51
|
Newman CL, Chen NX, Smith E, Smith M, Brown D, Moe SM, Allen MR. Compromised vertebral structural and mechanical properties associated with progressive kidney disease and the effects of traditional pharmacological interventions. Bone 2015; 77:50-6. [PMID: 25892482 PMCID: PMC4447592 DOI: 10.1016/j.bone.2015.04.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/19/2015] [Accepted: 04/11/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIMS Patients with chronic kidney disease mineral and bone disorder (CKD-MBD) have a significantly higher vertebral and non-vertebral fracture risk than the general population. Several preclinical models have documented altered skeletal properties in long bones, but few data exist for vertebral bone. The goal of this study was to examine the effects of progressive CKD on vertebral bone structure and mechanics and to determine the effects of treatment with either bisphosphonates or anti-sclerostin antibody in groups of animals with high or low PTH. METHODS Animals with progressive kidney disease were left untreated, treated with calcium to lower PTH, zoledronic acid to lower remodeling without affecting PTH, anti-sclerostin antibody, or anti-sclerostin antibody plus calcium. Non-diseased, untreated littermates served as controls. Vertebral bone morphology (trabecular and cortical) and mechanical properties (structural and material-level) were assessed at 35 weeks of age by microCT and mechanical testing, respectively. RESULTS CKD with high PTH resulted in 6-fold higher bone formation rate, significant reductions in the amount of trabecular and cortical bone, and compromised whole bone mechanical properties in the vertebra compared to normal animals. Treatments that reduced bone remodeling were effective in normalizing vertebral structure and mechanical properties only if the treatment reduced serum PTH. Similarly, treatment with anti-sclerostin antibody was effective in enhancing bone mass and mechanical properties but only if combined with PTH-suppressive treatment. CONCLUSIONS CKD significantly altered both cortical and trabecular bone properties in the vertebra resulting in compromised mechanical properties and these changes can be normalized by interventions that involve reductions in PTH levels.
Collapse
Affiliation(s)
| | - Neal X Chen
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Eric Smith
- Department of Anatomy and Cell Biology, Indianapolis, IN, United States
| | - Mark Smith
- Department of Anatomy and Cell Biology, Indianapolis, IN, United States
| | - Drew Brown
- Department of Anatomy and Cell Biology, Indianapolis, IN, United States
| | - Sharon M Moe
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States; Roudebush VA Medical Center, Indianapolis, IN, United States
| | - Matthew R Allen
- Department of Anatomy and Cell Biology, Indianapolis, IN, United States; Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
52
|
Hruska KA, Seifert M, Sugatani T. Pathophysiology of the chronic kidney disease-mineral bone disorder. Curr Opin Nephrol Hypertens 2015; 24:303-9. [PMID: 26050115 PMCID: PMC4699443 DOI: 10.1097/mnh.0000000000000132] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The causes of excess cardiovascular mortality associated with chronic kidney disease (CKD) have been attributed in part to the CKD-mineral bone disorder syndrome (CKD-MBD), wherein, novel cardiovascular risk factors have been identified. The causes of the CKD-MBD are not well known and they will be discussed in this review RECENT FINDINGS The discovery of WNT (portmanteau of wingless and int) inhibitors, especially Dickkopf 1, produced during renal repair and participating in the pathogenesis of the vascular and skeletal components of the CKD-MBD implied that additional pathogenic factors are critical, leading to the finding that activin A is a second renal repair factor circulating in increased levels during CKD. Activin A derives from peritubular myofibroblasts of diseased kidneys, where it stimulates fibrosis, and decreases tubular klotho expression. The type 2 activin A receptor, ActRIIA, is decreased by CKD in atherosclerotic aortas, specifically in vascular smooth muscle cells (VSMC). Inhibition of activin signaling by a ligand trap inhibited CKD induced VSMC dedifferentiation, osteogenic transition and atherosclerotic calcification. Inhibition of activin signaling in the kidney decreased renal fibrosis and proteinuria. SUMMARY These studies demonstrate that circulating renal repair factors are causal for the CKD-MBD and CKD associated cardiovascular disease, and identify ActRIIA signaling as a therapeutic target in CKD that links progression of renal disease and vascular disease.
Collapse
Affiliation(s)
- Keith A. Hruska
- Department of Pediatrics, Nephrology, Washington University Saint Louis, MO
- Departments of Medicine and Cell Biology Washington University Saint Louis, MO
| | - Michael Seifert
- Department of Pediatrics, Nephrology, Washington University Saint Louis, MO
- Department of Pediatrics, Nephrology, Southern Illinois University, Springfield IL
| | - Toshifumi Sugatani
- Department of Pediatrics, Nephrology, Washington University Saint Louis, MO
| |
Collapse
|
53
|
Büyükkaragöz B, Bakkaloglu SA, Kandur Y, Isiyel E, Akcaboy M, Buyan N, Hasanoglu E. The evaluation of bone metabolism in children with renal transplantation. Pediatr Transplant 2015; 19:351-7. [PMID: 25819470 DOI: 10.1111/petr.12469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2015] [Indexed: 01/16/2023]
Abstract
This study aims to evaluate BMD and bone biomarkers and to investigate the effects of immunosuppressives on bone disease after RTx. Thirty-three RTR aged 16.7 ± 3.7 yr and healthy controls (n = 32) were enrolled. There was no difference between pre-RTx BMD and BMD at the time of study (45.9 ± 30.9 months after RTx), while both values were lower than controls (p < 0.01 and p < 0.05, respectively). Worst BMD scores were obtained at sixth month after RTx (-0.2 ± 0.9) and best at fourth year (1.4 ± 1.3). 25-hydroxy-(OH) vitamin D and OPG were higher in RTR (p < 0.001). BMD z scores negatively correlated with OPG and cumulative CS doses at the time of study (r = -0.344, p < 0.05 and r = -0.371, p < 0.05, respectively). Regression analysis revealed OPG as the only predictor of BMD (β -0.78, 95% CI -0.004 to -0.013, p < 0.001). The increase in OPG, a significant predictor of BMD, could either be secondary to graft dysfunction or for protection against bone loss. CS doses should be minimized to avoid their untoward effects on bone metabolism.
Collapse
|
54
|
Tu SJ, Huang HW, Chang WJ. X-ray imaging characterization of femoral bones in aging mice with osteopetrotic disorder. Micron 2015; 71:14-21. [DOI: 10.1016/j.micron.2014.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/03/2014] [Accepted: 12/22/2014] [Indexed: 01/16/2023]
|
55
|
Allen MR, Newman CL, Chen N, Granke M, Nyman JS, Moe SM. Changes in skeletal collagen cross-links and matrix hydration in high- and low-turnover chronic kidney disease. Osteoporos Int 2015; 26:977-85. [PMID: 25466530 PMCID: PMC4512757 DOI: 10.1007/s00198-014-2978-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/24/2014] [Indexed: 12/30/2022]
Abstract
UNLABELLED Chronic kidney disease (CKD) increases fracture risk. The results of this work point to changes in bone collagen and bone hydration as playing a role in bone fragility associated with CKD. INTRODUCTION Clinical data have documented a clear increase in fracture risk associated with chronic kidney disease (CKD). Preclinical studies have shown reductions in bone mechanical properties although the tissue-level mechanisms for these differences remain unclear. The goal of this study was to assess collagen cross-links and matrix hydration, two variables known to affect mechanical properties, in animals with either high- or low-turnover CKD. METHODS At 35 weeks of age (>75% reduction in kidney function), the femoral diaphysis of male Cy/+ rats with high or low bone turnover rates, along with normal littermate (NL) controls, were assessed for collagen cross-links (pyridinoline (Pyd), deoxypyridinoline (Dpd), and pentosidine (PE)) using a high-performance liquid chromatography (HPLC) assay as well as pore and bound water per volume (pw and bw) using a (1)H nuclear magnetic resonance (NMR) technique. Material-level biomechanical properties were calculated based on previously published whole bone mechanical tests. RESULTS Cortical bone from animals with high-turnover disease had lower Pyd and Dpd cross-link levels (-21% each), lower bw (-10%), higher PE (+71%), and higher pw (+46%) compared to NL. Animals with low turnover had higher Dpd, PE (+71%), and bw (+7%) along with lower pw (-60%) compared to NL. Both high- and low-turnover animals had reduced material-level bone toughness compared to NL animals as determined by three-point bending. CONCLUSIONS These data document an increase in skeletal PE with advanced CKD that is independent of bone turnover rate and inversely related to decline in kidney function. Although hydration changes occur in both high- and low-turnover disease, the data suggest that nonenzymatic collagen cross-links may be a key factor in compromised mechanical properties of CKD.
Collapse
Affiliation(s)
- M R Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Dr., MS 5035, Indianapolis, IN, 46202, USA,
| | | | | | | | | | | |
Collapse
|
56
|
Paschalis EP, Gamsjaeger S, Tatakis DN, Hassler N, Robins SP, Klaushofer K. Fourier transform Infrared spectroscopic characterization of mineralizing type I collagen enzymatic trivalent cross-links. Calcif Tissue Int 2015; 96:18-29. [PMID: 25424977 DOI: 10.1007/s00223-014-9933-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 11/15/2014] [Indexed: 01/10/2023]
Abstract
The most abundant protein of bone's organic matrix is collagen. One of its most important properties is its cross-linking pattern, which is responsible for the fibrillar matrices' mechanical properties such as tensile strength and viscoelasticity. We have previously described a spectroscopic method based on the resolution of the Amide I and II Fourier transform Infrared (FTIR) bands to their underlying constituent peaks, which allows the determination of divalent and pyridinoline (PYD) collagen cross-links in mineralized thin bone tissue sections with a spatial resolution of ~6.3 μm. In the present study, we used FTIR analysis of a series of biochemically characterized collagen peptides, as well as skin, dentin, and predentin, to examine the potential reasons underlying discrepancies between two different analytical methodologies specifically related to spectral processing. The results identified a novel distinct FTIR underlying peak at ~1,680 cm(-1), correlated with deoxypyridinoline (DPD) content. Furthermore, the two different methods of spectral resolution result in widely different results, while only the method employing well-established spectroscopic routines for spectral resolution provided biologically relevant results, confirming our earlier studies relating the area of the underlying 1,660 cm(-1) with PYD content. The results of the present study describe a new peak that may be used to determine DPD content, confirm our earlier report relating spectroscopic parameters to PYD content, and highlight the importance of the selected spectral resolution methodology.
Collapse
Affiliation(s)
- E P Paschalis
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Hanusch Krankenhaus, Heinrich Collin Str. 30, 1140, Vienna, Austria,
| | | | | | | | | | | |
Collapse
|
57
|
Taksande SR, Worcester EM. Calcium supplementation in chronic kidney disease. Expert Opin Drug Saf 2014; 13:1175-85. [DOI: 10.1517/14740338.2014.937421] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
58
|
Newman CL, Moe SM, Chen NX, Hammond MA, Wallace JM, Nyman JS, Allen MR. Cortical bone mechanical properties are altered in an animal model of progressive chronic kidney disease. PLoS One 2014; 9:e99262. [PMID: 24911162 PMCID: PMC4049798 DOI: 10.1371/journal.pone.0099262] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 04/27/2014] [Indexed: 01/23/2023] Open
Abstract
Chronic kidney disease (CKD), which leads tocortical bone loss and increasedporosity,increases therisk of fracture. Animal models have confirmed that these changes compromise whole bone mechanical properties. Estimates from whole bone testing suggest that material properties are negatively affected, though tissue-level assessmentshavenot been conducted. Therefore, the goal of the present study was to examine changes in cortical bone at different length scales using a rat model with theprogressive development of CKD. At 30 weeks of age (∼75% reduction in kidney function), skeletally mature male Cy/+ rats were compared to their normal littermates. Cortical bone material propertieswere assessed with reference point indentation (RPI), atomic force microscopy (AFM), Raman spectroscopy,and high performance liquid chromatography (HPLC). Bones from animals with CKD had higher (+18%) indentation distance increase and first cycle energy dissipation (+8%) as measured by RPI.AFM indentation revealed a broader distribution of elastic modulus values in CKD animals witha greater proportion of both higher and lower modulus values compared to normal controls. Yet, tissue composition, collagen morphology, and collagen cross-linking fail to account for these differences. Though the specific skeletal tissue alterations responsible for these mechanical differences remain unclear, these results indicate that cortical bone material properties are altered in these animals and may contribute to the increased fracture risk associated with CKD.
Collapse
Affiliation(s)
- Christopher L. Newman
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Sharon M. Moe
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Roudebush VA Medical Center, Indianapolis, Indiana, United States of America
| | - Neal X. Chen
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Max A. Hammond
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Joseph M. Wallace
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Department of Biomedical Engineering, Indiana University—Purdue University, Indianapolis, Indiana, United States of America
| | - Jeffry S. Nyman
- Department of Orthopaedic Surgery and Rehabilitation and Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Matthew R. Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|