51
|
Preller M, Holmes KC. The myosin start-of-power stroke state and how actin binding drives the power stroke. Cytoskeleton (Hoboken) 2013; 70:651-60. [PMID: 23852739 DOI: 10.1002/cm.21125] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 11/05/2022]
Abstract
We propose that on binding to actin at the start of the power stroke the myosin cross-bridge takes on the rigor configuration at the actin interface. Starting from the prepower stroke state, this can be achieved by a small movement (16° rotation) of the lower 50K domain without twisting the central β-sheet or opening switch-1 or switch-2. The movement of the lower 50K domain puts a strain on the W-helix. This strain tries to twist the β-sheet, which could drive the power stroke. This would provide a coupling between actin binding and the execution of the power stroke. During the power stroke the β-sheet twists, moving the P-loop away from switch-2, which opens the nucleotide binding pocket and separates ADP from Pi . The power stroke is different from the recovery stroke because the upper and lower 50K domains are tethered in the rigor configuration.
Collapse
Affiliation(s)
- Matthias Preller
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany; Centre for Structural Systems Biology (CSSB), German Electron Synchrotron (DESY), Hamburg, Germany
| | | |
Collapse
|
52
|
Bond LM, Tumbarello DA, Kendrick-Jones J, Buss F. Small-molecule inhibitors of myosin proteins. Future Med Chem 2013; 5:41-52. [PMID: 23256812 PMCID: PMC3971371 DOI: 10.4155/fmc.12.185] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Advances in screening and computational methods have enhanced recent efforts to discover/design small-molecule protein inhibitors. One attractive target for inhibition is the myosin family of motor proteins. Myosins function in a wide variety of cellular processes, from intracellular trafficking to cell motility, and are implicated in several human diseases (e.g., cancer, hypertrophic cardiomyopathy, deafness and many neurological disorders). Potent and selective myosin inhibitors are, therefore, not only a tool for understanding myosin function, but are also a resource for developing treatments for diseases involving myosin dysfunction or overactivity. This review will provide a brief overview of the characteristics and scientific/therapeutic applications of the presently identified small-molecule myosin inhibitors before discussing the future of myosin inhibitor and activator design.
Collapse
Affiliation(s)
- Lisa M Bond
- Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - David A Tumbarello
- Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | | | - Folma Buss
- Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| |
Collapse
|
53
|
Heissler SM, Selvadurai J, Bond LM, Fedorov R, Kendrick-Jones J, Buss F, Manstein DJ. Kinetic properties and small-molecule inhibition of human myosin-6. FEBS Lett 2012; 586:3208-14. [PMID: 22884421 PMCID: PMC3527664 DOI: 10.1016/j.febslet.2012.07.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/23/2012] [Accepted: 07/10/2012] [Indexed: 11/12/2022]
Abstract
Myosin-6 is an actin-based motor protein that moves its cargo towards the minus-end of actin filaments. Mutations in the gene encoding the myosin-6 heavy chain and changes in the cellular abundance of the protein have been linked to hypertrophic cardiomyopathy, neurodegenerative diseases, and cancer. Here, we present a detailed kinetic characterization of the human myosin-6 motor domain, describe the effect of 2,4,6-triiodophenol on the interaction of myosin-6 with F-actin and nucleotides, and show how addition of the drug reduces the number of myosin-6-dependent vesicle fusion events at the plasma membrane during constitutive secretion.
Collapse
Affiliation(s)
- Sarah M Heissler
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
54
|
Heissler SM, Manstein DJ. Nonmuscle myosin-2: mix and match. Cell Mol Life Sci 2012; 70:1-21. [PMID: 22565821 PMCID: PMC3535348 DOI: 10.1007/s00018-012-1002-9] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 04/16/2012] [Accepted: 04/17/2012] [Indexed: 12/31/2022]
Abstract
Members of the nonmuscle myosin-2 (NM-2) family of actin-based molecular motors catalyze the conversion of chemical energy into directed movement and force thereby acting as central regulatory components of the eukaryotic cytoskeleton. By cyclically interacting with adenosine triphosphate and F-actin, NM-2 isoforms promote cytoskeletal force generation in established cellular processes like cell migration, shape changes, adhesion dynamics, endo- and exo-cytosis, and cytokinesis. Novel functions of the NM-2 family members in autophagy and viral infection are emerging, making NM-2 isoforms regulators of nearly all cellular processes that require the spatiotemporal organization of cytoskeletal scaffolding. Here, we assess current views about the role of NM-2 isoforms in these activities including the tight regulation of NM-2 assembly and activation through phosphorylation and how NM-2-mediated changes in cytoskeletal dynamics and mechanics affect cell physiological functions in health and disease.
Collapse
Affiliation(s)
- Sarah M. Heissler
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Dietmar J. Manstein
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
55
|
|
56
|
Rufell D. Spotlight on… Dietmar Manstein. FEBS Lett 2011; 585:2401-2. [DOI: 10.1016/j.febslet.2011.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
57
|
Chinthalapudi K, Taft MH, Martin R, Heissler SM, Preller M, Hartmann FK, Brandstaetter H, Kendrick-Jones J, Tsiavaliaris G, Gutzeit HO, Fedorov R, Buss F, Knölker HJ, Coluccio LM, Manstein DJ. Mechanism and specificity of pentachloropseudilin-mediated inhibition of myosin motor activity. J Biol Chem 2011; 286:29700-8. [PMID: 21680745 PMCID: PMC3191011 DOI: 10.1074/jbc.m111.239210] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here, we report that the natural compound pentachloropseudilin (PClP) acts as a reversible and allosteric inhibitor of myosin ATPase and motor activity. IC(50) values are in the range from 1 to 5 μm for mammalian class-1 myosins and greater than 90 μm for class-2 and class-5 myosins, and no inhibition was observed with class-6 and class-7 myosins. We show that in mammalian cells, PClP selectively inhibits myosin-1c function. To elucidate the structural basis for PClP-induced allosteric coupling and isoform-specific differences in the inhibitory potency of the compound, we used a multifaceted approach combining direct functional, crystallographic, and in silico modeling studies. Our results indicate that allosteric inhibition by PClP is mediated by the combined effects of global changes in protein dynamics and direct communication between the catalytic and allosteric sites via a cascade of small conformational changes along a conserved communication pathway.
Collapse
|
58
|
Preller M, Chinthalapudi K, Martin R, Knolker HJ, Manstein DJ. Inhibition of Myosin ATPase activity by halogenated pseudilins: a structure-activity study. J Med Chem 2011; 54:3675-85. [PMID: 21534527 DOI: 10.1021/jm200259f] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Myosin activity is crucial for many biological functions. Strong links have been established between changes in the activity of specific myosin isoforms and diseases such as cancer, cardiovascular failure, and disorders of sensory organs and the central nervous system. The modulation of specific myosin isoforms therefore holds a strong therapeutic potential. In recent work, we identified members of the marine alkaloid family of pseudilins as potent inhibitors of myosin-dependent processes. Here, we report the crystal structure of the complex between the Dictyostelium myosin 2 motor domain and 2,4-dichloro-6-(3,4,5-tribromo-1H-pyrrole-2-yl)phenol (3). Detailed comparison with previously solved structures of the myosin 2 complex with bound pentabromopseudilin (2a) or pentachloropseudilin (4a) provides insights into the molecular basis of the allosteric communication between the catalytic and the allosteric sites. Moreover, we describe the inhibitory potency for a congeneric series of halogenated pseudilins. Insight into their mode of action is gained by applying a combination of experimental and computational approaches.
Collapse
Affiliation(s)
- Matthias Preller
- Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover
| | | | | | | | | |
Collapse
|
59
|
Fehér D, Barlow R, McAtee J, Hemscheidt TK. Highly brominated antimicrobial metabolites from a marine Pseudoalteromonas sp. JOURNAL OF NATURAL PRODUCTS 2010; 73:1963-1966. [PMID: 20973551 PMCID: PMC2993825 DOI: 10.1021/np100506z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Extracts of a marine Pseudoalteromonas sp. (CMMED 290) isolated from the surface of a nudibranch collected in Kaneohe Bay, Oahu, displayed significant antimicrobial activity against methicillin-resistant Staphylococcus aureus. Bioassay-guided fractionation of the lipophilic extract led to the isolation and structure elucidation of two new highly brominated compounds, 2,3,5,7-tetrabromobenzofuro[3,2-b]pyrrole (1) and 4,4',6-tribromo-2,2'-biphenol (2). In addition, we have identified the known compounds pentabromopseudilin and bromophene. We describe the isolation and structure elucidation of the compounds 1 and 2 together with their antimicrobial activities against methicillin-resistant Staphylococcus aureus.
Collapse
Affiliation(s)
| | | | | | - Thomas K. Hemscheidt
- To whom correspondence may be addressed. Phone: 1-808-956-6401; Fax: 1-808-956-5908;
| |
Collapse
|
60
|
Abstract
The ammosamides A-C are chlorinated pyrrolo[4,3,2-de]quinoline metabolites isolated from the marine-derived Streptomyces strain CNR-698. The natural products, which possess a dense array of heteroatoms, were synthesized in 17-19 steps from 4-chloroisatin. That the five nitrogen atoms were introduced at the appropriate time and in a suitable oxidation state was key to the success of the total synthesis. Compared to synthetic deschloro ammosamide B, natural ammosamide B is much less susceptible to oxidative degradation.
Collapse
Affiliation(s)
- Chambers C Hughes
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0204, USA
| | | |
Collapse
|
61
|
Martin R, Jäger A, Böhl M, Richter S, Fedorov R, Manstein DJ, Gutzeit HO, Knölker HJ. Total synthesis of pentabromo- and pentachloropseudilin, and synthetic analogues--allosteric inhibitors of myosin ATPase. Angew Chem Int Ed Engl 2010; 48:8042-6. [PMID: 19739175 DOI: 10.1002/anie.200903743] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- René Martin
- Department of Chemistry, Technische Universität Dresden, Bergstrasse 66, 01069 Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Martin R, Jäger A, Böhl M, Richter S, Fedorov R, Manstein D, Gutzeit H, Knölker HJ. Total Synthesis of Pentabromo- and Pentachloropseudilin, and Synthetic Analogues-Allosteric Inhibitors of Myosin ATPase. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200903743] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|