motif chemokine ligand 12 (CXCL12) and its receptor, C-X-C motif chemokine receptor 4 (CXCR4). CXCR4 antagonists mobilize inflammatory cells and promote infarct repair, but the cellular mechanisms are unclear. METHODS We investigated the therapeutic potential and mode of action of the peptidic macrocycle CXCR4 antagonist POL5551 in mice with reperfused MI. We applied cell depletion and adoptive transfer strategies using lymphocyte-deficient Rag1 knockout mice; DEREG mice, which express a diphtheria toxin receptor-enhanced green fluorescent protein fusion protein under the control of the promoter/enhancer region of the regulatory T (Treg) cell-restricted Foxp3 transcription factor; and dendritic cell-depleted CD11c-Cre iDTR mice. Translational potential was explored in a porcine model of reperfused MI using serial contrast-enhanced magnetic resonance imaging. RESULTS Intraperitoneal POL5551 injections in wild-type mice (8 mg/kg at 2, 4, 6, and 8 days) enhanced angiogenesis in the infarct border zone, reduced scar size, and attenuated left ventricular remodeling and contractile dysfunction at 28 days. Treatment effects were absent in splenectomized wild-type mice, Rag1 knockout mice, and Treg cell-depleted DEREG mice. Conversely, treatment effects could be transferred into infarcted splenectomized wild-type mice by transplanting splenic Treg cells from POL5551-treated infarcted DEREG mice. Instructive cues provided by infarct-primed dendritic cells were required for POL5551 treatment effects. POL5551 injections mobilized Treg cells into the peripheral blood, followed by enhanced Treg cell accumulation in the infarcted region. Neutrophils, monocytes, and lymphocytes displayed similar mobilization kinetics, but their cardiac recruitment was not affected. POL5551, however, attenuated inflammatory gene expression in monocytes and macrophages in the infarcted region via Treg cells. Intravenous infusion of the clinical-stage POL5551 analogue POL6326 (3 mg/kg at 4, 6, 8, and 10 days) decreased infarct volume and improved left ventricular ejection fraction in pigs. CONCLUSIONS These data confirm CXCR4 blockade as a promising treatment strategy after MI. We identify dendritic cell-primed splenic Treg cells as the central arbiters of these therapeutic effects and thereby delineate a pharmacological strategy to promote infarct repair by augmenting Treg cell function in vivo.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Disease Models, Animal
- Mice, Inbred C57BL
- Mice, Transgenic
- Myocardial Contraction/drug effects
- Myocardial Infarction/drug therapy
- Myocardial Infarction/immunology
- Myocardial Infarction/metabolism
- Myocardial Infarction/pathology
- Myocardium/immunology
- Myocardium/metabolism
- Myocardium/pathology
- Neovascularization, Physiologic/drug effects
- Proteins/pharmacology
- Receptors, CXCR4/antagonists & inhibitors
- Receptors, CXCR4/metabolism
- Recovery of Function
- Signal Transduction
- Sus scrofa
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Ventricular Function, Left/drug effects
- Ventricular Remodeling/drug effects
Collapse
Affiliation(s)
- Yong Wang
- Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology (Y.W., M.K.-K., H.F., E.B., A.K., K.C.W.), Hannover Medical School, Germany
- Department of Cardiology and Angiology (Y.W., M.K.-K., L.C.N., H.F., E.B., A.K., J.B., K.C.W.), Hannover Medical School, Germany
| | | | | | - Philipp Stüve
- Institute of Infection Immunology, TWINCORE, Hannover, Germany (P.S., M.L., T.S.)
- The current affiliation for P.S. and T.S. is Department of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Mortimer Korf-Klingebiel
- Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology (Y.W., M.K.-K., H.F., E.B., A.K., K.C.W.), Hannover Medical School, Germany
- Department of Cardiology and Angiology (Y.W., M.K.-K., L.C.N., H.F., E.B., A.K., J.B., K.C.W.), Hannover Medical School, Germany
| | - Matthias Lochner
- Institute of Infection Immunology, TWINCORE, Hannover, Germany (P.S., M.L., T.S.)
| | - L. Christian Napp
- Department of Cardiology and Angiology (Y.W., M.K.-K., L.C.N., H.F., E.B., A.K., J.B., K.C.W.), Hannover Medical School, Germany
| | - Heike Frank
- Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology (Y.W., M.K.-K., H.F., E.B., A.K., K.C.W.), Hannover Medical School, Germany
- Department of Cardiology and Angiology (Y.W., M.K.-K., L.C.N., H.F., E.B., A.K., J.B., K.C.W.), Hannover Medical School, Germany
| | - Eva Brinkmann
- Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology (Y.W., M.K.-K., H.F., E.B., A.K., K.C.W.), Hannover Medical School, Germany
- Department of Cardiology and Angiology (Y.W., M.K.-K., L.C.N., H.F., E.B., A.K., J.B., K.C.W.), Hannover Medical School, Germany
| | - Anna Kanwischer
- Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology (Y.W., M.K.-K., H.F., E.B., A.K., K.C.W.), Hannover Medical School, Germany
- Department of Cardiology and Angiology (Y.W., M.K.-K., L.C.N., H.F., E.B., A.K., J.B., K.C.W.), Hannover Medical School, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology (Y.W., M.K.-K., L.C.N., H.F., E.B., A.K., J.B., K.C.W.), Hannover Medical School, Germany
| | - Mariann Gyöngyösi
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Austria (M.G.)
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORE, Hannover, Germany (P.S., M.L., T.S.)
- The current affiliation for P.S. and T.S. is Department of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Kai C. Wollert
- Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology (Y.W., M.K.-K., H.F., E.B., A.K., K.C.W.), Hannover Medical School, Germany
- Department of Cardiology and Angiology (Y.W., M.K.-K., L.C.N., H.F., E.B., A.K., J.B., K.C.W.), Hannover Medical School, Germany
| |
Collapse
|
65
|
Development of CXCR4 modulators based on the lead compound RB-108. Eur J Med Chem 2019; 173:32-43. [PMID: 30981691 DOI: 10.1016/j.ejmech.2019.03.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/28/2019] [Accepted: 03/31/2019] [Indexed: 12/21/2022]
Abstract
The CXCR4/CXCL12 axis plays prominent roles in tumor metastasis and inflammation. CXCR4 has been shown to be involved in a variety of inflammation-related diseases. Therefore, CXCR4 is a promising potential target to develop novel anti-inflammatory agents. Taking our previously discovered CXCR4 modulator RB-108 as the lead compound, a series of derivatives were synthesized structurally modifying and optimizing the amide and sulfamide side chains. The derivatives successfully maintained potent CXCR4 binding affinity. Furthermore, compounds IIb, IIc, IIIg, IIIj, and IIIm were all efficacious in inhibiting the invasion of CXCR4-positive cells, displaying a much more potent effect than the lead compound RB-108. Notably, compound IIIm significantly decreased carrageenan-induced swollen volume and paw thickness in a mouse paw edema model. More importantly, IIIm exhibited satisfying PK profiles with a half-life of 4.77 h in an SD rat model. In summary, we have developed compound IIIm as a new candidate for further investigation based on the lead compound RB-108.
Collapse
|
66
|
Suryaprakash S, Lao YH, Cho HY, Li M, Ji HY, Shao D, Hu H, Quek CH, Huang D, Mintz RL, Bagó JR, Hingtgen SD, Lee KB, Leong KW. Engineered Mesenchymal Stem Cell/Nanomedicine Spheroid as an Active Drug Delivery Platform for Combinational Glioblastoma Therapy. NANO LETTERS 2019; 19:1701-1705. [PMID: 30773888 DOI: 10.1021/acs.nanolett.8b04697] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mesenchymal stem cell (MSC) has been increasingly applied to cancer therapy because of its tumor-tropic capability. However, short retention at target tissue and limited payload option hinder the progress of MSC-based cancer therapy. Herein, we proposed a hybrid spheroid/nanomedicine system, comprising MSC spheroid entrapping drug-loaded nanocomposite, to address these limitations. Spheroid formulation enhanced MSC's tumor tropism and facilitated loading of different types of therapeutic payloads. This system acted as an active drug delivery platform seeking and specifically targeting glioblastoma cells. It enabled effective delivery of combinational protein and chemotherapeutic drugs by engineered MSC and nanocomposite, respectively. In an in vivo migration model, the hybrid spheroid showed higher nanocomposite retention in the tumor tissue compared with the single MSC approach, leading to enhanced tumor inhibition in a heterotopic glioblastoma murine model. Taken together, this system integrates the merits of cell- and nanoparticle- mediated drug delivery with the tumor-homing characteristics of MSC to advance targeted combinational cancer therapy.
Collapse
Affiliation(s)
- Smruthi Suryaprakash
- Department of Biomedical Engineering , Columbia University , New York , New York 10027 , United States
| | - Yeh-Hsing Lao
- Department of Biomedical Engineering , Columbia University , New York , New York 10027 , United States
| | - Hyeon-Yeol Cho
- Department of Chemistry and Chemical Biology, Rutgers , The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| | - Mingqiang Li
- Department of Biomedical Engineering , Columbia University , New York , New York 10027 , United States
| | - Ha Yeun Ji
- Department of Biomedical Engineering , Columbia University , New York , New York 10027 , United States
| | - Dan Shao
- Department of Biomedical Engineering , Columbia University , New York , New York 10027 , United States
| | - Hanze Hu
- Department of Biomedical Engineering , Columbia University , New York , New York 10027 , United States
| | - Chai Hoon Quek
- Department of Biomedical Engineering , Columbia University , New York , New York 10027 , United States
| | - Dantong Huang
- Department of Biomedical Engineering , Columbia University , New York , New York 10027 , United States
| | - Rachel L Mintz
- Department of Biomedical Engineering , Columbia University , New York , New York 10027 , United States
| | - Juli R Bagó
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Shawn D Hingtgen
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers , The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| | - Kam W Leong
- Department of Biomedical Engineering , Columbia University , New York , New York 10027 , United States
- Department of Systems Biology , Columbia University Medical Center , New York , New York 10032 , United States
| |
Collapse
|
67
|
Pilon A, Lorenzo J, Rodriguez-Calado S, Adão P, Martins AM, Valente A, Alves LG. New Cyclams and Their Copper(II) and Iron(III) Complexes: Synthesis and Potential Application as Anticancer Agents. ChemMedChem 2019; 14:770-778. [PMID: 30694018 DOI: 10.1002/cmdc.201800702] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/25/2019] [Indexed: 11/06/2022]
Abstract
New cyclam derivatives (HOCH2 CH2 CH2 )2 (PhCH2 )2 Cyclam and (HOCH2 CH2 CH2 )2 ( 4 - CF 3 PhCH2 )2 Cyclam, as well as their CuII and FeIII complexes, were synthesized and characterized and their stability in cellular media was assessed. The cytotoxic effect of all compounds was examined on human cervical cancer (HeLa) cells, revealing strong anticancer activity. After 24 h, only complexes with the (HOCH2 CH2 CH2 )2 ( 4 - CF 3 PhCH2 )2 Cyclam ligand are cytotoxic, whereas after incubation for 72 h all compounds show significant antiproliferative effects. Notably, compounds containing 4 - CF 3 PhCH2 pendant arms on the cyclam ring revealed the most activity, with cytotoxicity values up to 12 times higher than those of cisplatin. All metal complexes seem to induce cell death through the formation of reactive oxygen species.
Collapse
Affiliation(s)
- Adhan Pilon
- Centro de Química Estrutural, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal.,Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal
| | - Julia Lorenzo
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Sergi Rodriguez-Calado
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Pedro Adão
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal
| | - Ana M Martins
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal
| | - Andreia Valente
- Centro de Química Estrutural, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Luis G Alves
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal
| |
Collapse
|
68
|
Cain AN, Carder Freeman TN, Roewe KD, Cockriel DL, Hasley TR, Maples RD, Allbritton EMA, D'Huys T, van Loy T, Burke BP, Prior TJ, Schols D, Archibald SJ, Hubin TJ. Acetate as a model for aspartate-based CXCR4 chemokine receptor binding of cobalt and nickel complexes of cross-bridged tetraazamacrocycles. Dalton Trans 2019; 48:2785-2801. [PMID: 30729243 DOI: 10.1039/c8dt04728f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A number of disease states including WHIM syndrome, HIV infection and cancer have been linked to the chemokine receptor CXCR4. High-affinity CXCR4 antagonist transition metal complexes of configurationally restricted bis-tetraazamacrocyclic ligands have been identified in previous studies. Recently synthesised and structurally characterised Co2+/Co3+ and Ni2+ acetate complexes of mono-macrocycle cross-bridged ligands have been used to mimic their known coordination interaction with the aspartate side chains on binding to CXCR4. Here, X-ray crystal structures for three Co2+/Co3+ acetate complexes and five Ni2+ acetate complexes are presented and demonstrate flexibility in the mode of binding to the acetate ligand concomitantly with the requisite cis-V-configured cross-bridged tetraazamacrocyle. Complexes of the smaller Co3+ metal ion exclusively bind acetate by chelating both oxygens of acetate. Larger Co2+ and Ni2+ metal ions in cross-bridged tetraazamacrocycles show a clear tendency to coordinate acetate in a monodentate fashion with a coordinated water molecule completing the octahedral coordination sphere. However, in unbridged tetraazamacrocycle acetate structures reported in the literature, the coordination preference is to chelate both acetate oxygens. We conclude that the short ethylene cross-bridge restricts the equatorial bulk of the macrocycle, prompting the metal ion to fill the equator with the larger monodentate acetate plus water ligand set. In unbridged ligand examples, the flexible macrocycle expands equatorially and generally only allows chelation of the sterically smaller acetate alone. These results provide insight for generation of optimised bis-macrocyclic CXCR4 antagonists utilising cobalt and nickel ions.
Collapse
Affiliation(s)
- Amy N Cain
- Department of Chemistry and Physics, Southwestern Oklahoma State University, Weatherford, OK, USA 73096.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Sandland J, Boyle RW. Photosensitizer Antibody–Drug Conjugates: Past, Present, and Future. Bioconjug Chem 2019; 30:975-993. [DOI: 10.1021/acs.bioconjchem.9b00055] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
70
|
Combination of the low anticoagulant heparin CX-01 with chemotherapy for the treatment of acute myeloid leukemia. Blood Adv 2019; 2:381-389. [PMID: 29467192 DOI: 10.1182/bloodadvances.2017013391] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/21/2018] [Indexed: 12/19/2022] Open
Abstract
Relapses in acute myelogenous leukemia (AML) are a result of quiescent leukemic stem cells (LSCs) in marrow stromal niches, where they resist chemotherapy. LSCs employ CXCL12/CXCR4 to home toward protective marrow niches. Heparin disrupts CXCL12-mediated sequestration of cells in the marrow. CX-01 is a low-anticoagulant heparin derivative. In this pilot study, we combined CX-01 with chemotherapy for the treatment of AML. Induction consisted of cytarabine and idarubicin (7 + 3) with CX-01. Twelve patients were enrolled (median age, 56 years; 3 women). Three, 5, and 4 patients had good-, intermediate-, and poor-risk disease, respectively. Day 14 bone marrows were available on 11 patients and were aplastic in all without detectable leukemia. Eleven patients (92%) had morphologic complete remission after 1 induction (CR1). Eight patients were alive at a median follow-up of 24 months (4 patients in CR1). Three patients received an allogeneic stem cell transplant in CR1. Median disease-free survival was 14.8 months. Median overall survival was not attained at the maximum follow-up time of 29.4 months. No CX-01-associated serious adverse events occurred. Median day to an untransfused platelet count of at least 20 × 109/L was 21. CX-01 is well tolerated when combined with intensive therapy for AML and appears associated with enhanced count recovery and treatment efficacy.
Collapse
|
71
|
Bobkov V, Zarca AM, Van Hout A, Arimont M, Doijen J, Bialkowska M, Toffoli E, Klarenbeek A, van der Woning B, van der Vliet HJ, Van Loy T, de Haard H, Schols D, Heukers R, Smit MJ. Nanobody-Fc constructs targeting chemokine receptor CXCR4 potently inhibit signaling and CXCR4-mediated HIV-entry and induce antibody effector functions. Biochem Pharmacol 2018; 158:413-424. [DOI: 10.1016/j.bcp.2018.10.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022]
|
72
|
Li J, Li T, Li S, Xie L, Yang YL, Lin Q, Kadoch O, Li H, Hou S, Xu Z. Experimental study of the inhibition effect of CXCL12/CXCR4 in malignant pleural mesothelioma. J Investig Med 2018; 67:338-345. [DOI: 10.1136/jim-2018-000839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2018] [Indexed: 11/03/2022]
Abstract
Previous studies have demonstrated that CXCL12/CXCR4 axis is closely related to tumors such as malignant pleural mesothelioma (MPM). This research was conducted in order to detect whether CXCL12/CXCR4 inhibitors could restrain MPM and have a synergistic effect with chemotherapy, also to investigate the relationship of CXCL12/CXCR4 with other gene expressions in MPM. Forty mice were injected MPM cells and randomly divided into four groups: the PBS (control group), AMD3100 (CXCR4-CXCL12 antagonist), pemetrexed and AMD3100 plus pemetrexed. The mice were treated respectively for duration of 3 weeks. The size, bioluminescence and weight of tumors were measured. The differences between gene expressions in each group were analyzed. The tumor weights of each treatment group were lower than that of the control group (p<0.05). The bioluminescence of the tumor of the AMD3100 treatment group and the AMD3100 plus pemetrexed treatment group were lower than that of the control group (p<0.05), and AMD3100 was shown to have synergistic effects with pemetrexed (p<0.05). Among the 2.5 billion genes, several hundreds of genes expressed differently between groups. Results show that AMD3100 and pemetrexed can inhibit the growth of MPM in vivo, also that there is a better result if both are used together. Our findings suggest that CXCL12/CXCR4 axis affects a certain amount of gene expression in MPM.
Collapse
|
73
|
Sok N, Bernhard C, Désogère P, Goze C, Rousselin Y, Boschetti F, Baglin I, Denat F. Efficient Synthesis of Multifunctional Chelating Agents Based on Tetraazacycloalkanes. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nicolas Sok
- AgroSup Dijon; PAM UMR A 02.102; Univ. Bourgogne Franche-Comté; 21000 Dijon France
| | - Claire Bernhard
- Institut de Chimie Moléculaire de l'Université de Bourgogne; UMR CNRS 6302; Univ. Bourgogne Franche-Comté; 9 Avenue Alain Savary 21078 Dijon Cedex France
| | - Pauline Désogère
- Institut de Chimie Moléculaire de l'Université de Bourgogne; UMR CNRS 6302; Univ. Bourgogne Franche-Comté; 9 Avenue Alain Savary 21078 Dijon Cedex France
| | - Christine Goze
- Institut de Chimie Moléculaire de l'Université de Bourgogne; UMR CNRS 6302; Univ. Bourgogne Franche-Comté; 9 Avenue Alain Savary 21078 Dijon Cedex France
| | - Yoann Rousselin
- Institut de Chimie Moléculaire de l'Université de Bourgogne; UMR CNRS 6302; Univ. Bourgogne Franche-Comté; 9 Avenue Alain Savary 21078 Dijon Cedex France
| | | | - Isabelle Baglin
- Faculté de santé Département Pharmacie; Pharmacochimie; 28 rue Roger Amsler 49045 Angers Cedex France
| | - Franck Denat
- Institut de Chimie Moléculaire de l'Université de Bourgogne; UMR CNRS 6302; Univ. Bourgogne Franche-Comté; 9 Avenue Alain Savary 21078 Dijon Cedex France
| |
Collapse
|
74
|
Nguyen HH, Kim MB, Wilson RJ, Butch CJ, Kuo KM, Miller EJ, Tahirovic YA, Jecs E, Truax VM, Wang T, Sum CS, Cvijic ME, Schroeder GM, Wilson LJ, Liotta DC. Design, Synthesis, and Pharmacological Evaluation of Second-Generation Tetrahydroisoquinoline-Based CXCR4 Antagonists with Favorable ADME Properties. J Med Chem 2018; 61:7168-7188. [DOI: 10.1021/acs.jmedchem.8b00450] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Huy H. Nguyen
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Michelle B. Kim
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Robert J. Wilson
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Christopher J. Butch
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Katie M. Kuo
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Eric J. Miller
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Yesim A. Tahirovic
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Edgars Jecs
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Valarie M. Truax
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Tao Wang
- Research & Development, Bristol-Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Chi S. Sum
- Research & Development, Bristol-Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Mary E. Cvijic
- Research & Development, Bristol-Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Gretchen M. Schroeder
- Research & Development, Bristol-Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Lawrence J. Wilson
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Dennis C. Liotta
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| |
Collapse
|
75
|
Liu G, Chen H, Yu S, Li X, Wang Z. CXCR4 Peptide Conjugated Au-Fe2O3 Nanoparticles for Tumor-targeting Magnetic Resonance Imaging. Chem Res Chin Univ 2018. [DOI: 10.1007/s40242-018-8010-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
76
|
Abiri A. Plerixafor and related macrocyclic amines are potential drug candidates in treatment of malaria by "filling the flap" region of plasmepsin enzymes. Med Hypotheses 2018; 118:68-73. [PMID: 30037618 DOI: 10.1016/j.mehy.2018.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/24/2018] [Accepted: 06/19/2018] [Indexed: 11/30/2022]
Abstract
Death by Plasmodium falsiparum, the leading cause of malaria, is going to remain a major obstacle among the infectious diseases. Plasmepsin aspartic proteases are key proteins in the pathogenesis of plasmodium species which break down the hemoglobin and exploit it as a source of amino acids. These enzymes are one of the favorite targeting agents for medicinal chemists to design new drugs. Plasmepsin proteins show a "flap" region in their N-terminal domain, predisposing them to a good "filler" drug with an exceptional affinity to this enzyme. Plerixafor (Mozobil®, AMD3100), a CXCR4 antagonist with a bicyclam ring, historically discovered as an impurity in a mixture which had anti-HIV properties, is now a FDA approved drug for mobilizing haematopoietic stem cells in cancer patients. In this hypothesis, we focused on the similarity of the structure of plerixafor and its analogues with heme functional group of hemoglobin, the main substrate of plasmepsin, and also with some other recent azamacrocyclic compounds demonstrating antimalarial activity, to test whether these compounds are capable of exhibiting antimalarial activity by inhibiting plasmepsin or not. A preliminary in silico docking study was used to evaluate this hypothesis and docking results indicated that macrocyclic cyclams and cyclens can reliably act as potent lead drug or central pharmacophore in developing new plasmepsin inhibitors as compared with previously designed plasmepsin II inhibitors.
Collapse
Affiliation(s)
- Ardavan Abiri
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
77
|
Rashad AA, Song LR, Holmes AP, Acharya K, Zhang S, Wang ZL, Gary E, Xie X, Pirrone V, Kutzler MA, Long YQ, Chaiken I. Bifunctional Chimera That Coordinately Targets Human Immunodeficiency Virus 1 Envelope gp120 and the Host-Cell CCR5 Coreceptor at the Virus-Cell Interface. J Med Chem 2018; 61:5020-5033. [PMID: 29767965 DOI: 10.1021/acs.jmedchem.8b00477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To address the urgent need for new agents to reduce the global occurrence and spread of AIDS, we investigated the underlying hypothesis that antagonists of the HIV-1 envelope (Env) gp120 protein and the host-cell coreceptor (CoR) protein can be covalently joined into bifunctional synergistic combinations with improved antiviral capabilities. A synthetic protocol was established to covalently combine a CCR5 small-molecule antagonist and a gp120 peptide triazole antagonist to form the bifunctional chimera. Importantly, the chimeric inhibitor preserved the specific targeting properties of the two separate chimera components and, at the same time, exhibited low to subnanomolar potencies in inhibiting cell infection by different pseudoviruses, which were substantially greater than those of a noncovalent mixture of the individual components. The results demonstrate that targeting the virus-cell interface with a single molecule can result in improved potencies and also the introduction of new phenotypes to the chimeric inhibitor, such as the irreversible inactivation of HIV-1.
Collapse
Affiliation(s)
| | - Li-Rui Song
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica , Chinese Academy of Science , Shanghai 201203 , China.,College of Pharmaceutical Sciences , Soochow University Medical College , Suzhou 215123 , China.,University of Chinese Academy of Sciences , Number 19A Yuquan Road , Beijing 100049 , China
| | | | | | - Shiyu Zhang
- School of Biomedical Engineering, Science and Health Systems , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | - Zhi-Long Wang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica , Chinese Academy of Science , Shanghai 201203 , China
| | | | - Xin Xie
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica , Chinese Academy of Science , Shanghai 201203 , China
| | | | | | - Ya-Qiu Long
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica , Chinese Academy of Science , Shanghai 201203 , China.,College of Pharmaceutical Sciences , Soochow University Medical College , Suzhou 215123 , China
| | | |
Collapse
|
78
|
Tahirovic YA, Truax VM, Wilson RJ, Jecs E, Nguyen HH, Miller EJ, Kim MB, Kuo KM, Wang T, Sum CS, Cvijic ME, Schroeder GM, Wilson LJ, Liotta DC. Discovery of N-Alkyl Piperazine Side Chain Based CXCR4 Antagonists with Improved Drug-like Properties. ACS Med Chem Lett 2018; 9:446-451. [PMID: 29795757 DOI: 10.1021/acsmedchemlett.8b00030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/09/2018] [Indexed: 12/13/2022] Open
Abstract
A novel series of CXCR4 antagonists with piperidinyl and piperazinyl alkylamine side chains designed as butyl amine replacements are described. Several of these compounds showed similar activity to the parent compound TIQ-15 (5) in a SDF-1 induced calcium flux assay. Preliminary structure-activity relationship investigations led us to identify a series containing N-propyl piperazine side chain analogs exemplified by 16 with improved off-target effects as measured in a muscarinic acetylcholine receptor (mAChR) calcium flux assay and in a limited drug safety panel screen. Further efforts to explore SAR and optimize drug properties led to the identification of the N'-ethyl-N-propyl-piperazine tetrahydroisoquinoline derivative 44 and the N-propyl-piperazine benzimidazole compound 37, which gave the best overall profiles with no mAChR or CYP450 inhibition, good permeability in PAMPA assays, and metabolic stability in human liver microsomes.
Collapse
Affiliation(s)
- Yesim A. Tahirovic
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Valarie M. Truax
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Robert J. Wilson
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Edgars Jecs
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Huy H. Nguyen
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Eric J. Miller
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Michelle B. Kim
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Katie M. Kuo
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Tao Wang
- Bristol-Myers Squibb R&D, US Route 206 and Province Line Road, Princeton, New Jersey 08543-4000, United States
| | - Chi S. Sum
- Bristol-Myers Squibb R&D, US Route 206 and Province Line Road, Princeton, New Jersey 08543-4000, United States
| | - Mary E. Cvijic
- Bristol-Myers Squibb R&D, US Route 206 and Province Line Road, Princeton, New Jersey 08543-4000, United States
| | - Gretchen M. Schroeder
- Bristol-Myers Squibb R&D, US Route 206 and Province Line Road, Princeton, New Jersey 08543-4000, United States
| | - Lawrence J. Wilson
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Dennis C. Liotta
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
79
|
Barwinska D, Oueini H, Poirier C, Albrecht ME, Bogatcheva NV, Justice MJ, Saliba J, Schweitzer KS, Broxmeyer HE, March KL, Petrache I. AMD3100 ameliorates cigarette smoke-induced emphysema-like manifestations in mice. Am J Physiol Lung Cell Mol Physiol 2018; 315:L382-L386. [PMID: 29745251 DOI: 10.1152/ajplung.00185.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have shown that cigarette smoke (CS)-induced pulmonary emphysema-like manifestations are preceded by marked suppression of the number and function of bone marrow hematopoietic progenitor cells (HPCs). To investigate whether a limited availability of HPCs may contribute to CS-induced lung injury, we used a Food and Drug Administration-approved antagonist of the interactions of stromal cell-derived factor 1 (SDF-1) with its chemokine receptor CXCR4 to promote intermittent HPC mobilization and tested its ability to limit emphysema-like injury following chronic CS. We administered AMD3100 (5mg/kg) to mice during a chronic CS exposure protocol of up to 24 wk. AMD3100 treatment did not affect either lung SDF-1 levels, which were reduced by CS, or lung inflammatory cell counts. However, AMD3100 markedly improved CS-induced bone marrow HPC suppression and significantly ameliorated emphysema-like end points, such as alveolar airspace size, lung volumes, and lung static compliance. These results suggest that antagonism of SDF-1 binding to CXCR4 is associated with protection of both bone marrow and lungs during chronic CS exposure, thus encouraging future studies of potential therapeutic benefit of AMD3100 in emphysema.
Collapse
Affiliation(s)
- Daria Barwinska
- Department of Cellular and Integrative Physiology, Indiana University , Indianapolis, Indiana.,Indiana Center for Vascular Biology and Medicine, Indiana University , Indianapolis, Indiana.,Vascular and Cardiac Center for Adult Stem Cell Therapy Signature Center, Indiana University, Purdue University , Indianapolis, Indiana.,Roudebush Veterans Affairs Medical Center, Indiana University , Indianapolis, Indiana.,Division of Nephrology, Department of Medicine, Indiana University , Indianapolis, Indiana
| | - Houssam Oueini
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Indiana University , Indianapolis, Indiana
| | - Christophe Poirier
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Indiana University , Indianapolis, Indiana
| | - Marjorie E Albrecht
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Indiana University , Indianapolis, Indiana
| | - Natalia V Bogatcheva
- Indiana Center for Vascular Biology and Medicine, Indiana University , Indianapolis, Indiana.,Vascular and Cardiac Center for Adult Stem Cell Therapy Signature Center, Indiana University, Purdue University , Indianapolis, Indiana.,Roudebush Veterans Affairs Medical Center, Indiana University , Indianapolis, Indiana.,Division of Cardiology, Department of Medicine, Indiana University , Indianapolis, Indiana
| | - Matthew J Justice
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Indiana University , Indianapolis, Indiana.,Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Jacob Saliba
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Indiana University , Indianapolis, Indiana
| | - Kelly S Schweitzer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Indiana University , Indianapolis, Indiana.,Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University , Indianapolis, Indiana
| | - Keith L March
- Indiana Center for Vascular Biology and Medicine, Indiana University , Indianapolis, Indiana.,Vascular and Cardiac Center for Adult Stem Cell Therapy Signature Center, Indiana University, Purdue University , Indianapolis, Indiana.,Roudebush Veterans Affairs Medical Center, Indiana University , Indianapolis, Indiana.,Division of Cardiology, Department of Medicine, Indiana University , Indianapolis, Indiana.,Division of Cardiovascular Medicine and Center for Regenerative Medicine, University of Florida , Gainesville, Florida
| | - Irina Petrache
- Indiana Center for Vascular Biology and Medicine, Indiana University , Indianapolis, Indiana.,Vascular and Cardiac Center for Adult Stem Cell Therapy Signature Center, Indiana University, Purdue University , Indianapolis, Indiana.,Roudebush Veterans Affairs Medical Center, Indiana University , Indianapolis, Indiana.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Indiana University , Indianapolis, Indiana.,Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado.,Department of Medicine, University of Colorado , Denver, Colorado
| |
Collapse
|
80
|
Xie J, Gurler Main H, Sacks JD, Muralidhar GG, Barbolina MV. Regulation of DNA damage repair and lipid uptake by CX 3CR1 in epithelial ovarian carcinoma. Oncogenesis 2018; 7:37. [PMID: 29712888 PMCID: PMC5928120 DOI: 10.1038/s41389-018-0046-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/17/2018] [Accepted: 03/26/2018] [Indexed: 12/25/2022] Open
Abstract
Failure of currently used cytotoxic chemotherapy is one of the main reasons behind high mortality from metastatic high grade serous ovarian carcinoma. We found that high expression of a receptor for fractalkine (CX3CR1) significantly correlated with shorter survival of patients with serous ovarian carcinoma treated with cytotoxic DNA damage chemotherapies, and reduction of CX3CR1 expression resulted in sensitization to several DNA damaging modalities, including x-ray radiation and cisplatin. Here, we show that CX3CR1 plays a role in double-strand DNA break response and repair by regulating expression of RAD50 by a MYC-dependent mechanism. We demonstrate that downregulation of CX3CR1 alone and in a combination with irradiation affects peritoneal metastasis in an organ-specific manner; we show that CX3CR1 regulates lipid uptake which could control omental metastasis. This study identifies CX3CR1 as a novel potential target for sensitization of ovarian carcinoma to DNA damage therapies and reduction of peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Jia Xie
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Hilal Gurler Main
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Joelle D Sacks
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Goda G Muralidhar
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Maria V Barbolina
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
81
|
Lidonnici MR, Ferrari G. Gene therapy and gene editing strategies for hemoglobinopathies. Blood Cells Mol Dis 2018; 70:87-101. [DOI: 10.1016/j.bcmd.2017.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/19/2017] [Accepted: 12/27/2017] [Indexed: 10/24/2022]
|
82
|
Xie Y, Wang Y, Li J, Hang Y, Oupický D. Promise of chemokine network-targeted nanoparticles in combination nucleic acid therapies of metastatic cancer. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 11:e1528. [PMID: 29700990 DOI: 10.1002/wnan.1528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/28/2018] [Accepted: 04/01/2018] [Indexed: 01/10/2023]
Abstract
Chemokines and chemokine receptors play key roles in cancer progression and metastasis. Although multiple chemokines and chemokine receptors have been investigated, inhibition of CXCR4 emerged as one of the most promising approaches in combination cancer therapy, especially when focused on the metastatic disease. Small RNA molecules, such as small interfering RNA (siRNA) and microRNA (miRNA), represent new class of therapeutics for cancer treatment through RNA interference-mediated gene silencing. However, the clinical applicability of siRNA and miRNA is severely limited by the lack of effective delivery systems. There is a significant therapeutic potential for CXCR4-targeted nanomedicines in combination with the delivery of siRNA and miRNA in cancer. Recently developed CXCR4-targeted polymeric drugs and nanomedicines, including cyclam- and chloroquine-based polymeric CXCR4 antagonists are introduced here and their ability to deliver functional siRNA and miRNA is discussed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Ying Xie
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Yazhe Wang
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jing Li
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Yu Hang
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - David Oupický
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
83
|
Costa MJ, Kudaravalli J, Liu WH, Stock J, Kong S, Liu SH. A mouse model for evaluation of efficacy and concomitant toxicity of anti-human CXCR4 therapeutics. PLoS One 2018; 13:e0194688. [PMID: 29554149 PMCID: PMC5858835 DOI: 10.1371/journal.pone.0194688] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 03/07/2018] [Indexed: 01/09/2023] Open
Abstract
The development of therapeutic monoclonal antibodies through mouse immunization often originates drug candidates that are not cross-reactive to the mouse ortholog. In such cases, and particularly in oncology, drug efficacy studies are performed on human tumor xenografts or with "surrogate" anti-mouse ortholog antibodies if targeting tumor host cells. Safety assessment of drug candidate(s) is performed at a later development stage in healthy non-human primates. While the latter remains necessary before a drug advances into human subjects, it precludes evaluation of safety in disease conditions and drug de-risking during early development. Therefore, mouse models that allow concomitant evaluation of drug efficacy and safety are highly desirable. The C-X-C motif chemokine receptor 4 (CXCR4) is an attractive target for tumor-targeted and immuno-oncology therapeutics, with multiple mouse immunization-derived antibodies undergoing clinical trials. Given the pleiotropic role of CXCR4 in cancer biology, we anticipate continuous interest in this target, particularly in the testing of therapeutic combinations for immuno-oncology. Here, we describe the generation and validation of the first mouse knock-in of the whole coding region of human CXCR4. Homozygous human CXCR4 knock-in (hereafter designated as HuCXCR4KI) mice were viable and outwardly healthy, reproduced normally and nursed their young. The expression pattern of human CXCR4 in this model was similar to that of CXCR4 expression in normal human tissues. The human CXCR4 knock-in gene was expressed as a biologically active protein, thereby allowing normal animal development and adequate"homing" of leukocytes to the bone marrow. To further validate our model, we used an in vivo functional assay of leukocyte mobilization from bone marrow to peripheral blood by blocking CXCR4 signaling. Both an anti-human CXCR4 -specific blocking antibody and the small molecule CXCR4 inhibitor AMD3100 induced increased leukocyte counts in peripheral blood, whereas an anti-mouse CXCR4 -specific blocking antibody had no effect. This new mouse model is useful to evaluate efficacy and safety of anti-human CXCR4 -specific drugs as single agents or in combination therapies, particularly in the oncology, immuno-oncology, wound healing and chronic inflammation therapeutic areas.
Collapse
Affiliation(s)
- Maria José Costa
- Cancer Immunology Discovery, Oncology Research and Development, Worldwide Research and Development, Pfizer Inc., South San Francisco, California, United States of America
- * E-mail:
| | - Jyothirmayee Kudaravalli
- Cancer Immunology Discovery, Oncology Research and Development, Worldwide Research and Development, Pfizer Inc., South San Francisco, California, United States of America
| | - Wen-Hui Liu
- Cancer Immunology Discovery, Oncology Research and Development, Worldwide Research and Development, Pfizer Inc., South San Francisco, California, United States of America
| | - Jeffrey Stock
- Discovery Sciences, Medicinal Sciences, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut, United States of America
| | - Sophanna Kong
- Cancer Immunology Discovery, Oncology Research and Development, Worldwide Research and Development, Pfizer Inc., South San Francisco, California, United States of America
| | - Shu-Hui Liu
- Cancer Immunology Discovery, Oncology Research and Development, Worldwide Research and Development, Pfizer Inc., South San Francisco, California, United States of America
| |
Collapse
|
84
|
Heirani-Tabasi A, Naderi-Meshkin H, Matin MM, Mirahmadi M, Shahriyari M, Ahmadiankia N, Sanjar Moussavi N, Bidkhori HR, Raeesolmohaddeseen M, Bahrami AR. Augmented migration of mesenchymal stem cells correlates with the subsidiary CXCR4 variant. Cell Adh Migr 2018; 12:118-126. [PMID: 29466916 DOI: 10.1080/19336918.2016.1243643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Use of mesenchymal stem cells (MSCs) has been introduced as a promising tool, for structural and functional recovery of damaged tissues/organs. Studies have indicated that interactions between chemokine receptors and their ligands have a critical role in homing of MSCs to the site of injury. Although CXCR4 variants have been characterized, the exact role of each transcript in homing has remained unclear. In this study, cells were pretreated with various hypoxia-mimicking compounds (valproic acid, cobalt-chloride, and deferoxamine mesylate). Results indicated that both variants of CXCR4 were overexpressed after 24 hours of treatments and their expression could cooperatively induce and promote the cell migration. Moreover, deferoxamine mesylate was more effective in overexpression of variant A (lo), which resulted in higher level of CXCR4 protein and the highest rate of migration of the cells. In conclusion, our findings may have important potential implications in clinical applications, reinforcing the concept that manipulating the expression of specific CXCR4 variants may increase migration of MSCs.
Collapse
Affiliation(s)
- Asieh Heirani-Tabasi
- a Department of Biology , Faculty of Science, Ferdowsi University of Mashhad , Mashhad , Iran.,b Stem Cells and Regenerative Medicine Research Group , Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch , Mashhad , Iran
| | - Hojjat Naderi-Meshkin
- b Stem Cells and Regenerative Medicine Research Group , Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch , Mashhad , Iran
| | - Maryam M Matin
- a Department of Biology , Faculty of Science, Ferdowsi University of Mashhad , Mashhad , Iran.,b Stem Cells and Regenerative Medicine Research Group , Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch , Mashhad , Iran.,c Cell and Molecular Biotechnology Research Group , Institute of Biotechnology, Ferdowsi University of Mashhad , Mashhad , Iran
| | - Mahdi Mirahmadi
- b Stem Cells and Regenerative Medicine Research Group , Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch , Mashhad , Iran
| | - Mina Shahriyari
- b Stem Cells and Regenerative Medicine Research Group , Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch , Mashhad , Iran
| | | | - Nasser Sanjar Moussavi
- e Department of Surgery , Faculty of Medicine, Islamic Azad University-Mashhad Branch , Iran
| | - Hamid Reza Bidkhori
- b Stem Cells and Regenerative Medicine Research Group , Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch , Mashhad , Iran
| | - Mahmood Raeesolmohaddeseen
- b Stem Cells and Regenerative Medicine Research Group , Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch , Mashhad , Iran
| | - Ahmad Reza Bahrami
- a Department of Biology , Faculty of Science, Ferdowsi University of Mashhad , Mashhad , Iran.,b Stem Cells and Regenerative Medicine Research Group , Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch , Mashhad , Iran.,c Cell and Molecular Biotechnology Research Group , Institute of Biotechnology, Ferdowsi University of Mashhad , Mashhad , Iran
| |
Collapse
|
85
|
Murphy PM, Heusinkveld L. Multisystem multitasking by CXCL12 and its receptors CXCR4 and ACKR3. Cytokine 2018; 109:2-10. [PMID: 29398278 DOI: 10.1016/j.cyto.2017.12.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 12/20/2022]
Abstract
Chemokines are named and best known for their chemotactic cytokine activity in the hematopoietic system; however, their importance extends far beyond leukocytes, cell movement and immunoregulation. CXCL12, the most protean of chemokines, regulates development in multiple systems, including the hematopoietic, cardiovascular and nervous systems, and regulates diverse cell functions, including differentiation, distribution, activation, immune synapse formation, effector function, proliferation and survival in the immune system alone. The broad importance of CXCL12 is revealed by the complex lethal developmental phenotypes in mice lacking either Cxcl12 or either one of its two known 7-transmembrane domain receptors Cxcr4 and Ackr3, as well as by gain-of-function mutations in human CXCR4, which cause WHIM syndrome, a multisystem and combined immunodeficiency disease and the only Mendelian condition caused by a chemokine system mutation. In addition, wild type CXCR4 is important in the pathogenesis of HIV/AIDS and cancer. Thus, CXCL12 and its receptors CXCR4 and ACKR3 provide extraordinary examples of multisystem multitasking in the chemokine system in both health and disease.
Collapse
Affiliation(s)
- Philip M Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Lauren Heusinkveld
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
86
|
Breun M, Schwerdtfeger A, Martellotta DD, Kessler AF, Perez JM, Monoranu CM, Ernestus RI, Matthies C, Löhr M, Hagemann C. CXCR4: A new player in vestibular schwannoma pathogenesis. Oncotarget 2018; 9:9940-9950. [PMID: 29515781 PMCID: PMC5839412 DOI: 10.18632/oncotarget.24119] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/03/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND CXCR4 is a chemokine receptor that recruits blood stem cells and increases tumor cell growth and invasiveness. We examined CXCR4 expression in vestibular schwannomas (VS) from patients with and without neurofibromatosis type 2 (NF2) and correlated the levels with the patients' clinical characteristics. The aim was to determine whether CXCR4 can be used as a prognostic marker and as a target for systemic therapy. RESULTS Overall, CXCR4 mRNA levels were 4.6-fold higher in VS versus control; the levels were 4.9-fold higher in NF2 patients and 4.2-fold higher in sporadic VS patients. IHC and WB showed heterogeneous protein expression, and CXCR4 was expressed mainly in S100-positive Schwann cells. There was no correlation between the CXCR4 protein levels and tumor extension. However, there was a trend towards correlation between higher expression levels and greater hearing loss. MATERIALS AND METHODS CXCR4 mRNA and protein levels were determined in VS samples (n = 60); of these, 30 samples were from patients with NF2. Healthy nerves from autopsies served as controls. CXCR4 mRNA levels were measured by PCR, and protein levels were measured by immunohistochemistry (IHC) and Western blotting (WB). Tumor extension and hearing loss were categorized according to the Hannover Classification as clinical parameters. CONCLUSIONS CXCR4 mRNA was overexpressed in VS relative to healthy vestibular nerves, and there was a trend towards higher CXCR4 expression levels being correlated with greater functional impairment. Thus, CXCR4 may be a prognostic marker of VS, and CXCR4 inhibition has potential as a systemic approach for the treatment of VS.
Collapse
Affiliation(s)
- Maria Breun
- Department of Neurosurgery, University Hospital Würzburg, 97080 Würzburg, Germany
| | | | | | - Almuth F. Kessler
- Department of Neurosurgery, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Jose M. Perez
- Department of Neurosurgery, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Camelia M Monoranu
- Department of Neuropathology, University of Würzburg, Institute of Pathology, 97080 Würzburg, Germany
- Comprehensive Cancer Center (CCC), Mainfranken, Würzburg
| | - Ralf-Ingo Ernestus
- Department of Neurosurgery, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Cordula Matthies
- Department of Neurosurgery, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Mario Löhr
- Department of Neurosurgery, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Carsten Hagemann
- Department of Neurosurgery, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
87
|
CXCR4 increases in-vivo glioma perivascular invasion, and reduces radiation induced apoptosis: A genetic knockdown study. Oncotarget 2018; 7:83701-83719. [PMID: 27863376 PMCID: PMC5341257 DOI: 10.18632/oncotarget.13295] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/17/2016] [Indexed: 01/19/2023] Open
Abstract
Glioblastoma (GBM) is a highly invasive brain tumor. Perivascular invasion, autovascularization and vascular co-option occur throughout the disease and lead to tumor invasion and progression. The molecular basis for perivascular invasion, i.e., the interaction of glioma tumor cells with endothelial cells is not well characterized. Recent studies indicate that glioma cells have increased expression of CXCR4. We investigated the in-vivo role of CXCR4 in perivascular invasion of glioma cells using shRNA-mediated knock down of CXCR4. We show that primary cultures of human glioma stem cells HF2303 and mouse glioma GL26-Cit cells exhibit significant migration towards human (HBMVE) and mouse (MBVE) brain microvascular endothelial cells. Blocking CXCR4 on tumor cells with AMD3100 in-vitro, inhibits migration of GL26-Cit and HF2303 toward MBVE and HBMVE cells. Additionally, genetic down regulation of CXCR4 in mouse glioma GL26-Cit cells inhibits their in-vitro migration towards MBVE cells; in an in-vivo intracranial mouse model, these cells display reduced tumor growth and perivascular invasion, leading to increased survival. Quantitative analysis of brain sections showed that CXCR4 knockdown tumors are less invasive. Lastly, we tested the effects of radiation on CXCR4 knock down GL26-Cit cells in an orthotopic brain tumor model. Radiation treatment increased apoptosis of CXCR4 downregulated tumor cells and prolonged median survival. In summary, our data suggest that CXCR4 signaling is critical for perivascular invasion of GBM cells and targeting this receptor makes tumors less invasive and more sensitive to radiation therapy. Combination of CXCR4 knock down and radiation treatment might improve the efficacy of GBM therapy.
Collapse
|
88
|
Wilson RJ, Jecs E, Miller EJ, Nguyen HH, Tahirovic YA, Truax VM, Kim MB, Kuo KM, Wang T, Sum CS, Cvijic ME, Paiva AA, Schroeder GM, Wilson LJ, Liotta DC. Synthesis and SAR of 1,2,3,4-Tetrahydroisoquinoline-Based CXCR4 Antagonists. ACS Med Chem Lett 2018; 9:17-22. [PMID: 29348805 DOI: 10.1021/acsmedchemlett.7b00381] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/08/2017] [Indexed: 01/30/2023] Open
Abstract
CXCR4 is the most common chemokine receptor expressed on the surface of many cancer cell types. In comparison to normal cells, cancer cells overexpress CXCR4, which correlates with cancer cell metastasis, angiogenesis, and tumor growth. CXCR4 antagonists can potentially diminish the viability of cancer cells by interfering with CXCL12-mediated pro-survival signaling and by inhibiting chemotaxis. Herein, we describe a series of CXCR4 antagonists that are derived from (S)-5,6,7,8-tetrahydroquinolin-8-amine that has prevailed in the literature. This series removes the rigidity and chirality of the tetrahydroquinoline providing 2-(aminomethyl)pyridine analogs, which are more readily accessible and exhibit improved liver microsomal stability. The medicinal chemistry strategy and biological properties are described.
Collapse
Affiliation(s)
- Robert J. Wilson
- Department
of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Edgars Jecs
- Department
of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Eric J. Miller
- Department
of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Huy H. Nguyen
- Department
of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Yesim A. Tahirovic
- Department
of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Valarie M. Truax
- Department
of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Michelle B. Kim
- Department
of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Katie M. Kuo
- Department
of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Tao Wang
- Bristol-Myers Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - Chi Shing Sum
- Bristol-Myers Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - Mary E. Cvijic
- Bristol-Myers Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - Anthony A. Paiva
- Bristol-Myers Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - Gretchen M. Schroeder
- Bristol-Myers Squibb Research & Development, Princeton, New Jersey 08543, United States
| | - Lawrence J. Wilson
- Department
of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Dennis C. Liotta
- Department
of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| |
Collapse
|
89
|
Klein S, Abraham M, Bulvik B, Dery E, Weiss ID, Barashi N, Abramovitch R, Wald H, Harel Y, Olam D, Weiss L, Beider K, Eizenberg O, Wald O, Galun E, Pereg Y, Peled A. CXCR4 Promotes Neuroblastoma Growth and Therapeutic Resistance through miR-15a/16-1-Mediated ERK and BCL2/Cyclin D1 Pathways. Cancer Res 2017; 78:1471-1483. [PMID: 29259008 DOI: 10.1158/0008-5472.can-17-0454] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 07/17/2017] [Accepted: 12/14/2017] [Indexed: 11/16/2022]
Abstract
CXCR4 expression in neuroblastoma tumors correlates with disease severity. In this study, we describe mechanisms by which CXCR4 signaling controls neuroblastoma tumor growth and response to therapy. We found that overexpression of CXCR4 or stimulation with CXCL12 supports neuroblastoma tumorigenesis. Moreover, CXCR4 inhibition with the high-affinity CXCR4 antagonist BL-8040 prevented tumor growth and reduced survival of tumor cells. These effects were mediated by the upregulation of miR-15a/16-1, which resulted in downregulation of their target genes BCL-2 and cyclin D1, as well as inhibition of ERK. Overexpression of miR-15a/16-1 in cells increased cell death, whereas antagomirs to miR-15a/16-1 abolished the proapoptotic effects of BL-8040. CXCR4 overexpression also increased miR-15a/16-1, shifting their oncogenic dependency from the BCL-2 to the ERK signaling pathway. Overall, our results demonstrate the therapeutic potential of CXCR4 inhibition in neuroblastoma treatment and provide a rationale to test combination therapies employing CXCR4 and BCL-2 inhibitors to increase the efficacy of these agents.Significance: These results provide a mechanistic rationale for combination therapy of CXCR4 and BCL-2 inhibitors to treat a common and commonly aggressive pediatric cancer.Cancer Res; 78(6); 1471-83. ©2017 AACR.
Collapse
Affiliation(s)
- Shiri Klein
- Goldyne Savad Institute of Gene Therapy, Hebrew University Hospital, Jerusalem, Israel
| | | | | | - Elia Dery
- Goldyne Savad Institute of Gene Therapy, Hebrew University Hospital, Jerusalem, Israel
| | - Ido D Weiss
- Goldyne Savad Institute of Gene Therapy, Hebrew University Hospital, Jerusalem, Israel
| | - Neta Barashi
- Goldyne Savad Institute of Gene Therapy, Hebrew University Hospital, Jerusalem, Israel
| | - Rinat Abramovitch
- Goldyne Savad Institute of Gene Therapy, Hebrew University Hospital, Jerusalem, Israel
| | - Hanna Wald
- Biokine Therapeutics Ltd., Ness Ziona, Israel
| | - Yaniv Harel
- Goldyne Savad Institute of Gene Therapy, Hebrew University Hospital, Jerusalem, Israel
| | - Devorah Olam
- Goldyne Savad Institute of Gene Therapy, Hebrew University Hospital, Jerusalem, Israel
| | - Lola Weiss
- Goldyne Savad Institute of Gene Therapy, Hebrew University Hospital, Jerusalem, Israel
| | - Katia Beider
- Hematology Division, Chaim Sheba Medical Center and Tel Aviv University, Tel-Hashomer, Israel
| | | | - Ori Wald
- Goldyne Savad Institute of Gene Therapy, Hebrew University Hospital, Jerusalem, Israel
| | - Eithan Galun
- Goldyne Savad Institute of Gene Therapy, Hebrew University Hospital, Jerusalem, Israel
| | | | - Amnon Peled
- Goldyne Savad Institute of Gene Therapy, Hebrew University Hospital, Jerusalem, Israel. .,Biokine Therapeutics Ltd., Ness Ziona, Israel
| |
Collapse
|
90
|
Kantamneni H, Zevon M, Donzanti MJ, Zhao X, Sheng Y, Barkund SR, McCabe LH, Banach-Petrosky W, Higgins LM, Ganesan S, Riman RE, Roth CM, Tan MC, Pierce MC, Ganapathy V, Moghe PV. Surveillance nanotechnology for multi-organ cancer metastases. Nat Biomed Eng 2017. [PMID: 29531851 PMCID: PMC5844578 DOI: 10.1038/s41551-017-0167-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The identification and molecular profiling of early metastases remains a major challenge in cancer diagnostics and therapy. Most in vivo imaging methods fail to detect small cancerous lesions, a problem that is compounded by the distinct physical and biological barriers associated with different metastatic niches. Here, we show that intravenously injected rare-earth-doped albumin-encapsulated nanoparticles emitting short-wave infrared light (SWIR) can detect targeted metastatic lesions in vivo, allowing for the longitudinal tracking of multi-organ metastases. In a murine model of basal human breast cancer, the nanoprobes enabled whole-body SWIR detection of adrenal gland microlesions and bone lesions that were undetectable via contrast-enhanced magnetic resonance imaging (CE-MRI) as early as, respectively, three weeks and five weeks post-inoculation. Whole-body SWIR imaging of nanoprobes functionalized to differentially target distinct metastatic sites and administered to a biomimetic murine model of human breast cancer resolved multi-organ metastases that showed varied molecular profiles at the lungs, adrenal glands and bones. Real-time surveillance of lesions in multiple organs should facilitate pre-therapy and post-therapy monitoring in preclinical settings.
Collapse
Affiliation(s)
- Harini Kantamneni
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Margot Zevon
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Michael J Donzanti
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Xinyu Zhao
- Engineering Product Development, Singapore University of Technology and Design, Singapore, Singapore
| | - Yang Sheng
- Engineering Product Development, Singapore University of Technology and Design, Singapore, Singapore
| | - Shravani R Barkund
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Lucas H McCabe
- Department of Computer Science, Rutgers University, Piscataway, NJ, USA
| | | | - Laura M Higgins
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Richard E Riman
- Department of Materials Science and Engineering, Rutgers University, Piscataway, NJ, USA
| | - Charles M Roth
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ, USA.,Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Mei-Chee Tan
- Engineering Product Development, Singapore University of Technology and Design, Singapore, Singapore
| | - Mark C Pierce
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA.
| | - Vidya Ganapathy
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA.
| | - Prabhas V Moghe
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ, USA. .,Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
91
|
|
92
|
Di Maro S, Di Leva FS, Trotta AM, Brancaccio D, Portella L, Aurilio M, Tomassi S, Messere A, Sementa D, Lastoria S, Carotenuto A, Novellino E, Scala S, Marinelli L. Structure–Activity Relationships and Biological Characterization of a Novel, Potent, and Serum Stable C-X-C Chemokine Receptor Type 4 (CXCR4) Antagonist. J Med Chem 2017; 60:9641-9652. [DOI: 10.1021/acs.jmedchem.7b01062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Salvatore Di Maro
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Caserta 81100, Italy
| | - Francesco Saverio Di Leva
- Department
of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Anna Maria Trotta
- Functional
Genomics Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori “Fondazione Giovanni Pascale”, IRCCS, Via M. Semmola 52, 80131 Naples, Italy
| | - Diego Brancaccio
- Department
of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Luigi Portella
- Functional
Genomics Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori “Fondazione Giovanni Pascale”, IRCCS, Via M. Semmola 52, 80131 Naples, Italy
| | - Michela Aurilio
- Nuclear
Medicine Unit, Department of Diagnostic Imaging, Radiant and Metabolic
Therapy, Istituto Nazionale per lo Studio e la Cura dei Tumori “Fondazione Giovanni Pascale”, IRCCS, Via M. Semmola
52, 80131 Naples, Italy
| | - Stefano Tomassi
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Caserta 81100, Italy
| | - Anna Messere
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Caserta 81100, Italy
| | - Deborah Sementa
- Department
of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Secondo Lastoria
- Nuclear
Medicine Unit, Department of Diagnostic Imaging, Radiant and Metabolic
Therapy, Istituto Nazionale per lo Studio e la Cura dei Tumori “Fondazione Giovanni Pascale”, IRCCS, Via M. Semmola
52, 80131 Naples, Italy
| | - Alfonso Carotenuto
- Department
of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Ettore Novellino
- Department
of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Stefania Scala
- Functional
Genomics Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori “Fondazione Giovanni Pascale”, IRCCS, Via M. Semmola 52, 80131 Naples, Italy
| | - Luciana Marinelli
- Department
of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| |
Collapse
|
93
|
Nazari A, Khorramdelazad H, Hassanshahi G. Biological/pathological functions of the CXCL12/CXCR4/CXCR7 axes in the pathogenesis of bladder cancer. Int J Clin Oncol 2017; 22:991-1000. [PMID: 29022185 DOI: 10.1007/s10147-017-1187-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/21/2017] [Indexed: 12/14/2022]
Abstract
CXC chemokine ligand 12 (CXCL12) is an important member of the CXC subfamily of chemokines, and has been extensively studied in various human body organs and systems, both in physiological and clinical states. Ligation of CXCL12 to CXCR4 and CXCR7 as its receptors on peripheral immune cells gives rise to pleiotropic activities. CXCL12 itself is a highly effective chemoattractant which conservatively attracts lymphocytes and monocytes, whereas there exists no evidence to show attraction for neutrophils. CXCL12 regulates inflammation, neo-vascularization, metastasis, and tumor growth, phenomena which are all pivotally involved in cancer development and further metastasis. Generation and secretion of CXCL12 by stromal cells facilitate attraction of cancer cells, acting through its cognate receptor, CXCR4, which is expressed by both hematopoietic and non-hematopoietic tumor cells. CXCR4 stimulates tumor progression by different mechanisms and is required for metastatic spread to organs where CXCL12 is expressed, thereby allowing tumor cells to access cellular niches, such as the marrow, which favor tumor cell survival and proliferation. It has also been demonstrated that CXCL12 binds to another seven-transmembrane G-protein receptor or G-protein-coupled receptor, namely CXCR7. These studies indicated critical roles for CXCR4 and CXCR7 mediation of tumor metastasis in several types of cancers, suggesting their contributions as biomarkers of tumor behavior as well as potential therapeutic targets. Furthermore, CXCL12 itself has the capability to stimulate survival and growth of neoplastic cells in a paracrine fashion. CXCL12 is a supportive chemokine for tumor neovascularization via attracting endothelial cells to the tumor microenvironment. It has been suggested that elevated protein and mRNA levels of CXCL12/CXCR4/CXCR7 are associated with human bladder cancer (BC). Taken together, mounting evidence suggests a role for CXCR4, CXCR7, and their ligand CXCL12 during the genesis of BC and its further development. However, a better understanding is still required before exploring CXCL12/CXCR4/CXCR7 targeting in the clinic.
Collapse
Affiliation(s)
- Alireza Nazari
- Department of Surgery, School of Medicine, Rafsanjan University of Medical Science, Rafsanjan, Iran.,Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein Khorramdelazad
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran. .,Department of Immunology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
94
|
Ferrari G, Cavazzana M, Mavilio F. Gene Therapy Approaches to Hemoglobinopathies. Hematol Oncol Clin North Am 2017; 31:835-852. [PMID: 28895851 DOI: 10.1016/j.hoc.2017.06.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Gene therapy for hemoglobinopathies is currently based on transplantation of autologous hematopoietic stem cells genetically modified with a lentiviral vector expressing a globin gene under the control of globin transcriptional regulatory elements. Preclinical and early clinical studies showed the safety and potential efficacy of this therapeutic approach as well as the hurdles still limiting its general application. In addition, for both beta-thalassemia and sickle cell disease, an altered bone marrow microenvironment reduces the efficiency of stem cell harvesting as well as engraftment. These hurdles need be addressed for gene therapy for hemoglobinopathies to become a clinical reality.
Collapse
Affiliation(s)
- Giuliana Ferrari
- San Raffaele-Telethon Institute for Gene Therapy (SR-TIGET), Istituto Scientifico Ospedale San Raffaele, Via Olgettina 58, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Marina Cavazzana
- Biotherapy Department, Necker Children's Hospital, Imagine Institute, 149 rue de Sèvres, Paris 75015, France; Paris Descartes University, INSERM UMR 1163, Paris, France
| | - Fulvio Mavilio
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy.
| |
Collapse
|
95
|
Heusinkveld LE, Yim E, Yang A, Azani AB, Liu Q, Gao JL, McDermott DH, Murphy PM. Pathogenesis, diagnosis and therapeutic strategies in WHIM syndrome immunodeficiency. Expert Opin Orphan Drugs 2017; 5:813-825. [PMID: 29057173 DOI: 10.1080/21678707.2017.1375403] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
21 INTRODUCTION WHIM syndrome is a rare combined primary immunodeficiency disorder caused by autosomal dominant gain-of-function mutations in the chemokine receptor CXCR4. It is the only Mendelian condition known to be caused by mutation of a chemokine or chemokine receptor. As such, it provides a scientific opportunity to understand chemokine-dependent immunoregulation in humans and a medical opportunity to develop mechanism-based treatment and cure strategies. 22 AREAS COVERED This review covers the clinical features, genetics, immunopathogenesis and clinical management of WHIM syndrome. Clinical trials of targeted therapeutic agents and potential cure strategies are also included. 23 EXPERT OPINION WHIM syndrome may be particularly amenable to mechanism-based therapeutics for three reasons: 1) CXCR4 has been validated as the molecular target in the disease by Mendelian genetics; 2) the biochemical abnormality is excessive CXCR4 signaling; and 3) antagonists selective for CXCR4 have been developed. Plerixafor is FDA-approved for hematopoietic stem cell (HSC) mobilization and has shown preliminary safety and efficacy in phase I clinical trials in WHIM syndrome. Gene editing may represent a viable cure strategy, since chromothriptic deletion of the disease allele in HSCs resulted in clinical cure of a patient and because CXCR4 haploinsufficiency enhances engraftment of transplanted HSCs in mice.
Collapse
Affiliation(s)
- Lauren E Heusinkveld
- Laboratory of Molecular Immunology, Bldg 10, Room 11N113, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Erin Yim
- Laboratory of Molecular Immunology, Bldg 10, Room 11N113, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Alexander Yang
- Laboratory of Molecular Immunology, Bldg 10, Room 11N113, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ari B Azani
- Laboratory of Molecular Immunology, Bldg 10, Room 11N113, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Qian Liu
- Laboratory of Molecular Immunology, Bldg 10, Room 11N113, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ji-Liang Gao
- Laboratory of Molecular Immunology, Bldg 10, Room 11N113, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - David H McDermott
- Laboratory of Molecular Immunology, Bldg 10, Room 11N113, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Philip M Murphy
- Laboratory of Molecular Immunology, Bldg 10, Room 11N113, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
96
|
de Wit RH, Heukers R, Brink HJ, Arsova A, Maussang D, Cutolo P, Strubbe B, Vischer HF, Bachelerie F, Smit MJ. CXCR4-Specific Nanobodies as Potential Therapeutics for WHIM syndrome. J Pharmacol Exp Ther 2017; 363:35-44. [PMID: 28768817 DOI: 10.1124/jpet.117.242735] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 07/10/2017] [Indexed: 12/15/2022] Open
Abstract
WHIM syndrome is a rare congenital immunodeficiency disease, named after its main clinical manifestations: warts, hypogammaglobulinemia, infections, and myelokathexis, which refers to abnormal accumulation of mature neutrophils in the bone marrow. The disease is primarily caused by C-terminal truncation mutations of the chemokine receptor CXCR4, giving these CXCR4-WHIM mutants a gain of function in response to their ligand CXCL12. Considering the broad functions of CXCR4 in maintaining leukocyte homeostasis, patients are panleukopenic and display altered immune responses, likely as a consequence of impairment in the differentiation and trafficking of leukocytes. Treatment of WHIM patients currently consists of symptom relief, leading to unsatisfactory clinical responses. As an alternative and potentially more effective approach, we tested the potency and efficacy of CXCR4-specific nanobodies on inhibiting CXCR4-WHIM mutants. Nanobodies are therapeutic proteins based on the smallest functional fragments of heavy chain antibodies. They combine the advantages of small-molecule drugs and antibody-based therapeutics due to their relative small size, high stability, and high affinity. We compared the potential of monovalent and bivalent CXCR4-specific nanobodies to inhibit CXCL12-induced CXCR4-WHIM-mediated signaling with the small-molecule clinical candidate AMD3100. The CXCR4-targeting nanobodies displace CXCL12 binding and bind CXCR4-wild type and CXCR4-WHIM (R334X/S338X) mutants and with (sub-) nanomolar affinities. The nanobodies' epitope was mapped to extracellular loop 2 of CXCR4, overlapping with the binding site of CXCL12. Monovalent, and in particular bivalent, nanobodies were more potent than AMD3100 in reducing CXCL12-mediated G protein activation. In addition, CXCR4-WHIM-dependent calcium flux and wound healing of human papillomavirus-immortalized cell lines in response to CXCL12 was effectively inhibited by the nanobodies. Based on these in vitro results, we conclude that CXCR4 nanobodies hold significant potential as alternative therapeutics for CXCR4-associated diseases such as WHIM syndrome.
Collapse
Affiliation(s)
- Raymond H de Wit
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.H.d.W., R.H., H.J.B., A.A., D.M., H.F.V, M.J.S.); Inflammation Chemokines and Immunopathology, INSERM, Faculté de Médicine-Université Paris-Sud, Université Paris-Saclay, Clamart, France (P.C., F.B.); and Ablynx N.V., Zwijnaarde, Belgrium (B.S.)
| | - Raimond Heukers
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.H.d.W., R.H., H.J.B., A.A., D.M., H.F.V, M.J.S.); Inflammation Chemokines and Immunopathology, INSERM, Faculté de Médicine-Université Paris-Sud, Université Paris-Saclay, Clamart, France (P.C., F.B.); and Ablynx N.V., Zwijnaarde, Belgrium (B.S.)
| | - Hendrik J Brink
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.H.d.W., R.H., H.J.B., A.A., D.M., H.F.V, M.J.S.); Inflammation Chemokines and Immunopathology, INSERM, Faculté de Médicine-Université Paris-Sud, Université Paris-Saclay, Clamart, France (P.C., F.B.); and Ablynx N.V., Zwijnaarde, Belgrium (B.S.)
| | - Angela Arsova
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.H.d.W., R.H., H.J.B., A.A., D.M., H.F.V, M.J.S.); Inflammation Chemokines and Immunopathology, INSERM, Faculté de Médicine-Université Paris-Sud, Université Paris-Saclay, Clamart, France (P.C., F.B.); and Ablynx N.V., Zwijnaarde, Belgrium (B.S.)
| | - David Maussang
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.H.d.W., R.H., H.J.B., A.A., D.M., H.F.V, M.J.S.); Inflammation Chemokines and Immunopathology, INSERM, Faculté de Médicine-Université Paris-Sud, Université Paris-Saclay, Clamart, France (P.C., F.B.); and Ablynx N.V., Zwijnaarde, Belgrium (B.S.)
| | - Pasquale Cutolo
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.H.d.W., R.H., H.J.B., A.A., D.M., H.F.V, M.J.S.); Inflammation Chemokines and Immunopathology, INSERM, Faculté de Médicine-Université Paris-Sud, Université Paris-Saclay, Clamart, France (P.C., F.B.); and Ablynx N.V., Zwijnaarde, Belgrium (B.S.)
| | - Beatrijs Strubbe
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.H.d.W., R.H., H.J.B., A.A., D.M., H.F.V, M.J.S.); Inflammation Chemokines and Immunopathology, INSERM, Faculté de Médicine-Université Paris-Sud, Université Paris-Saclay, Clamart, France (P.C., F.B.); and Ablynx N.V., Zwijnaarde, Belgrium (B.S.)
| | - Henry F Vischer
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.H.d.W., R.H., H.J.B., A.A., D.M., H.F.V, M.J.S.); Inflammation Chemokines and Immunopathology, INSERM, Faculté de Médicine-Université Paris-Sud, Université Paris-Saclay, Clamart, France (P.C., F.B.); and Ablynx N.V., Zwijnaarde, Belgrium (B.S.)
| | - Françoise Bachelerie
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.H.d.W., R.H., H.J.B., A.A., D.M., H.F.V, M.J.S.); Inflammation Chemokines and Immunopathology, INSERM, Faculté de Médicine-Université Paris-Sud, Université Paris-Saclay, Clamart, France (P.C., F.B.); and Ablynx N.V., Zwijnaarde, Belgrium (B.S.)
| | - Martine J Smit
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.H.d.W., R.H., H.J.B., A.A., D.M., H.F.V, M.J.S.); Inflammation Chemokines and Immunopathology, INSERM, Faculté de Médicine-Université Paris-Sud, Université Paris-Saclay, Clamart, France (P.C., F.B.); and Ablynx N.V., Zwijnaarde, Belgrium (B.S.)
| |
Collapse
|
97
|
Tsou LK, Huang YH, Song JS, Ke YY, Huang JK, Shia KS. Harnessing CXCR4 antagonists in stem cell mobilization, HIV infection, ischemic diseases, and oncology. Med Res Rev 2017; 38:1188-1234. [PMID: 28768055 DOI: 10.1002/med.21464] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/13/2017] [Accepted: 07/16/2017] [Indexed: 12/12/2022]
Abstract
CXCR4 antagonists (e.g., PlerixaforTM ) have been successfully validated as stem cell mobilizers for peripheral blood stem cell transplantation. Applications of the CXCR4 antagonists have heralded the era of cell-based therapy and opened a potential therapeutic horizon for many unmet medical needs such as kidney injury, ischemic stroke, cancer, and myocardial infarction. In this review, we first introduce the central role of CXCR4 in diverse cellular signaling pathways and discuss its involvement in several disease progressions. We then highlight the molecular design and optimization strategies for targeting CXCR4 from a large number of case studies, concluding that polyamines are the preferred CXCR4-binding ligands compared to other structural options, presumably by mimicking the highly positively charged natural ligand CXCL12. These results could be further justified with computer-aided docking into the CXCR4 crystal structure wherein both major and minor subpockets of the binding cavity are considered functionally important. Finally, from the clinical point of view, CXCR4 antagonists could mobilize hematopoietic stem/progenitor cells with long-term repopulating capacity to the peripheral blood, promising to replace surgically obtained bone marrow cells as a preferred source for stem cell transplantation.
Collapse
Affiliation(s)
- Lun Kelvin Tsou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan, ROC
| | | | - Jen-Shin Song
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan, ROC
| | - Yi-Yu Ke
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan, ROC
| | - Jing-Kai Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan, ROC
| | - Kak-Shan Shia
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, Taiwan, ROC
| |
Collapse
|
98
|
Merani S, Truong WW, Hancock W, Anderson CC, Shapiro AMJ. Chemokines and Their Receptors in Islet Allograft Rejection and as Targets for Tolerance Induction. Cell Transplant 2017; 15:295-309. [PMID: 28863747 DOI: 10.3727/000000006783981963] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Graft rejection is a major barrier to successful outcome of transplantation surgery. Islet transplantation introduces insulin secreting tissue into type 1 diabetes mellitus recipients, relieving patients from exogenous insulin injection. However, insulitis of grafted tissue and allograft rejection prevent long-term insulin independence. Leukocyte trafficking is necessary for the launch of successful immune responses to pathogen or allograft. Chemokines, small chemotactic cytokines, direct the migration of leukocytes through their interaction with chemokine receptors found on cell surfaces of immune cells. Unique receptor expression of leukocytes, and the specificity of chemokine secretion during various states of immune response, suggest that the extracellular chemokine milieu specifically homes certain leukocyte subsets. Thus, only those leukocytes required for the current immune task are attracted to the inflammatory site. Chemokine blockade, using antagonists and monoclonal antibodies directed against chemokine receptors, is an emerging and specific immunosuppressive strategy. Importantly, chemokine blockade may potentiate tolerance induction regimens to be used following transplantation surgery, and prevent the need for life-long immunosuppression of islet transplant recipients. Here, the role for chemokine blockade in islet transplant rejection and tolerance is reviewed.
Collapse
Affiliation(s)
- Shaheed Merani
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton AB, Canada
| | - Wayne W Truong
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton AB, Canada
| | - Wayne Hancock
- Department of Pathology and Laboratory Medicine, Joseph Stokes, Jr. Research Institute and Biesecker Pediatric Liver Center, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Colin C Anderson
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton AB, Canada
| | - A M James Shapiro
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton AB, Canada
| |
Collapse
|
99
|
Varicella zoster virus glycoprotein C increases chemokine-mediated leukocyte migration. PLoS Pathog 2017; 13:e1006346. [PMID: 28542541 PMCID: PMC5444840 DOI: 10.1371/journal.ppat.1006346] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/11/2017] [Indexed: 02/07/2023] Open
Abstract
Varicella zoster virus (VZV) is a highly prevalent human pathogen that establishes latency in neurons of the peripheral nervous system. Primary infection causes varicella whereas reactivation results in zoster, which is often followed by chronic pain in adults. Following infection of epithelial cells in the respiratory tract, VZV spreads within the host by hijacking leukocytes, including T cells, in the tonsils and other regional lymph nodes, and modifying their activity. In spite of its importance in pathogenesis, the mechanism of dissemination remains poorly understood. Here we addressed the influence of VZV on leukocyte migration and found that the purified recombinant soluble ectodomain of VZV glycoprotein C (rSgC) binds chemokines with high affinity. Functional experiments show that VZV rSgC potentiates chemokine activity, enhancing the migration of monocyte and T cell lines and, most importantly, human tonsillar leukocytes at low chemokine concentrations. Binding and potentiation of chemokine activity occurs through the C-terminal part of gC ectodomain, containing predicted immunoglobulin-like domains. The mechanism of action of VZV rSgC requires interaction with the chemokine and signalling through the chemokine receptor. Finally, we show that VZV viral particles enhance chemokine-dependent T cell migration and that gC is partially required for this activity. We propose that VZV gC activity facilitates the recruitment and subsequent infection of leukocytes and thereby enhances VZV systemic dissemination in humans. Varicella zoster virus (VZV) causes two main pathologies in humans, chickenpox during primary infection, and shingles following reactivation. The latter is a painful condition that is often followed by chronic pain in a large numbers of shingles patients. Despite the existence of a vaccine, shingles-related complications cause expenses of more than $1 billion per year in the USA alone. Following primary infection, the virus infects leukocytes including T cells, spreading to the skin causing chickenpox. Direct infection of neurons from leukocytes has also been postulated. Given the relevance of leukocytes in VZV biology and the importance of chemokines in directing their migration, we investigated whether VZV modulates the function of chemokines. Our results show that VZV glycoprotein C potentiates the activity of chemokines, inducing higher migration of human leukocytes at low chemokine concentration. This may attract additional susceptible leukocytes to the site of infection enhancing virus spread and pathogenesis.
Collapse
|
100
|
Ahmed M, Basheer HA, Ayuso JM, Ahmet D, Mazzini M, Patel R, Shnyder SD, Vinader V, Afarinkia K. Agarose Spot as a Comparative Method for in situ Analysis of Simultaneous Chemotactic Responses to Multiple Chemokines. Sci Rep 2017; 7:1075. [PMID: 28432337 PMCID: PMC5430824 DOI: 10.1038/s41598-017-00949-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/20/2017] [Indexed: 01/07/2023] Open
Abstract
We describe a novel protocol to quantitatively and simultaneously compare the chemotactic responses of cells towards different chemokines. In this protocol, droplets of agarose gel containing different chemokines are applied onto the surface of a Petri dish, and then immersed under culture medium in which cells are suspended. As chemokine molecules diffuse away from the spot, a transient chemoattractant gradient is established across the spots. Cells expressing the corresponding cognate chemokine receptors migrate against this gradient by crawling under the agarose spots towards their centre. We show that this migration is chemokine-specific; meaning that only cells that express the cognate chemokine cell surface receptor, migrate under the spot containing its corresponding chemokine ligand. Furthermore, we show that migration under the agarose spot can be modulated by selective small molecule antagonists present in the cell culture medium.
Collapse
Affiliation(s)
- Mohaned Ahmed
- The Institute of Cancer Therapeutics, University of Bradford, West Yorkshire, BD7 1DP, United Kingdom
| | - Haneen A Basheer
- The Institute of Cancer Therapeutics, University of Bradford, West Yorkshire, BD7 1DP, United Kingdom
| | - Jose M Ayuso
- Group of Structural Mechanics and Material Modelling, Universidad Zaragoza, Zaragoza, Spain.,Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, and The University of Wisconsin Carbone Cancer Center Madison, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Djevdet Ahmet
- The Institute of Cancer Therapeutics, University of Bradford, West Yorkshire, BD7 1DP, United Kingdom
| | - Marco Mazzini
- Dipartimento di Scienza e Tecnologia del Farmaco, Universitá Degli Studi di Torino, Via P. Giuria 9, 10125, Torino, Italy
| | - Roshan Patel
- The Institute of Cancer Therapeutics, University of Bradford, West Yorkshire, BD7 1DP, United Kingdom
| | - Steven D Shnyder
- The Institute of Cancer Therapeutics, University of Bradford, West Yorkshire, BD7 1DP, United Kingdom
| | - Victoria Vinader
- The Institute of Cancer Therapeutics, University of Bradford, West Yorkshire, BD7 1DP, United Kingdom
| | - Kamyar Afarinkia
- The Institute of Cancer Therapeutics, University of Bradford, West Yorkshire, BD7 1DP, United Kingdom.
| |
Collapse
|