51
|
Antunes-Lopes T, Coelho A, Pinto R, Barros SC, Cruz CD, Cruz F, Silva CM. Urinary Neurotrophin Levels Increase in Women With Stress Urinary Incontinence After a Midurethral Sling Procedure. Urology 2017; 99:49-56. [DOI: 10.1016/j.urology.2016.08.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/17/2016] [Accepted: 08/22/2016] [Indexed: 12/17/2022]
|
52
|
Antunes-Lopes T, Coelho A, Pinto R, Barros SC, Cruz CD, Cruz F, Silva CM. Author Reply. Urology 2016; 99:55-56. [PMID: 27832907 DOI: 10.1016/j.urology.2016.08.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tiago Antunes-Lopes
- Department of Urology, Hospital de S. João, Porto, Portugal; Faculty of Medicine, University of Porto, Portugal; I3S - Instituto de Inovação e Investigação em Saúde, IBMC - Institute for Molecular and Cell Biology, University of Porto, Portugal
| | - Ana Coelho
- I3S - Instituto de Inovação e Investigação em Saúde, IBMC - Institute for Molecular and Cell Biology, University of Porto, Portugal; Department of Experimental Biology, Faculty of Medicine, University of Porto, Portugal
| | - Rui Pinto
- Department of Urology, Hospital de S. João, Porto, Portugal; Faculty of Medicine, University of Porto, Portugal; I3S - Instituto de Inovação e Investigação em Saúde, IBMC - Institute for Molecular and Cell Biology, University of Porto, Portugal
| | - Sérgio C Barros
- I3S - Instituto de Inovação e Investigação em Saúde, IBMC - Institute for Molecular and Cell Biology, University of Porto, Portugal; Department of Experimental Biology, Faculty of Medicine, University of Porto, Portugal
| | - Célia D Cruz
- I3S - Instituto de Inovação e Investigação em Saúde, IBMC - Institute for Molecular and Cell Biology, University of Porto, Portugal; Department of Experimental Biology, Faculty of Medicine, University of Porto, Portugal
| | - Francisco Cruz
- Department of Urology, Hospital de S. João, Porto, Portugal; Faculty of Medicine, University of Porto, Portugal; I3S - Instituto de Inovação e Investigação em Saúde, IBMC - Institute for Molecular and Cell Biology, University of Porto, Portugal
| | - Carlos M Silva
- Department of Urology, Hospital de S. João, Porto, Portugal; Faculty of Medicine, University of Porto, Portugal; I3S - Instituto de Inovação e Investigação em Saúde, IBMC - Institute for Molecular and Cell Biology, University of Porto, Portugal
| |
Collapse
|
53
|
Host Responses to Urinary Tract Infections and Emerging Therapeutics: Sensation and Pain within the Urinary Tract. Microbiol Spectr 2016; 4. [DOI: 10.1128/microbiolspec.uti-0023-2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
ABSTRACT
Urinary tract infection (UTI) pathogenesis is understood increasingly at the level of the uropathogens and the cellular and molecular mediators of host inflammatory responses. However, little is known about the mediators of symptoms during UTI and what distinguishes symptomatic events from asymptomatic bacteriuria. Here, we review bladder physiology and sensory pathways in the context of an emerging literature from murine models dissecting the host and pathogen factors mediating pain responses during UTI. The bladder urothelium is considered a mediator of sensory responses and appears to play a role in UTI pain responses. Virulence factors of uropathogens induce urothelial damage that could trigger pain due to compromised bladder-barrier function. Instead, bacterial glycolipids are the major determinants of UTI pain independent of urothelial damage, and the O-antigen of lipopolysaccharide modulates pain responses. The extent of pain modulation by O-antigen can have profound effects, from abolishing pain responses to inducing chronic pain that results in central nervous system features reminiscent of neuropathic pain. Although these effects are largely dependent upon Toll-like receptors, pain is independent of inflammation. Surprisingly, some bacteria even possess analgesic properties, suggesting that bacteria exhibit a wide range of pain phenotypes in the bladder. In summary, UTI pain is a complex form of visceral pain that has significant potential to inform our understanding of bacterial pathogenesis and raises the specter of chronic pain resulting from transient infection, as well as novel approaches to treating pain.
Collapse
|
54
|
Smolar J, Salemi S, Horst M, Sulser T, Eberli D. Stem Cells in Functional Bladder Engineering. Transfus Med Hemother 2016; 43:328-335. [PMID: 27781020 PMCID: PMC5073506 DOI: 10.1159/000447977] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/23/2016] [Indexed: 12/24/2022] Open
Abstract
Conditions impairing bladder function in children and adults, such as myelomeningocele, posterior urethral valves, bladder exstrophy or spinal cord injury, often need urinary diversion or augmentation cystoplasty as when untreated they may cause severe bladder dysfunction and kidney failure. Currently, the gold standard therapy of end-stage bladder disease refractory to conservative management is enterocystoplasty, a surgical enlargement of the bladder with intestinal tissue. Despite providing functional improvement, enterocystoplasty is associated with significant long-term complications, such as recurrent urinary tract infections, metabolic abnormalities, stone formation, and malignancies. Therefore, there is a strong clinical need for alternative therapies for these reconstructive procedures, of which stem cell-based tissue engineering (TE) is considered to be the most promising future strategy. This review is focused on the recent progress in bladder stem cell research and therapy and the challenges that remain for the development of a functional bladder wall.
Collapse
Affiliation(s)
- Jakub Smolar
- Laboratory for Tissue Engineering and Stem Cell Therapy, Department of Urology, University Hospital Zurich, Zurich, Switzerland
| | - Souzan Salemi
- Laboratory for Tissue Engineering and Stem Cell Therapy, Department of Urology, University Hospital Zurich, Zurich, Switzerland
| | - Maya Horst
- Division of Pediatric Urology, Department of Pediatric Surgery, University Children's Hospital, Zurich, Switzerland
| | - Tullio Sulser
- Laboratory for Tissue Engineering and Stem Cell Therapy, Department of Urology, University Hospital Zurich, Zurich, Switzerland
| | - Daniel Eberli
- Laboratory for Tissue Engineering and Stem Cell Therapy, Department of Urology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
55
|
Kim SK, GyuKo I, Park HJ, Chung JH, Cho KB, Kwon OY, Park KH, Ahn YS, Park CG, Kim YO. Effects of Panax ginseng on the nerve growth factor expression in testosterone induced benign prostatic hyperplasia. Saudi J Biol Sci 2016; 25:66-70. [PMID: 29379359 PMCID: PMC5775092 DOI: 10.1016/j.sjbs.2016.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/23/2016] [Accepted: 07/28/2016] [Indexed: 12/25/2022] Open
Abstract
The prostatic hyperplasia in benign prostatic hyperplasia (BPH) leads to obstructive micturition symptoms. Previous studies showed that pontine micturition center (PMC), ventrolateral periaqueductal gray (vlPAG), and medial preopticnucleus (MPA) regions in the brain have been known to regulate the urinary bladder function. The present study shows the influences of Panax ginseng on nerve growth factor (NGF) expressions in PMC, vlPAG, and MPA regions in the brain. Wistar rats were used for the present study. The rats split into four groups; 4 groups (n = 6) in control group, BPH-induced group, BPH-induced and P. ginseng-treated group, and BPH-induced and finasteride-treated group. BPH in rats was induced by testosterone and the animals were evaluated for NGF expression in PMC, vlPAG, and MPA regions in the brain. The NGF expression was identified using immunohistochemistry (IHC). The NGF expression by IHC showed spots with dark brown color. In our results, NGF expressions in PMC, vlPAG, and MPA regions in the brainstem of the BPH-induced group showed increase than the control animal. These increased NGF expressions in three regions were decreased using treatment with P. ginseng (200 mg/kg). These results suggest that P. ginseng has therapeutic effects on the symptoms of BPH and is associated with the regulation of NGF expression in the brain. In conclusion, the administration of P. ginseng helps nerve growth factor activation.
Collapse
Affiliation(s)
- Su Kang Kim
- Kohwang Medical Research Institute, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Il GyuKo
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hae Jeong Park
- Kohwang Medical Research Institute, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joo-Ho Chung
- Kohwang Medical Research Institute, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyu Bong Cho
- Department of Biomedical Laboratory Science, College of Health Sciences, Shinhan University, Gyeonggi 11644, Republic of Korea
| | - Oh Young Kwon
- Department of Medical Education and Medical Humanities, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyeong Hun Park
- Herbal Crop Utilization Research Team, Department of Medicinal Crop Research Institute, Republic of Korea
| | - Young Sub Ahn
- Herbal Crop Utilization Research Team, Department of Medicinal Crop Research Institute, Republic of Korea
| | - Chun Geon Park
- Herbal Crop Utilization Research Team, Department of Medicinal Crop Research Institute, Republic of Korea
| | - Young Ock Kim
- Herbal Crop Utilization Research Team, Department of Medicinal Crop Research Institute, Republic of Korea
| |
Collapse
|
56
|
Regauer S, Gamper M, Fehr MK, Viereck V. Sensory Hyperinnervation Distinguishes Bladder Pain Syndrome/Interstitial Cystitis from Overactive Bladder Syndrome. J Urol 2016; 197:159-166. [PMID: 27378135 DOI: 10.1016/j.juro.2016.06.089] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2016] [Indexed: 12/17/2022]
Abstract
PURPOSE Pain is the key symptom that distinguishes bladder pain syndrome/interstitial cystitis from overactive bladder syndrome but overlap occurs. To find a discriminating marker for these bladder diseases we examined sensory hyperinnervation and neurotrophin receptor expression in bladder biopsies as well as nerve growth factor levels in urine. MATERIALS AND METHODS Bladder biopsies from patients with bladder pain syndrome/interstitial cystitis, including 12 with and 19 without Hunner lesions, 13 with overactive bladder syndrome and 12 healthy controls, were analyzed by immunohistochemistry with antibodies to the nerve cell marker PGP9.5 (neuron-specific protein gene product 9.5), p75NTR (p75 neurotrophin receptor), the B-lymphocyte marker CD20 and mast cell tryptase. Urinary nerve growth factor was quantified by enzyme-linked immunosorbent assay. RESULTS Subepithelial sensory hyperinnervation on PGP9.5 staining had 97% sensitivity and 76% specificity, increased lymphocytic infiltration had 90% sensitivity and 80% specificity, and urothelial defects had 97% sensitivity and 76% specificity to distinguish bladder pain syndrome/interstitial cystitis with and without Hunner lesions from overactive bladder syndrome and healthy controls. Increased sensory innervation was associated with submucosal mast cell localization. Staining of p75NTR in basal urothelial cells was indicative of bladder pain syndrome/interstitial cystitis. Urinary nerve growth factor levels were below the detection level and did not differentiate bladder diseases from healthy controls. CONCLUSIONS Sensory hyperinnervation and basal urothelial p75NTR staining together with assessment of inflammatory lymphocytes and urothelial integrity allow for the differentiation of bladder pain syndrome/interstitial cystitis and overactive bladder syndrome even in the absence of Hunner lesions. Furthermore, these histopathological criteria enable the identification of early disease stages or oligosymptomatic/asymptomatic cases and may permit timely treatment to prevent disease progress.
Collapse
Affiliation(s)
- Sigrid Regauer
- Department of Gynecology and Obstetrics, Cantonal Hospital Frauenfeld, Frauenfeld, Switzerland; Institute of Pathology, Medical University Graz (SR), Graz, Austria
| | - Marianne Gamper
- Department of Gynecology and Obstetrics, Cantonal Hospital Frauenfeld, Frauenfeld, Switzerland; Institute of Pathology, Medical University Graz (SR), Graz, Austria.
| | - Mathias K Fehr
- Department of Gynecology and Obstetrics, Cantonal Hospital Frauenfeld, Frauenfeld, Switzerland; Institute of Pathology, Medical University Graz (SR), Graz, Austria
| | - Volker Viereck
- Department of Gynecology and Obstetrics, Cantonal Hospital Frauenfeld, Frauenfeld, Switzerland; Institute of Pathology, Medical University Graz (SR), Graz, Austria
| |
Collapse
|
57
|
Andersson KE. Potential Future Pharmacological Treatment of Bladder Dysfunction. Basic Clin Pharmacol Toxicol 2016; 119 Suppl 3:75-85. [DOI: 10.1111/bcpt.12577] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 12/23/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Karl-Erik Andersson
- Institute for Regenerative Medicine; Wake Forest University School of Medicine; Winston Salem NC USA
- Aarhus Institute for Advanced Sciences (AIAS); Aarhus University; Aarhus Denmark
| |
Collapse
|
58
|
Krebs J, Pavlicek D, Stoyanov J, Pannek J, Wöllner J. Nerve growth factor does not seem to be a biomarker for neurogenic lower urinary tract dysfunction after spinal cord injury. Neurourol Urodyn 2016; 36:659-662. [PMID: 26950046 DOI: 10.1002/nau.22987] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/12/2016] [Indexed: 12/24/2022]
Abstract
AIM To prospectively investigate the association of bladder function with the nerve growth factor (NGF) concentration in the urine of individuals with neurogenic lower urinary tract dysfunction (NLUTD) after spinal cord injury (SCI). METHODS Individuals with chronic SCI and NLUTD presenting for a routine urologic examination at a tertiary urologic referral center were recruited for the study. Patient characteristics, the current bladder evacuation method and urodynamic parameters were collected. As controls, individuals with normal bladder function were recruited from the staff of a SCI rehabilitation center. The urinary NGF concentration was measured in triplicates by enzyme linked immunosorbent assay with a minimal sensitivity of 10 pg/ml. RESULTS The data of 10 and 37 individuals with normal bladder function and NLUTD, respectively, were analyzed. The urinary NGF concentration was below 10 pg/ml in all investigated samples. CONCLUSIONS The urinary NGF concentration did not differentiate between individuals with normal bladder function and those with NLUTD. At least in patients with SCI, the urinary NGF concentration does not seem to be a clinically relevant biomarker for NLUTD. Neurourol. Urodynam. 36:659-662, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jörg Krebs
- Clinical Trial Unit, Swiss Paraplegic Centre, Nottwil, Switzerland
| | | | | | - Jürgen Pannek
- Neurourology, Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Jens Wöllner
- Neurourology, Swiss Paraplegic Centre, Nottwil, Switzerland
| |
Collapse
|
59
|
Andersson KE. Drug therapy of overactive bladder--what is coming next? Korean J Urol 2015; 56:673-9. [PMID: 26495067 PMCID: PMC4610893 DOI: 10.4111/kju.2015.56.10.673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/03/2015] [Indexed: 01/25/2023] Open
Abstract
After the approval and introduction of mirabegron, tadalafil, and botulinum toxin A for treatment of lower urinary tract symptoms/overactive bladder, focus of interest has been on their place in therapy versus the previous gold standard, antimuscarinics. However, since these agents also have limitations there has been increasing interest in what is coming next - what is in the pipeline? Despite progress in our knowledge of different factors involved in both peripheral and central modulation of lower urinary tract dysfunction, there are few innovations in the pipe-line. Most developments concern modifications of existing principles (antimuscarinics, β3-receptor agonists, botulinum toxin A). However, there are several new and old targets/drugs of potential interest for further development, such as the purinergic and cannabinoid systems and the different members of the transient receptor potential channel family. However, even if there seems to be good rationale for further development of these principles, further exploration of their involvement in lower urinary tract function/dysfunction is necessary.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA. ; Aarhus Institute for Advanced Sciences, Aarhus University, Aarhus, Denmark
| |
Collapse
|
60
|
Abstract
Substantial clinical need persists for improved autologous tissues to augment or replace the urinary bladder and research has begun to address this using tissue engineering techniques. The implantation of both tissue scaffolds which allow for native bladder tissue ingrowth and autologous bladder grafts created from in vitro cellularization of such scaffolds have been tested clinically; however, successful outcomes in both scenarios have been challenged by insufficient vascularity resulting from large graft sizes, which subsequently limits tissue ingrowth and leads to central graft ischemia. Consequently, recent research has focused on developing better methods to produce scaffolds with increased tissue ingrowth and vascularity. This review provides an update on bladder tissue engineering and outlines the challenges that remain to clinical implementation.
Collapse
|
61
|
Abstract
Botulinum toxin subtype A (BoNT-A) is a potent neurotoxin that can selectively modulate neurotransmitter release from nerve endings, resulting in muscular paralysis. BoNT-A might also act on sensory nerves, and have an anti-inflammatory effect. In the first urological use of BoNT-A, injection into the urethral sphincters of patients with detrusor-sphincter dyssynergia resulted in a reduction of urethral resistance and improved voiding efficiency. Subsequently, intravesical BoNT-A injections have received regulatory approval for treatment of neurogenic detrusor overactivity owing to spinal cord lesions or multiple sclerosis, and idiopathic overactive bladder in adults. BoNT-A has also been widely used to treat patients with the off-label indications of neurogenic or non-neurogenic voiding dysfunction and male lower urinary tract symptoms owing to BPH and bladder-neck dysfunction. Other indications for which urologists have applied BoNT-A injections include interstitial cystitis/bladder pain syndrome, bladder oversensitivity and chronic pelvic pain syndrome. BoNT-A is currently delivered as an intravesical injection; however, use of liposome encapsulated formulations is also beginning to show some therapeutic potential.
Collapse
|
62
|
Cruz CD, Coelho A, Antunes-Lopes T, Cruz F. Biomarkers of spinal cord injury and ensuing bladder dysfunction. Adv Drug Deliv Rev 2015; 82-83:153-9. [PMID: 25446137 DOI: 10.1016/j.addr.2014.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/02/2014] [Accepted: 11/08/2014] [Indexed: 12/29/2022]
Abstract
During the acute phase of SCI, the extension and residual neurological deficits that will persist after the waning of the spinal shock period are difficult to estimate on clinical grounds. Therefore, objective biomarkers able to estimate the extension of the lesion and the degree of neurological recovery are of great importance. Research has been focused on the detection of structural neuronal and glial proteins that leak from damaged cells, inflammatory proteins recruited to remove necrotic debris and more accurate neuroimaging methods that are able to discriminate the extension and functional consequences of the SCI. Urinary biomarkers are also being investigated to estimate functional changes that typically affect bladder function following SCI which can endanger patient's life in the long run. Future studies are needed to precisely characterize the composition and function of the glial scar that appears in the area of SCI and repeals axonal growth, therefore preventing axonal rewiring.
Collapse
|
63
|
Abstract
PURPOSE OF REVIEW Biomarkers constitute objectively measurable characteristics that can be evaluated as indicators of physiological and pathogenic processes and might be used as diagnostic, prognostic or predictive tools in clinical care. This review examines the availability of biomarkers to treat the dynamic and complex symptoms of overactive bladder (OAB). RECENT FINDINGS OAB biomarkers may contribute to reveal the origin of storage symptoms in otherwise healthy individuals. The research encompassing the changes that occur in the bladder or in the peripheral (and central) nervous system might be determined through blood or urinary molecules (neurotrophins, ATP, prostaglandins, C-reactive protein and cytokines) or the measurement of events occurring in the bladder wall (bladder wall or detrusor wall thickness, oxyhemoglobin and deoxyhemoglobin concentration). These biomarkers might contribute to a better understanding of the pathophysiologic mechanisms underlying OAB. SUMMARY The word biomarker to name all the parameters described above, from bladder wall thickness to urinary molecules, has been introduced to call the attention to a field wherein objective noninvasive parameters were nonexistent. OAB treatment based on a biomarker, in comparison to the treatment based on a diagnosis made from a careful history and exclusion of urinary tract infection, is not supported by current literature.
Collapse
|
64
|
Frias B, Santos J, Morgado M, Sousa MM, Gray SMY, McCloskey KD, Allen S, Cruz F, Cruz CD. The role of brain-derived neurotrophic factor (BDNF) in the development of neurogenic detrusor overactivity (NDO). J Neurosci 2015; 35:2146-60. [PMID: 25653370 PMCID: PMC4315839 DOI: 10.1523/jneurosci.0373-14.2015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 11/21/2014] [Accepted: 11/27/2014] [Indexed: 12/24/2022] Open
Abstract
Neurogenic detrusor overactivity (NDO) is a well known consequence of spinal cord injury (SCI), recognizable after spinal shock, during which the bladder is areflexic. NDO emergence and maintenance depend on profound plastic changes of the spinal neuronal pathways regulating bladder function. It is well known that neurotrophins (NTs) are major regulators of such changes. NGF is the best-studied NT in the bladder and its role in NDO has already been established. Another very abundant neurotrophin is BDNF. Despite being shown that, acting at the spinal cord level, BDNF is a key mediator of bladder dysfunction and pain during cystitis, it is presently unclear if it is also important for NDO. This study aimed to clarify this issue. Results obtained pinpoint BDNF as an important regulator of NDO appearance and maintenance. Spinal BDNF expression increased in a time-dependent manner together with NDO emergence. In chronic SCI rats, BDNF sequestration improved bladder function, indicating that, at later stages, BDNF contributes NDO maintenance. During spinal shock, BDNF sequestration resulted in early development of bladder hyperactivity, accompanied by increased axonal growth of calcitonin gene-related peptide-labeled fibers in the dorsal horn. Chronic BDNF administration inhibited the emergence of NDO, together with reduction of axonal growth, suggesting that BDNF may have a crucial role in bladder function after SCI via inhibition of neuronal sprouting. These findings highlight the role of BDNF in NDO and may provide a significant contribution to create more efficient therapies to manage SCI patients.
Collapse
Affiliation(s)
- Bárbara Frias
- Department of Experimental Biology, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal, Translational NeuroUrology and
| | - João Santos
- Department of Experimental Biology, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal
| | - Marlene Morgado
- Nerve Regeneration Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal
| | - Mónica Mendes Sousa
- Nerve Regeneration Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal
| | - Susannah M Y Gray
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, BT7 1 NN Belfast, United Kingdom
| | - Karen D McCloskey
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, BT7 1 NN Belfast, United Kingdom
| | - Shelley Allen
- Molecular Neurobiology Unit, University of Bristol, School of Clinical Sciences, BS10 5NB Bristol, United Kingdom
| | - Francisco Cruz
- Translational NeuroUrology and Department of Urology, Hospital de S. João, 4200-319 Porto, Portugal, and
| | - Célia Duarte Cruz
- Department of Experimental Biology, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal, Translational NeuroUrology and
| |
Collapse
|
65
|
Wang ZY, Wang P, Bjorling DE. Activation of cannabinoid receptor 1 inhibits increased bladder activity induced by nerve growth factor. Neurosci Lett 2015; 589:19-24. [PMID: 25575795 DOI: 10.1016/j.neulet.2015.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/19/2014] [Accepted: 01/03/2015] [Indexed: 12/27/2022]
Abstract
Nerve growth factor (NGF) is an important mediator of inflammatory pain, in part by sensitizing afferent nerve fibers, and expression of NGF is increased during bladder inflammation. We investigated whether intravesical instillation of the selective cannabinoid receptor 1 (CB1) agonist arachidonyl-2'-chloroethylamide (ACEA) affects NGF-induced increased bladder activity in female C57BL/6J wild-type (WT) mice. We also examined the effects of intravesical NGF in female fatty acid amide hydrolase knock-out (FAAH KO) mice. We found that CB1 and tyrosine kinase A (trkA, the high-affinity NGF receptor) were present in L6 dorsal root ganglion (DRG) afferent neurons and in bladders of both genotypes. Intravesical NGF increased bladder activity that was inhibited by intravesical ACEA in WT mice. The inhibitory effects of ACEA were reversed by the selective CB1 antagonist AM 251. Intravesical NGF failed to affect bladder activity in FAAH KO mice, and treatment with AM251, restored the stimulatory effects of NGF on the bladder in FAAH KO mice. These results indicate that activation of CB1 inhibits increased bladder activity induced by NGF.
Collapse
Affiliation(s)
- Zun-Yi Wang
- Departments of Surgical Sciences, University of Wisconsin, Madison, WI, USA.
| | - Peiqing Wang
- Departments of Surgical Sciences, University of Wisconsin, Madison, WI, USA
| | - Dale E Bjorling
- Departments of Surgical Sciences, University of Wisconsin, Madison, WI, USA; Departments of Urology, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
66
|
Abstract
This article summarizes anatomical, neurophysiological, pharmacological, and brain imaging studies in humans and animals that have provided insights into the neural circuitry and neurotransmitter mechanisms controlling the lower urinary tract. The functions of the lower urinary tract to store and periodically eliminate urine are regulated by a complex neural control system in the brain, spinal cord, and peripheral autonomic ganglia that coordinates the activity of smooth and striated muscles of the bladder and urethral outlet. The neural control of micturition is organized as a hierarchical system in which spinal storage mechanisms are in turn regulated by circuitry in the rostral brain stem that initiates reflex voiding. Input from the forebrain triggers voluntary voiding by modulating the brain stem circuitry. Many neural circuits controlling the lower urinary tract exhibit switch-like patterns of activity that turn on and off in an all-or-none manner. The major component of the micturition switching circuit is a spinobulbospinal parasympathetic reflex pathway that has essential connections in the periaqueductal gray and pontine micturition center. A computer model of this circuit that mimics the switching functions of the bladder and urethra at the onset of micturition is described. Micturition occurs involuntarily in infants and young children until the age of 3 to 5 years, after which it is regulated voluntarily. Diseases or injuries of the nervous system in adults can cause the re-emergence of involuntary micturition, leading to urinary incontinence. Neuroplasticity underlying these developmental and pathological changes in voiding function is discussed.
Collapse
Affiliation(s)
- William C. de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, School of Medicine Pittsburgh, Pennsylvania
| | - Derek Griffiths
- Department of Medicine (Geriatrics), University of Pittsburgh, School of Medicine Pittsburgh, Pennsylvania
| | - Naoki Yoshimura
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, School of Medicine Pittsburgh, Pennsylvania
- Department of Urology, University of Pittsburgh, School of Medicine Pittsburgh, Pennsylvania
| |
Collapse
|
67
|
Jiang YH, Liu HT, Kuo HC. Decrease of urinary nerve growth factor but not brain-derived neurotrophic factor in patients with interstitial cystitis/bladder pain syndrome treated with hyaluronic acid. PLoS One 2014; 9:e91609. [PMID: 24614892 PMCID: PMC3948883 DOI: 10.1371/journal.pone.0091609] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 02/12/2014] [Indexed: 01/07/2023] Open
Abstract
Aims To investigate urinary nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) levels in interstitial cystitis/bladder pain syndrome (IC/BPS) patients after hyaluronic acid (HA) therapy. Methods Thirty-three patients with IC/BPS were prospectively studied; a group of 45 age-matched healthy subjects served as controls. All IC/BPS patients received nine intravesical HA instillations during the 6-month treatment regimen. Urine samples were collected for measuring urinary NGF and BDNF levels at baseline and 2 weeks after the last HA treatment. The clinical parameters including visual analog scale (VAS) of pain, daily frequency nocturia episodes, functional bladder capacity (FBC) and global response assessment (GRA) were recorded. Urinary NGF and BDNF levels were compared between IC/BPS patients and controls at baseline and after HA treatment. Results Urinary NGF, NGF/Cr, BDNF, and BDNF/Cr levels were significantly higher in IC/BPS patients compared to controls. Both NGF and NGF/Cr levels significantly decreased after HA treatment. Urinary NGF and NGF/Cr levels significantly decreased in the responders with a VAS pain reduction by 2 (both p < 0.05) and the GRA improved by 2 (both p < 0.05), but not in non-responders. Urinary BDNF and BDNF/Cr did not decrease in responders or non-responders after HA therapy. Conclusions Urinary NGF, but not BDNF, levels decreased significantly after HA therapy; both of these factors remained higher than in controls even after HA treatment. HA had a beneficial effect on IC/BPS, but it was limited. The reduction of urinary NGF levels was significant in responders, with a reduction of pain and improved GRA.
Collapse
Affiliation(s)
- Yuan-Hong Jiang
- Department of Urology, Buddhist Tzu Chi General Hospital and Tzu Chi University, Hualien, Taiwan
| | - Hsin-Tzu Liu
- Department of Urology, Buddhist Tzu Chi General Hospital and Tzu Chi University, Hualien, Taiwan
- Institute of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan
| | - Hann-Chorng Kuo
- Department of Urology, Buddhist Tzu Chi General Hospital and Tzu Chi University, Hualien, Taiwan
- * E-mail:
| |
Collapse
|
68
|
Liu BL, Yang F, Zhan HL, Feng ZY, Zhang ZG, Li WB, Zhou XF. Increased Severity of Inflammation Correlates with Elevated Expression of TRPV1 Nerve Fibers and Nerve Growth Factor on Interstitial Cystitis/Bladder Pain Syndrome. Urol Int 2014; 92:202-8. [DOI: 10.1159/000355175] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 08/19/2013] [Indexed: 11/19/2022]
|
69
|
Association of inflammaging (inflammation + aging) with higher prevalence of OAB in elderly population. Int Urol Nephrol 2013; 46:871-7. [DOI: 10.1007/s11255-013-0621-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 11/27/2013] [Indexed: 10/25/2022]
|
70
|
Kanie S, Otsuka A, Yoshikawa S, Kobayashi R, Itaba S, Yokokawa H, Tajima Y, Ozono S, Hayashi R, Mochizuki H. TRK-380, a novel selective human β3-adrenoceptor agonist, ameliorates formalin-induced pollakiuria in rats and carbachol-induced bladder contraction in dogs. Urology 2013; 82:975.e7-975.e12. [PMID: 24075004 DOI: 10.1016/j.urology.2013.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 06/08/2013] [Accepted: 07/05/2013] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To investigate the effects of TRK-380, a selective β3-adrenoceptor (β3-AR) agonist, on voiding behavior in rats with pollakiuria and on carbachol (CCh)-induced bladder contraction in dogs. METHODS The voiding behavior of female Sprague Dawley rats was recorded continuously with a balance. Rats were intravesically pretreated with 2.5% formalin under isoflurane anesthesia. The next day, the effect of TRK-380 (7.5-30 mg/kg, orally) or tolterodine, an antimuscarinic drug (3.75-15 mg/kg, orally), on the voiding frequency was evaluated. In another experiment, male beagle dogs were anesthetized with pentobarbital, CCh (3 μg/kg, intravenously) was administered to them, and the effect of TRK-380 (0.1 or 0.3 μg/kg/minute, intravenously infusion) on CCh-induced bladder contraction was evaluated. RESULTS Rats treated with formalin showed a significant increase in the voiding frequency compared with the sham group, and the increase in it was significantly and dose-dependently suppressed by TRK-380 at doses of ≥15 mg/kg. In contrast, tolterodine did not lead to a significant change in the voiding frequency even at the highest dose. In dogs, CCh-induced bladder contraction was dose-dependently suppressed by TRK-380; the plasma concentration required for 30% suppression of the CCh-induced bladder contraction (30% relaxation) was 4.90 ng/mL. CONCLUSION This study indicated that TRK-380 ameliorated pollakiuria, which was resistant to an antimuscarinic drug, and that it also suppressed the bladder contraction induced by cholinergic stimulation in dogs, whose bladder relaxation is known to be predominantly mediated by β3-ARs, as in humans. These data strengthen the therapeutic potential of β3-AR for the treatment of overactive bladder.
Collapse
Affiliation(s)
- Sayoko Kanie
- Pharmaceutical Research Laboratories, Toray Industries, Inc., Kamakura, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Fox EA, Biddinger JE, Baquet ZC, Jones KR, McAdams J. Loss of neurotrophin-3 from smooth muscle disrupts vagal gastrointestinal afferent signaling and satiation. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1307-22. [PMID: 24068045 PMCID: PMC3882559 DOI: 10.1152/ajpregu.00337.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A large proportion of vagal afferents are dependent on neurotrophin-3 (NT-3) for survival. NT-3 is expressed in developing gastrointestinal (GI) smooth muscle, a tissue densely innervated by vagal mechanoreceptors, and thus could regulate their survival. We genetically ablated NT-3 from developing GI smooth muscle and examined the pattern of loss of NT-3 expression in the GI tract and whether this loss altered vagal afferent signaling or feeding behavior. Meal-induced c-Fos activation was reduced in the solitary tract nucleus and area postrema in mice with a smooth muscle-specific NT-3 knockout (SM-NT-3(KO)) compared with controls, suggesting a decrease in vagal afferent signaling. Daily food intake and body weight of SM-NT-3(KO) mice and controls were similar. Meal pattern analysis revealed that mutants, however, had increases in average and total daily meal duration compared with controls. Mutants maintained normal meal size by decreasing eating rate compared with controls. Although microstructural analysis did not reveal a decrease in the rate of decay of eating in SM-NT-3(KO) mice, they ate continuously during the 30-min meal, whereas controls terminated feeding after 22 min. This led to a 74% increase in first daily meal size of SM-NT-3(KO) mice compared with controls. The increases in meal duration and first meal size of SM-NT-3(KO) mice are consistent with reduced satiation signaling by vagal afferents. This is the first demonstration of a role for GI NT-3 in short-term controls of feeding, most likely involving effects on development of vagal GI afferents that regulate satiation.
Collapse
Affiliation(s)
- Edward A Fox
- Behavioral Neurogenetics Laboratory, Department of Psychological Sciences, Purdue University, West Lafayette, Indiana; and
| | | | | | | | | |
Collapse
|
72
|
Kashyap M, Kawamorita N, Tyagi V, Sugino Y, Chancellor M, Yoshimura N, Tyagi P. Down-regulation of nerve growth factor expression in the bladder by antisense oligonucleotides as new treatment for overactive bladder. J Urol 2013; 190:757-64. [PMID: 23454160 PMCID: PMC3734554 DOI: 10.1016/j.juro.2013.02.090] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 02/20/2013] [Indexed: 12/19/2022]
Abstract
PURPOSE Nerve growth factor over expression in the bladder has a role in overactive bladder symptoms via the mediation of functional changes in bladder afferent pathways. We studied whether blocking nerve growth factor over expression in bladder urothelium by a sequence specific gene silencing mechanism would suppress bladder overactivity and chemokine expression induced by acetic acid. MATERIALS AND METHODS Female Sprague-Dawley® rats anesthetized with isoflurane were instilled with 0.5 ml saline, scrambled or TYE™ 563 labeled antisense oligonucleotide targeting nerve growth factor (12 μM) alone or complexed with cationic liposomes for 30 minutes. The efficacy of nerve growth factor antisense treatments for acetic acid induced bladder overactivity was assessed by cystometry. Bladder nerve growth factor expression levels and cellular distribution were quantified by immunofluorescence staining and enzyme-linked immunosorbent assay. Effects on bladder chemokine expression were measured by Luminex® xMAP® analysis. RESULTS Liposomes were needed for bladder uptake of oligonucleotide, as seen by the absence of bright red TYE 563 fluorescence in rats instilled with oligonucleotide alone. At 24 hours after liposome-oligonucleotide treatment baseline bladder activity during saline infusion was indistinct in the sham and antisense treated groups with a mean ± SEM intercontraction interval of 348 ± 55 and 390 ± 120 seconds, respectively. Acetic acid induced bladder overactivity was shown by a decrease in the intercontraction interval to a mean of 33.2% ± 4.0% of baseline in sham treated rats. However, the reduction was blunted to a mean of 75.8% ± 3.4% of baseline in rats treated with liposomal antisense oligonucleotide (p <0.05). Acetic acid induced increased nerve growth factor in the urothelium of sham treated rats, which was decreased by antisense treatment, as shown by enzyme-linked immunosorbent assay and reduced nerve growth factor immunoreactivity in the urothelium. Increased nerve growth factor in bladder tissue was associated with sICAM-1, sE-selectin, CXCL-10 and 1, leptin, MCP-1 and vascular endothelial growth factor over expression, which was significantly decreased by nerve growth factor antisense treatment (p <0.01). CONCLUSIONS Acetic acid induced bladder overactivity is associated with nerve growth factor over expression in the urothelium and with chemokine up-regulation. Treatment with liposomal antisense suppresses bladder overactivity, and nerve growth factor and chemokine expression. Local suppression of nerve growth factor in the bladder could be an attractive approach for overactive bladder. It would avoid the systemic side effects that may be associated with nonspecific blockade of nerve growth factor expression.
Collapse
Affiliation(s)
| | | | - Vikas Tyagi
- Departments of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania, and William Beaumont Oakland University School of Medicine (VT, MC), Royal Oak, Michigan
| | - Yoshio Sugino
- Departments of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania, and William Beaumont Oakland University School of Medicine (VT, MC), Royal Oak, Michigan
| | | | - Naoki Yoshimura
- Departments of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania, and William Beaumont Oakland University School of Medicine (VT, MC), Royal Oak, Michigan
| | - Pradeep Tyagi
- Correspondence: Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania (telephone: 412-692-4119; FAX: 412-692-4380; )
| |
Collapse
|
73
|
Cruz CD. Neurotrophins in bladder function: what do we know and where do we go from here? Neurourol Urodyn 2013; 33:39-45. [PMID: 23775873 DOI: 10.1002/nau.22438] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/30/2013] [Indexed: 12/19/2022]
Abstract
AIMS Neurotrophins (NTs) have attracted considerable attention in the urologic community. The reason for this resides in the recognition of their ability to induce plastic changes of the neuronal circuits that govern bladder function. In many pathologic states, urinary symptoms, including urgency and urinary frequency, reflect abnormal activity of bladder sensory afferents that results from neuroplastic changes. Accordingly, in pathologies associated with increased sensory input, such as the overactive bladder syndrome (OAB) or bladder pain syndrome/interstitial cystitis (BPS/IC), significant amounts of NTs have been found in the bladder wall. METHODS Here, current knowledge about the importance of NTs in bladder function will be reviewed, with a focus on the most well-studied NTs, nerve growth factor (NGF), and brain-derived neurotrophic factor (BDNF). RESULTS Both NTs are present in the bladder and regulate bladder sensory afferents and urothelial cells. Experimental models of bladder dysfunction show that upregulation of these NTs is strongly linked to bladder hyperactivity and, in some cases, pain. NT manipulation has been tested in animal models of bladder dysfunction, and recently, NGF downregulation, achieved by administration of a monoclonal antibody, has also been tested in patients with BPS/IC and chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). NTs have also been found in high quantities in the urine of OAB and BPS/IC patients, raising the possibility of NTs serving as biomarkers. CONCLUSIONS Available data show that our knowledge of NTs has greatly increased in recent years and that some results may have future clinical application.
Collapse
Affiliation(s)
- Célia Duarte Cruz
- Department of Experimental Biology, Faculty of Medicine of Porto, University of Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
74
|
Merrill L, Malley S, Vizzard MA. Repeated variate stress in male rats induces increased voiding frequency, somatic sensitivity, and urinary bladder nerve growth factor expression. Am J Physiol Regul Integr Comp Physiol 2013; 305:R147-56. [PMID: 23657640 DOI: 10.1152/ajpregu.00089.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Stress exacerbates symptoms of functional lower urinary tract disorders including interstitial cystitis (IC)/bladder pain syndrome (BPS) and overactive bladder (OAB) in humans, but mechanisms contributing to symptom worsening are unknown. These studies address stress-induced changes in the structure and function of the micturition reflex using an animal model of stress in male rats. Rats were exposed to 7 days of repeated variate stress (RVS). Target organ (urinary bladder, thymus, adrenal gland) tissues were collected and weighed following RVS. Evans blue (EB) concentration and histamine, myeloperoxidase (MPO), nerve growth factor (NGF), brain-derived neurotropic factor (BDNF), and CXCL12 protein content (ELISA) were measured in the urinary bladder, and somatic sensitivity of the hindpaw and pelvic regions was determined following RVS. Bladder function was evaluated using continuous, open outlet intravesical infusion of saline in conscious rats. Increases in body weight gain were significantly (P ≤ 0.01) attenuated by day 5 of RVS, and adrenal weight was significantly (P ≤ 0.05) increased. Histamine, MPO, NGF, and CXCL12 protein expression was significantly (P ≤ 0.01) increased in the urinary bladder after RVS. Somatic sensitivity of the hindpaw and pelvic regions was significantly (P ≤ 0.01) increased at all monofilament forces tested (0.1-4 g) after RVS. Intercontraction interval, infused volume, and void volume were significantly (P ≤ 0.01) decreased after RVS. These studies demonstrate increased voiding frequency, histamine, MPO, NGF, and CXCL12 bladder content and somatic sensitivity after RVS suggesting an inflammatory component to stress-induced changes in bladder function and somatic sensitivity.
Collapse
Affiliation(s)
- Liana Merrill
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT, USA
| | | | | |
Collapse
|
75
|
Ochodnický P, Michel MB, Butter JJ, Seth J, Panicker JN, Michel MC. Bradykinin modulates spontaneous nerve growth factor production and stretch-induced ATP release in human urothelium. Pharmacol Res 2013; 70:147-54. [PMID: 23376352 DOI: 10.1016/j.phrs.2013.01.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/23/2013] [Accepted: 01/24/2013] [Indexed: 12/14/2022]
Abstract
The urothelium plays a crucial role in integrating urinary bladder sensory outputs, responding to mechanical stress and chemical stimulation by producing several diffusible mediators, including ATP and, possibly, neurotrophin nerve growth factor (NGF). Such urothelial mediators activate underlying afferents and thus may contribute to normal bladder sensation and possibly to the development of bladder overactivity. The muscle-contracting and pain-inducing peptide bradykinin is produced in various inflammatory and non-inflammatory pathologies associated with bladder overactivity, but the effect of bradykinin on human urothelial function has not yet been characterized. The human urothelial cell line UROtsa expresses mRNA for both B1 and B2 subtypes of bradykinin receptors, as determined by real-time PCR. Bradykinin concentration-dependently (pEC50=8.3, Emax 4434±277nM) increased urothelial intracellular calcium levels and induced phosphorylation of the mitogen-activated protein kinase (MAPK) ERK1/2. Activation of both bradykinin-induced signaling pathways was completely abolished by the B2 antagonist icatibant (1μM), but not the B1 antagonist R715 (1μM). Bradykinin-induced (100nM) B2 receptor activation markedly increased (192±13% of control levels) stretch-induced ATP release from UROtsa in hypotonic medium, the effect being dependent on intracellular calcium elevations. UROtsa cells also expressed mRNA and protein for NGF and spontaneously released NGF to the medium in the course of hours (11.5±1.4pgNGF/mgprotein/h). Bradykinin increased NGF mRNA expression and accelerated urothelial NGF release to 127±5% in a protein kinase C- and ERK1/2-dependent manner. Finally, bradykinin up-regulated mRNA for transient-receptor potential vanilloid (TRPV1) sensory ion channel in UROtsa. In conclusion, we show that bradykinin represents a versatile modulator of human urothelial phenotype, accelerating stretch-induced ATP release, spontaneous release of NGF, as well as expression of sensory ion channel TRPV1. Bradykinin-induced changes in urothelial sensory function might contribute to the development of bladder dysfunction.
Collapse
Affiliation(s)
- Peter Ochodnický
- Department of Pharmacology and Pharmacotherapy, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|