51
|
Moraes SN, Becker JT, Moghadasi SA, Shaban NM, Auerbach AA, Cheng AZ, Harris RS. Evidence linking APOBEC3B genesis and evolution of innate immune antagonism by gamma-herpesvirus ribonucleotide reductases. eLife 2022; 11:83893. [PMID: 36458685 DOI: 10.7554/elife.83893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 12/04/2022] Open
Abstract
Viruses have evolved diverse mechanisms to antagonize host immunity such as direct inhibition and relocalization of cellular APOBEC3B (A3B) by the ribonucleotide reductase (RNR) of Epstein-Barr virus. Here, we investigate the mechanistic conservation and evolutionary origin of this innate immune counteraction strategy. First, we find that human gamma-herpesvirus RNRs engage A3B via largely distinct surfaces. Second, we show that RNR-mediated enzymatic inhibition and relocalization of A3B depend upon binding to different regions of the catalytic domain. Third, we show that the capability of viral RNRs to antagonize A3B is conserved among gamma-herpesviruses that infect humans and Old World monkeys that encode this enzyme but absent in homologous viruses that infect New World monkeys that naturally lack the A3B gene. Finally, we reconstruct the ancestral primate A3B protein and demonstrate that it is active and similarly engaged by the RNRs from viruses that infect humans and Old World monkeys but not by the RNRs from viruses that infect New World monkeys. These results combine to indicate that the birth of A3B at a critical branchpoint in primate evolution may have been a driving force in selecting for an ancestral gamma-herpesvirus with an expanded RNR functionality through counteraction of this antiviral enzyme.
Collapse
Affiliation(s)
- Sofia N Moraes
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota, Minneapolis, United States
| | - Jordan T Becker
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota, Minneapolis, United States
| | - Seyed Arad Moghadasi
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota, Minneapolis, United States
| | - Nadine M Shaban
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota, Minneapolis, United States
| | - Ashley A Auerbach
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota, Minneapolis, United States.,Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, United States
| | - Adam Z Cheng
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota, Minneapolis, United States
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota, Minneapolis, United States.,Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, United States.,Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, United States
| |
Collapse
|
52
|
Wong L, Sami A, Chelico L. Competition for DNA binding between the genome protector replication protein A and the genome modifying APOBEC3 single-stranded DNA deaminases. Nucleic Acids Res 2022; 50:12039-12057. [PMID: 36444883 PMCID: PMC9757055 DOI: 10.1093/nar/gkac1121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 11/30/2022] Open
Abstract
The human APOBEC family of eleven cytosine deaminases use RNA and single-stranded DNA (ssDNA) as substrates to deaminate cytosine to uracil. This deamination event has roles in lipid metabolism by altering mRNA coding, adaptive immunity by causing evolution of antibody genes, and innate immunity through inactivation of viral genomes. These benefits come at a cost where some family members, primarily from the APOBEC3 subfamily (APOBEC3A-H, excluding E), can cause off-target deaminations of cytosine to form uracil on transiently single-stranded genomic DNA, which induces mutations that are associated with cancer evolution. Since uracil is only promutagenic, the mutations observed in cancer genomes originate only when uracil is not removed by uracil DNA glycosylase (UNG) or when the UNG-induced abasic site is erroneously repaired. However, when ssDNA is present, replication protein A (RPA) binds and protects the DNA from nucleases or recruits DNA repair proteins, such as UNG. Thus, APOBEC enzymes must compete with RPA to access their substrate. Certain APOBEC enzymes can displace RPA, bind and scan ssDNA efficiently to search for cytosines, and can become highly overexpressed in tumor cells. Depending on the DNA replication conditions and DNA structure, RPA can either be in excess or deficient. Here we discuss the interplay between these factors and how despite RPA, multiple cancer genomes have a mutation bias at cytosines indicative of APOBEC activity.
Collapse
Affiliation(s)
- Lai Wong
- University of Saskatchewan, College of Medicine, Department of Biochemistry, Microbiology, and Immunology, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Alina Sami
- University of Saskatchewan, College of Medicine, Department of Biochemistry, Microbiology, and Immunology, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Linda Chelico
- To whom correspondence should be addressed. Tel: +1 306 966 4318; Fax: +1 306 966 4298;
| |
Collapse
|
53
|
Maiti A, Hedger AK, Myint W, Balachandran V, Watts JK, Schiffer CA, Matsuo H. Structure of the catalytically active APOBEC3G bound to a DNA oligonucleotide inhibitor reveals tetrahedral geometry of the transition state. Nat Commun 2022; 13:7117. [PMID: 36402773 PMCID: PMC9675756 DOI: 10.1038/s41467-022-34752-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/04/2022] [Indexed: 11/21/2022] Open
Abstract
APOBEC3 proteins (A3s) are enzymes that catalyze the deamination of cytidine to uridine in single-stranded DNA (ssDNA) substrates, thus playing a key role in innate antiviral immunity. However, the APOBEC3 family has also been linked to many mutational signatures in cancer cells, which has led to an intense interest to develop inhibitors of A3's catalytic activity as therapeutics as well as tools to study A3's biochemistry, structure, and cellular function. Recent studies have shown that ssDNA containing 2'-deoxy-zebularine (dZ-ssDNA) is an inhibitor of A3s such as A3A, A3B, and A3G, although the atomic determinants of this activity have remained unknown. To fill this knowledge gap, we determined a 1.5 Å resolution structure of a dZ-ssDNA inhibitor bound to active A3G. The crystal structure revealed that the activated dZ-H2O mimics the transition state by coordinating the active site Zn2+ and engaging in additional stabilizing interactions, such as the one with the catalytic residue E259. Therefore, this structure allowed us to capture a snapshot of the A3's transition state and suggests that developing transition-state mimicking inhibitors may provide a new opportunity to design more targeted molecules for A3s in the future.
Collapse
Affiliation(s)
- Atanu Maiti
- grid.418021.e0000 0004 0535 8394Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Adam K. Hedger
- grid.168645.80000 0001 0742 0364Institute for Drug Resistance, University of Massachusetts Chan Medical School, Worcester, MA USA ,grid.168645.80000 0001 0742 0364RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA USA ,grid.168645.80000 0001 0742 0364Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA USA
| | - Wazo Myint
- grid.418021.e0000 0004 0535 8394Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Vanivilasini Balachandran
- grid.418021.e0000 0004 0535 8394Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Jonathan K. Watts
- grid.168645.80000 0001 0742 0364RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA USA ,grid.168645.80000 0001 0742 0364Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA USA
| | - Celia A. Schiffer
- grid.168645.80000 0001 0742 0364Institute for Drug Resistance, University of Massachusetts Chan Medical School, Worcester, MA USA ,grid.168645.80000 0001 0742 0364Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA USA
| | - Hiroshi Matsuo
- grid.418021.e0000 0004 0535 8394Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD USA
| |
Collapse
|
54
|
Soikkeli AI, Kyläniemi MK, Sihto H, Alinikula J. Oncogenic Merkel Cell Polyomavirus T Antigen Truncating Mutations are Mediated by APOBEC3 Activity in Merkel Cell Carcinoma. CANCER RESEARCH COMMUNICATIONS 2022; 2:1344-1354. [PMID: 36970060 PMCID: PMC10035372 DOI: 10.1158/2767-9764.crc-22-0211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/17/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Merkel cell carcinoma (MCC) is an aggressive skin cancer, which is frequently caused by Merkel cell polyomavirus (MCPyV). Mutations of MCPyV tumor (T) antigens are major pathologic events of virus-positive (MCPyV+) MCCs, but their source is unclear. Activation-induced cytidine deaminase (AID)/APOBEC family cytidine deaminases contribute to antiviral immunity by mutating viral genomes and are potential carcinogenic mutators. We studied the contribution of AID/APOBEC cytidine deaminases to MCPyV large T (LT) truncation events. The MCPyV LT area in MCCs was enriched with cytosine-targeting mutations, and a strong APOBEC3 mutation signature was observed in MCC sequences. AICDA and APOBEC3 expression were detected in the Finnish MCC sample cohort, and LT expression correlated with APOBEC3H and APOBEC3G. Marginal but statistically significant somatic hypermutation targeting activity was detected in the MCPyV regulatory region. Our results suggest that APOBEC3 cytidine deaminases are a plausible cause of the LT truncating mutations in MCPyV+ MCC, while the role of AID in MCC carcinogenesis is unlikely.
Significance:
We uncover APOBEC3 mutation signature in MCPyV LT that reveals the likely cause of mutations underlying MCPyV+ MCC. We further reveal an expression pattern of APOBECs in a large Finnish MCC sample cohort. Thus, the findings presented here suggest a molecular mechanism underlying an aggressive carcinoma with poor prognosis.
Collapse
Affiliation(s)
- Anni I. Soikkeli
- 1Unit of Infection and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
- 2Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku, Finland
| | - Minna K. Kyläniemi
- 3Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Harri Sihto
- 4Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Jukka Alinikula
- 1Unit of Infection and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
55
|
Chen C, Sui X, Ning H, Sun Y, Du J, Chen X, Zhou X, Chen G, Shen W, Pang L, Zhou X, Shi R, Li W, Wang H, Zhao W, Zhai W, Qi Y, Wu Y, Gao Y. Identification of natural product 3, 5-diiodotyrosine as APOBEC3B inhibitor to prevent somatic mutation accumulation and cancer progression. J Immunother Cancer 2022; 10:jitc-2022-005503. [PMID: 36323433 PMCID: PMC9639148 DOI: 10.1136/jitc-2022-005503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The development of cancer is largely dependent on the accumulation of somatic mutations, indicating the potential to develop cancer chemoprevention agents targeting mutation drivers. However, ideal cancer chemoprevention agents that can effectively inhibit the mutation drivers have not been identified yet. METHODS The somatic mutation signatures and expression analyses of APOBEC3B were performed in patient with pan-cancer. The computer-aided screening and skeleton-based searching were performed to identify natural products that can inhibit the activity of APOBEC3B. 4-nitroquinoline-1-oxide (4-NQO)-induced spontaneous esophageal squamous cell carcinoma (ESCC) and azoxymethane/dextran sulfate sodium (AOM/DSS)-induced spontaneous colon cancer mouse models were conducted to investigate the influences of APOBEC3B inhibitor on the prevention of somatic mutation accumulation and cancer progression. RESULTS Here, we discovered that the cytidine deaminase APOBEC3B correlated somatic mutations were widely observed in a variety of cancers, and its overexpression indicated poor survival. SMC247 (3, 5-diiodotyrosine), as a source of kelp iodine without side effects, could strongly bind APOBEC3B (KD=65 nM) and effectively inhibit its deaminase activity (IC50=1.69 µM). Interestingly, 3, 5-diiodotyrosine could significantly reduce the clusters of mutations, prevent the precancerous lesion progression, and prolong the survival in 4-NQO-induced spontaneous ESCC and AOM/DSS-induced spontaneous colon cancer mouse models. Furthermore, 3, 5-diiodotyrosine could reduce colitis, increase the proportion and function of T lymphocytes via IL-15 in tumor microenvironment. The synergistic cancer prevention effects were observed when 3, 5-diiodotyrosine combined with PD-1/PD-L1 blockade. CONCLUSIONS This is the first prove-of-concept study to elucidate that the natural product 3, 5-diiodotyrosine could prevent somatic mutation accumulation and cancer progression through inhibiting the enzymatic activity of APOBEC3B. In addition, 3, 5-diiodotyrosine could reduce the colitis and increase the infiltration and function of T lymphocytes via IL-15 in tumor microenvironment. 3, 5-diiodotyrosine combined with PD-1/PD-L1 blockade could elicit synergistic cancer prevention effects, indicating a novel strategy for both prevent the somatic mutation accumulation and the immune-suppressive microenvironment exacerbation.
Collapse
Affiliation(s)
- Chunxia Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xinghua Sui
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University - Shenzhen Campus, Shenzhen, Guangdong, China
| | - Haoming Ning
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yixuan Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiangfeng Du
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China,Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaotong Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiuman Zhou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University - Shenzhen Campus, Shenzhen, Guangdong, China
| | - Guanyu Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University - Shenzhen Campus, Shenzhen, Guangdong, China
| | - Wenhui Shen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University - Shenzhen Campus, Shenzhen, Guangdong, China
| | - Liwei Pang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaowen Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ranran Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Wanqiong Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University - Shenzhen Campus, Shenzhen, Guangdong, China
| | - Hongfei Wang
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Wenshan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China,International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou, Henan, China
| | - Wenjie Zhai
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China,International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuanming Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China,International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou, Henan, China
| | - Yahong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China,Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou, Henan, China
| | - Yanfeng Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China,School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University - Shenzhen Campus, Shenzhen, Guangdong, China
| |
Collapse
|
56
|
Çakan E, Gunaydin G. Activation induced cytidine deaminase: An old friend with new faces. Front Immunol 2022; 13:965312. [PMID: 36405752 PMCID: PMC9670734 DOI: 10.3389/fimmu.2022.965312] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
Activation induced cytidine deaminase (AID) protein is a member of APOBEC family. AID converts cytidine to uracil, which is a key step for somatic hypermutation (SHM) and class switch recombination (CSR). AID also plays critical roles in B cell precursor stages, removing polyreactive B cells from immune repertoire. Since the main function of AID is inducing point mutations, dysregulation can lead to increased mutation load, translocations, disturbed genomic integrity, and lymphomagenesis. As such, expression of AID as well as its function is controlled strictly at various molecular steps. Other members of the APOBEC family also play crucial roles during carcinogenesis. Considering all these functions, AID represents a bridge, linking chronic inflammation to carcinogenesis and immune deficiencies to autoimmune manifestations.
Collapse
Affiliation(s)
- Elif Çakan
- Hacettepe University School of Medicine, Sihhiye, Ankara, Turkey
| | - Gurcan Gunaydin
- Department of Basic Oncology, Hacettepe University Cancer Institute, Sihhiye, Ankara, Turkey
| |
Collapse
|
57
|
Kurup HM, Kvach MV, Harjes S, Barzak FM, Jameson GB, Harjes E, Filichev VV. Design, Synthesis, and Evaluation of a Cross-Linked Oligonucleotide as the First Nanomolar Inhibitor of APOBEC3A. Biochemistry 2022; 61:2568-2578. [DOI: 10.1021/acs.biochem.2c00449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Harikrishnan M. Kurup
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Maksim V. Kvach
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Stefan Harjes
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Fareeda M. Barzak
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Geoffrey B. Jameson
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Elena Harjes
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Vyacheslav V. Filichev
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| |
Collapse
|
58
|
Papini C, Wang Z, Kudalkar SN, Schrank TP, Tang S, Sasaki T, Wu C, Tejada B, Ziegler SJ, Xiong Y, Issaeva N, Yarbrough WG, Anderson KS. Exploring ABOBEC3A and APOBEC3B substrate specificity and their role in HPV positive head and neck cancer. iScience 2022; 25:105077. [PMID: 36164654 PMCID: PMC9508485 DOI: 10.1016/j.isci.2022.105077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/05/2022] [Accepted: 08/31/2022] [Indexed: 12/03/2022] Open
Abstract
APOBEC3 family members are cytidine deaminases catalyzing conversion of cytidine to uracil. Many studies have established a link between APOBEC3 expression and cancer development and progression, especially APOBEC3A (A3A) and APOBEC3B (A3B). Preclinical studies with human papillomavirus positive (HPV+) head and neck squamous cell carcinoma (HNSCC) and clinical trial specimens revealed induction of A3B, but not A3A expression after demethylation. We examined the kinetic features of the cytidine deaminase activity for full length A3B and found that longer substrates and a purine at −2 position favored by A3B, whereas A3A prefers shorter substrates and an adenine or thymine at −2 position. The importance and biological significance of A3B catalytic activity rather than A3A and a preference for purine at the −2 position was also established in HPV+ HNSCCs. Our study explored factors influencing formation of A3A and A3B-related cancer mutations that are essential for understanding APOBEC3-related carcinogenesis and facilitating drug discovery. A3B is upregulated after 5-AzaC treatment and related to 5-AzaC sensitivity in HPV+ HNSCC Full-length A3B prefers longer substrates and a purine at −2 site biochemically A3B also prefers a purine at −2 site in both HPV+ and HPV− HNSCC cells A3B signature at -2 site linked to poor patient survival in HPV+ HNSCC low smokers
Collapse
Affiliation(s)
- Christina Papini
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
| | - Zechen Wang
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
| | - Shalley N Kudalkar
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
| | - Travis Parke Schrank
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Su Tang
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
| | - Tomoaki Sasaki
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
| | - Cory Wu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Brandon Tejada
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Samantha J Ziegler
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Natalia Issaeva
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Pathology and Lab Medicine, Lineberger Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Wendell G Yarbrough
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Pathology and Lab Medicine, Lineberger Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Karen S Anderson
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
59
|
Porter VL, Marra MA. The Drivers, Mechanisms, and Consequences of Genome Instability in HPV-Driven Cancers. Cancers (Basel) 2022; 14:4623. [PMID: 36230545 PMCID: PMC9564061 DOI: 10.3390/cancers14194623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022] Open
Abstract
Human papillomavirus (HPV) is the causative driver of cervical cancer and a contributing risk factor of head and neck cancer and several anogenital cancers. HPV's ability to induce genome instability contributes to its oncogenicity. HPV genes can induce genome instability in several ways, including modulating the cell cycle to favour proliferation, interacting with DNA damage repair pathways to bring high-fidelity repair pathways to viral episomes and away from the host genome, inducing DNA-damaging oxidative stress, and altering the length of telomeres. In addition, the presence of a chronic viral infection can lead to immune responses that also cause genome instability of the infected tissue. The HPV genome can become integrated into the host genome during HPV-induced tumorigenesis. Viral integration requires double-stranded breaks on the DNA; therefore, regions around the integration event are prone to structural alterations and themselves are targets of genome instability. In this review, we present the mechanisms by which HPV-dependent and -independent genome instability is initiated and maintained in HPV-driven cancers, both across the genome and at regions of HPV integration.
Collapse
Affiliation(s)
- Vanessa L. Porter
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Marco A. Marra
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
60
|
APOBEC mutagenesis is low in most types of non-B DNA structures. iScience 2022; 25:104535. [PMID: 35754742 PMCID: PMC9213766 DOI: 10.1016/j.isci.2022.104535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/22/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022] Open
Abstract
While somatic mutations are known to be enriched in genome regions with non-canonical DNA secondary structure, the impact of particular mutagens still needs to be elucidated. Here, we demonstrate that in human cancers, the APOBEC mutagenesis is not enriched in direct repeats, mirror repeats, short tandem repeats, and G-quadruplexes, and even decreased below its level in B-DNA for cancer samples with very high APOBEC activity. In contrast, we observe that the APOBEC-induced mutational density is positively associated with APOBEC activity in inverted repeats (cruciform structures), where the impact of cytosine at the 3’-end of the hairpin loop is substantial. Surprisingly, the APOBEC-signature mutation density per TC motif in the single-stranded DNA of a G-quadruplex (G4) is lower than in the four-stranded part of G4 and in B-DNA. The APOBEC mutagenesis, as well as the UV-mutagenesis in melanoma samples, are absent in Z-DNA regions, owing to the depletion of their mutational signature motifs. APOBEC mutagenesis is not enriched in most non-canonical DNA structures Inverted repeats (cruciform structures) show increased APOBEC mutagenesis G-quadruplex’s unstructured strand has low APOBEC-induced mutation density Decrease of APOBEC mutagenesis in non-B DNA possibly associated with PrimPol
Collapse
|
61
|
Shaban NM, Yan R, Shi K, Moraes SN, Cheng AZ, Carpenter MA, McLellan JS, Yu Z, Harris RS. Cryo-EM structure of the EBV ribonucleotide reductase BORF2 and mechanism of APOBEC3B inhibition. SCIENCE ADVANCES 2022; 8:eabm2827. [PMID: 35476445 PMCID: PMC9045721 DOI: 10.1126/sciadv.abm2827] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/23/2022] [Indexed: 05/26/2023]
Abstract
Viruses use a plethora of mechanisms to evade immune responses. A recent example is neutralization of the nuclear DNA cytosine deaminase APOBEC3B by the Epstein-Barr virus (EBV) ribonucleotide reductase subunit BORF2. Cryo-EM studies of APOBEC3B-BORF2 complexes reveal a large >1000-Å2 binding surface composed of multiple structural elements from each protein, which effectively blocks the APOBEC3B active site from accessing single-stranded DNA substrates. Evolutionary optimization is suggested by unique insertions in BORF2 absent from other ribonucleotide reductases and preferential binding to APOBEC3B relative to the highly related APOBEC3A and APOBEC3G enzymes. A molecular understanding of this pathogen-host interaction has potential to inform the development of drugs that block the interaction and liberate the natural antiviral activity of APOBEC3B. In addition, given a role for APOBEC3B in cancer mutagenesis, it may also be possible for information from the interaction to be used to develop DNA deaminase inhibitors.
Collapse
Affiliation(s)
- Nadine M. Shaban
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rui Yan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 55416, USA
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sofia N. Moraes
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Adam Z. Cheng
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael A. Carpenter
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55416, USA
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Zhiheng Yu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 55416, USA
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55416, USA
| |
Collapse
|
62
|
Barka A, Berríos KN, Bailer P, Schutsky EK, Wang T, Kohli RM. The Base-Editing Enzyme APOBEC3A Catalyzes Cytosine Deamination in RNA with Low Proficiency and High Selectivity. ACS Chem Biol 2022; 17:629-636. [PMID: 35262324 PMCID: PMC9949940 DOI: 10.1021/acschembio.1c00919] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Human APOBEC3A (A3A) is a nucleic acid-modifying enzyme that belongs to the cytidine deaminase family. Canonically, A3A catalyzes the deamination of cytosine into uracil in single-stranded DNA, an activity that makes A3A both a critical antiviral defense factor and a useful tool for targeted genome editing. However, mutagenesis by A3A has also been readily detected in both cellular DNA and RNA, activities that have been implicated in cancer. Given the importance of substrate discrimination for the physiological, pathological, and biotechnological activities of A3A, here we explore the mechanistic basis for its preferential targeting of DNA over RNA. Using a chimeric substrate containing a target ribocytidine within an otherwise DNA backbone, we demonstrate that a single hydroxyl at the sugar of the target base acts as a major selectivity determinant for deamination. To assess the contribution of bases neighboring the target cytosine, we show that overall RNA deamination is greatly reduced relative to that of DNA but can be observed when ideal features are present, such as preferred sequence context and secondary structure. A strong dependence on idealized substrate features can also be observed with a mutant of A3A (eA3A, N57G), which has been employed for genome editing due to altered selectivity for DNA over RNA. Altogether, our work reveals a relationship between the overall decreased reactivity of A3A and increased substrate selectivity, and our results hold implications both for characterizing off-target mutagenesis and for engineering optimized DNA deaminases for base-editing technologies.
Collapse
Affiliation(s)
- Aleksia Barka
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Kiara N. Berríos
- Graduate Group in Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Peter Bailer
- Graduate Group in Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Emily K. Schutsky
- Graduate Group in Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Tong Wang
- Graduate Group in Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Rahul M. Kohli
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
63
|
Abstract
The AID/APOBEC polynucleotide cytidine deaminases have historically been classified as either DNA mutators or RNA editors based on their first identified nucleic acid substrate preference. DNA mutators can generate functional diversity at antibody genes but also cause genomic instability in cancer. RNA editors can generate informational diversity in the transcriptome of innate immune cells, and of cancer cells. Members of both classes can act as antiviral restriction factors. Recent structural work has illuminated differences and similarities between AID/APOBEC enzymes that can catalyse DNA mutation, RNA editing or both, suggesting that the strict functional classification of members of this family should be reconsidered. As many of these enzymes have been employed for targeted genome (or transcriptome) editing, a more holistic understanding will help improve the design of therapeutically relevant programmable base editors. In this Perspective, Pecori et al. provide an overview of the AID/APOBEC cytidine deaminase family, discussing key structural features, how they contribute to viral and tumour evolution and how they can be harnessed for (potentially therapeutic) base-editing purposes.
Collapse
|
64
|
The current toolbox for APOBEC drug discovery. Trends Pharmacol Sci 2022; 43:362-377. [PMID: 35272863 PMCID: PMC9018551 DOI: 10.1016/j.tips.2022.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 12/14/2022]
Abstract
Mutational processes driving genome evolution and heterogeneity contribute to immune evasion and therapy resistance in viral infections and cancer. APOBEC3 (A3) enzymes promote such mutations by catalyzing the deamination of cytosines to uracils in single-stranded DNA. Chemical inhibition of A3 enzymes may yield an antimutation therapeutic strategy to improve the durability of current drug therapies that are prone to resistance mutations. A3 small-molecule drug discovery efforts to date have been restricted to a single high-throughput biochemical activity assay; however, the arsenal of discovery assays has significantly expanded in recent years. The assays used to study A3 enzymes are reviewed here with an eye towards their potential for small-molecule discovery efforts.
Collapse
|
65
|
Liu Y, Lan W, Wang C, Cao C. Two different kinds of interaction modes of deaminase APOBEC3A with single-stranded DNA in solution detected by nuclear magnetic resonance. Protein Sci 2022; 31:443-453. [PMID: 34792260 PMCID: PMC8819843 DOI: 10.1002/pro.4242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 02/03/2023]
Abstract
APOBEC3A (A3A) deaminates deoxycytidine in target motif TC in a single-stranded DNA (we termed it as TC DNA), which mortally mutates viral pathogens and immunoglobulins, and leads to the diversification and lethality of cancers. The crystal structure of A3A-DNA revealed a unique U-shaped recognition mode of target base dC0 . However, when TC DNA was titrated into 15 N-labeled A3A solution, we observed two sets of 1 H-15 N cross-peaks of A3A in HSQC spectra, and two sets of 1 H-1 H cross-peaks of DNA in two-dimensional 13 C,15 N-filtered TOCSY spectra, indicating two different kinds of conformers of either A3A or TC DNA existing in solution. Here, mainly by NMR, we demonstrated that one DNA conformer interacted with one A3A conformer, forming a specific complex A3AS -DNAS in a way almost similar to that observed in the reported crystal A3A-DNA structure, where dC0 inserted into zinc ion binding center. While the other DNA conformer bound with another A3A conformer, but dC0 did not extend into the zinc-binding pocket, forming a nonspecific A3ANS -DNANS complex. The NMR solution structure implied three sites Asn61 , His182 and Arg189 were necessary to DNA recognition. These observations indicate a distinctive way from that reported in X-ray crystal structure, suggesting an unexpected mode of deaminase APOBEC3A to identify target motif TC in DNA in solution.
Collapse
Affiliation(s)
- Yaping Liu
- State Key Laboratory of Bioorganic and Natural Product ChemistryCenter for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina,University of Chinese Academy of ScienceBeijingChina
| | - Wenxian Lan
- State Key Laboratory of Bioorganic and Natural Product ChemistryCenter for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina
| | - Chunxi Wang
- State Key Laboratory of Bioorganic and Natural Product ChemistryCenter for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina
| | - Chunyang Cao
- State Key Laboratory of Bioorganic and Natural Product ChemistryCenter for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina,University of Chinese Academy of ScienceBeijingChina
| |
Collapse
|
66
|
Xie NB, Wang M, Ji TT, Guo X, Ding JH, Yuan BF, Feng YQ. Bisulfite-free and single-nucleotide resolution sequencing of DNA epigenetic modification of 5-hydroxymethylcytosine by engineered deaminase. Chem Sci 2022; 13:7046-7056. [PMID: 35774177 PMCID: PMC9200132 DOI: 10.1039/d2sc01052f] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022] Open
Abstract
The discovery of 5-hydroxymethylcytosine (5hmC) in mammalian genomes is a landmark in epigenomics study. Similar to 5-methylcytosine (5mC), 5hmC is viewed a critical epigenetic modification. Deciphering the functions of 5hmC...
Collapse
Affiliation(s)
- Neng-Bin Xie
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China
- School of Public Health, Wuhan University Wuhan 430071 China
| | - Min Wang
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China
| | - Tong-Tong Ji
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China
| | - Xia Guo
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China
| | - Jiang-Hui Ding
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China
| | - Bi-Feng Yuan
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China
- School of Public Health, Wuhan University Wuhan 430071 China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University Wuhan 430071 China
| | - Yu-Qi Feng
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 China
- School of Public Health, Wuhan University Wuhan 430071 China
| |
Collapse
|
67
|
Pallaseni A, Peets E, Koeppel J, Weller J, Vanderstichele T, Ho U, Crepaldi L, van Leeuwen J, Allen F, Parts L. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3551-3564. [PMID: 35286377 PMCID: PMC8989541 DOI: 10.1093/nar/gkac161] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/19/2022] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
CRISPR/Cas base editors promise nucleotide-level control over DNA sequences, but the determinants of their activity remain incompletely understood. We measured base editing frequencies in two human cell lines for two cytosine and two adenine base editors at ∼14 000 target sequences and find that base editing activity is sequence-biased, with largest effects from nucleotides flanking the target base. Whether a base is edited depends strongly on the combination of its position in the target and the preceding base, acting to widen or narrow the effective editing window. The impact of features on editing rate depends on the position, with sequence bias efficacy mainly influencing bases away from the center of the window. We use these observations to train a machine learning model to predict editing activity per position, with accuracy ranging from 0.49 to 0.72 between editors, and with better generalization across datasets than existing tools. We demonstrate the usefulness of our model by predicting the efficacy of disease mutation correcting guides, and find that most of them suffer from more unwanted editing than pure outcomes. This work unravels the position-specificity of base editing biases and allows more efficient planning of editing campaigns in experimental and therapeutic contexts.
Collapse
Affiliation(s)
| | | | | | | | | | - Uyen Linh Ho
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Jolanda van Leeuwen
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Leopold Parts
- To whom correspondence should be addressed. Tel: +44 1223 834 244;
| |
Collapse
|
68
|
Berry N, Suspène R, Caval V, Khalfi P, Beauclair G, Rigaud S, Blanc H, Vignuzzi M, Wain-Hobson S, Vartanian JP. Herpes Simplex Virus Type 1 Infection Disturbs the Mitochondrial Network, Leading to Type I Interferon Production through the RNA Polymerase III/RIG-I Pathway. mBio 2021; 12:e0255721. [PMID: 34809467 PMCID: PMC8609356 DOI: 10.1128/mbio.02557-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/19/2021] [Indexed: 11/20/2022] Open
Abstract
Viruses have evolved a plethora of mechanisms to impair host innate immune responses. Herpes simplex virus type 1 (HSV-1), a double-stranded linear DNA virus, impairs the mitochondrial network and dynamics predominantly through the UL12.5 gene. We demonstrated that HSV-1 infection induced a remodeling of mitochondrial shape, resulting in a fragmentation of the mitochondria associated with a decrease in their volume and an increase in their sphericity. This damage leads to the release of mitochondrial DNA (mtDNA) to the cytosol. By generating a stable THP-1 cell line expressing the DNase I-mCherry fusion protein and a THP-1 cell line specifically depleted of mtDNA upon ethidium bromide treatment, we showed that cytosolic mtDNA contributes to type I interferon and APOBEC3A upregulation. This was confirmed by using an HSV-1 strain (KOS37 UL98-SPA) with a deletion of the UL12.5 gene that impaired its ability to induce mtDNA stress. Furthermore, by using an inhibitor of RNA polymerase III, we demonstrated that upon HSV-1 infection, cytosolic mtDNA enhanced type I interferon induction through the RNA polymerase III/RIG-I pathway. APOBEC3A was in turn induced by interferon. Deep sequencing analyses of cytosolic mtDNA mutations revealed an APOBEC3A signature predominantly in the 5'TpCpG context. These data demonstrate that upon HSV-1 infection, the mitochondrial network is disrupted, leading to the release of mtDNA and ultimately to its catabolism through APOBEC3-induced mutations. IMPORTANCE Herpes simplex virus 1 (HSV-1) impairs the mitochondrial network through the viral protein UL12.5. This leads to the fusion of mitochondria and simultaneous release of mitochondrial DNA (mtDNA) in a mouse model. We have shown that released mtDNA is recognized as a danger signal, capable of stimulating signaling pathways and inducing the production of proinflammatory cytokines. The expression of the human cytidine deaminase APOBEC3A is highly upregulated by interferon responses. This enzyme catalyzes the deamination of cytidine to uridine in single-stranded DNA substrates, resulting in the catabolism of edited DNA. Using human cell lines deprived of mtDNA and viral strains deficient in UL12, we demonstrated the implication of mtDNA in the production of interferon and APOBEC3A expression during viral infection. We have shown that HSV-1 induces mitochondrial network fragmentation in a human model and confirmed the implication of RNA polymerase III/RIG-I signaling in the capture of cytosolic mtDNA.
Collapse
Affiliation(s)
- Noémie Berry
- Molecular Retrovirology Unit, Institut Pasteur, Paris, France
- Sorbonne Université, Complexité du Vivant, Paris, France
| | | | - Vincent Caval
- Molecular Retrovirology Unit, Institut Pasteur, Paris, France
| | - Pierre Khalfi
- Molecular Retrovirology Unit, Institut Pasteur, Paris, France
- Sorbonne Université, Complexité du Vivant, Paris, France
| | | | | | - Hervé Blanc
- Viral Populations and Pathogenesis Unit, Institut Pasteur, CNRS UMR 3569, Paris, France
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, Institut Pasteur, CNRS UMR 3569, Paris, France
| | | | | |
Collapse
|
69
|
The optimal pH of AID is skewed from that of its catalytic pocket by DNA-binding residues and surface charge. Biochem J 2021; 479:39-55. [PMID: 34870314 DOI: 10.1042/bcj20210529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022]
Abstract
Activation-induced cytidine deaminase (AID) is a member of the apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) family of cytidine deaminases. AID mutates immunoglobulin loci to initiate secondary antibody diversification. The APOBEC3 (A3) sub-branch mutates viral pathogens in the cytosol and acidic endosomal compartments. Accordingly, AID functions optimally near neutral pH, while most A3s are acid-adapted (optimal pH 5.5-6.5). To gain a structural understanding for this pH disparity, we constructed high-resolution maps of AID catalytic activity vs pH. We found AID's optimal pH was 7.3 but it retained most (>70%) of the activity at pH 8. Probing of ssDNA-binding residues near the catalytic pocket, key for bending ssDNA into the pocket (e.g R25) yielded mutants with altered pH preference, corroborating previous findings that the equivalent residue in APOBEC3G (H216) underlies its acidic pH preference. AID from bony fish exhibited more basic optimal pH (pH 7.5-8.1) and several R25-equivalent mutants altered pH preference. Comparison of pH optima across the AID/APOBEC3 family revealed an inverse correlation between positive surface charge and overall catalysis. The paralogue with the most robust catalytic activity (APOBEC3A) has the lowest surface charge, most acidic pH preference, while the paralogue with the most lethargic catalytic rate (AID) has the most positive surface charge and highest optimal pH. We suggest one possible mechanism is through surface charge dictating an overall optimal pH that is different from the optimal pH of the catalytic pocket microenvironment. These findings illuminate an additional structural mechanism that regulates AID/APOBEC3 mutagenesis.
Collapse
|
70
|
Gaba A, Hix MA, Suhail S, Flath B, Boysan B, Williams DR, Pelletier T, Emerman M, Morcos F, Cisneros GA, Chelico L. Divergence in Dimerization and Activity of Primate APOBEC3C. J Mol Biol 2021; 433:167306. [PMID: 34666043 PMCID: PMC9202443 DOI: 10.1016/j.jmb.2021.167306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 11/21/2022]
Abstract
The APOBEC3 (A3) family of single-stranded DNA cytidine deaminases are host restriction factors that inhibit lentiviruses, such as HIV-1, in the absence of the Vif protein that causes their degradation. Deamination of cytidine in HIV-1 (−)DNA forms uracil that causes inactivating mutations when uracil is used as a template for (+)DNA synthesis. For APOBEC3C (A3C), the chimpanzee and gorilla orthologues are more active than human A3C, and we determined that Old World Monkey A3C from rhesus macaque (rh) is not active against HIV-1. Biochemical, virological, and coevolutionary analyses combined with molecular dynamics simulations showed that the key amino acids needed to promote rhA3C antiviral activity, 44, 45, and 144, also promoted dimerization and changes to the dynamics of loop 1, near the enzyme active site. Although forced evolution of rhA3C resulted in a similar dimer interface with hominid A3C, the key amino acid contacts were different. Overall, our results determine the basis for why rhA3C is less active than human A3C and establish the amino acid network for dimerization and increased activity. Based on identification of the key amino acids determining Old World Monkey antiviral activity we predict that other Old World Monkey A3Cs did not impart anti-lentiviral activity, despite fixation of a key residue needed for hominid A3C activity. Overall, the coevolutionary analysis of the A3C dimerization interface presented also provides a basis from which to analyze dimerization interfaces of other A3 family members.
Collapse
Affiliation(s)
- Amit Gaba
- Department of Biochemistry, Microbiology, and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Canada. https://twitter.com/optimist1023
| | - Mark A Hix
- Department of Chemistry, University of North Texas, Denton, TX, USA. https://twitter.com/markahix
| | - Sana Suhail
- Department of Biological Sciences, Center for Systems Biology, University of Texas at Dallas, Richardson, TX, USA. https://twitter.com/sakuraa_329
| | - Ben Flath
- Department of Biochemistry, Microbiology, and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Brock Boysan
- Department of Chemistry, University of North Texas, Denton, TX, USA
| | - Danielle R Williams
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. https://twitter.com/dani_renee_
| | - Tomas Pelletier
- Department of Biochemistry, Microbiology, and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Michael Emerman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. https://twitter.com/memerman
| | - Faruck Morcos
- Department of Biological Sciences, Center for Systems Biology, University of Texas at Dallas, Richardson, TX, USA; Department of Bioengineering, University of Texas at Dallas, Dallas, TX, USA. https://twitter.com/MorcosLab
| | - G Andrés Cisneros
- Department of Chemistry, University of North Texas, Denton, TX, USA. https://twitter.com/CisnerosRes
| | - Linda Chelico
- Department of Biochemistry, Microbiology, and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
71
|
Brown AL, Collins CD, Thompson S, Coxon M, Mertz TM, Roberts SA. Single-stranded DNA binding proteins influence APOBEC3A substrate preference. Sci Rep 2021; 11:21008. [PMID: 34697369 PMCID: PMC8546098 DOI: 10.1038/s41598-021-00435-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/11/2021] [Indexed: 11/09/2022] Open
Abstract
The cytidine deaminase, APOBEC3A (A3A), is a prominent source of mutations in multiple cancer types. These APOBEC-signature mutations are non-uniformly distributed across cancer genomes, associating with single-stranded (ss) DNA formed during DNA replication and hairpin-forming sequences. The biochemical and cellular factors that influence these specificities are unclear. We measured A3A's cytidine deaminase activity in vitro on substrates that model potential sources of ssDNA in the cell and found that A3A is more active on hairpins containing 4 nt ssDNA loops compared to hairpins with larger loops, bubble structures, replication fork mimics, ssDNA gaps, or linear DNA. Despite pre-bent ssDNAs being expected to fit better in the A3A active site, we determined A3A favors a 4 nt hairpin substrate only 2- to fivefold over linear ssDNA substrates. Addition of whole cell lysates or purified RPA to cytidine deaminase assays more severely reduced A3A activity on linear ssDNA (45 nt) compared to hairpin substrates. These results indicate that the large enrichment of A3A-driven mutations in hairpin-forming sequences in tumor genomes is likely driven in part by other proteins that preferentially bind longer ssDNA regions, which limit A3A's access. Furthermore, A3A activity is reduced at ssDNA associated with a stalled T7 RNA polymerase, suggesting that potential protein occlusion by RNA polymerase also limits A3A activity. These results help explain the small transcriptional strand bias for APOBEC mutation signatures in cancer genomes and the general targeting of hairpin-forming sequences in the lagging strand template during DNA replication.
Collapse
Affiliation(s)
- Amber L Brown
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Christopher D Collins
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Secily Thompson
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Margo Coxon
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Tony M Mertz
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Steven A Roberts
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, USA.
| |
Collapse
|
72
|
Ren Q, Sretenovic S, Liu G, Zhong Z, Wang J, Huang L, Tang X, Guo Y, Liu L, Wu Y, Zhou J, Zhao Y, Yang H, He Y, Liu S, Yin D, Mayorga R, Zheng X, Zhang T, Qi Y, Zhang Y. Improved plant cytosine base editors with high editing activity, purity, and specificity. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2052-2068. [PMID: 34042262 PMCID: PMC8486236 DOI: 10.1111/pbi.13635] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 05/09/2023]
Abstract
Cytosine base editors (CBEs) are great additions to the expanding genome editing toolbox. To improve C-to-T base editing in plants, we first compared seven cytidine deaminases in the BE3-like configuration in rice. We found A3A/Y130F-CBE_V01 resulted in the highest C-to-T base editing efficiency in both rice and Arabidopsis. Furthermore, we demonstrated this A3A/Y130F cytidine deaminase could be used to improve iSpyMacCas9-mediated C-to-T base editing at A-rich PAMs. To showcase its applications, we first applied A3A/Y130F-CBE_V01 for multiplexed editing to generate microRNA-resistant mRNA transcripts as well as pre-mature stop codons in multiple seed trait genes. In addition, we harnessed A3A/Y130F-CBE_V01 for efficient artificial evolution of novel ALS and EPSPS alleles which conferred herbicide resistance in rice. To further improve C-to-T base editing, multiple CBE_V02, CBE_V03 and CBE_V04 systems were developed and tested in rice protoplasts. The CBE_V04 systems were found to have improved editing activity and purity with focal recruitment of more uracil DNA glycosylase inhibitors (UGIs) by the engineered single guide RNA 2.0 scaffold. Finally, we used whole-genome sequencing (WGS) to compare six CBE_V01 systems and four CBE_V04 systems for genome-wide off-target effects in rice. Different levels of cytidine deaminase-dependent and sgRNA-independent off-target effects were indeed revealed by WGS among edited lines by these CBE systems. We also investigated genome-wide sgRNA-dependent off-target effects by different CBEs in rice. This comprehensive study compared 21 different CBE systems, and benchmarked PmCDA1-CBE_V04 and A3A/Y130F-CBE_V04 as next-generation plant CBEs with high editing efficiency, purity, and specificity.
Collapse
Affiliation(s)
- Qiurong Ren
- Department of BiotechnologySchool of Life Science and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Simon Sretenovic
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMarylandUSA
| | - Guanqing Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Zhaohui Zhong
- Department of BiotechnologySchool of Life Science and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Jiaheng Wang
- Department of BiotechnologySchool of Life Science and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Lan Huang
- Department of BiotechnologySchool of Life Science and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Xu Tang
- Department of BiotechnologySchool of Life Science and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Yachong Guo
- Department of BiotechnologySchool of Life Science and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Li Liu
- Department of BiotechnologySchool of Life Science and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Yuechao Wu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Jie Zhou
- Department of BiotechnologySchool of Life Science and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Yuxin Zhao
- Department of BiotechnologySchool of Life Science and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Han Yang
- Department of BiotechnologySchool of Life Science and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Yao He
- Department of BiotechnologySchool of Life Science and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Shishi Liu
- Department of BiotechnologySchool of Life Science and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Desuo Yin
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMarylandUSA
- Food Crop InstituteHubei Academy of Agricultural SciencesWuhanHubeiChina
| | - Rocio Mayorga
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMarylandUSA
| | - Xuelian Zheng
- Department of BiotechnologySchool of Life Science and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
- Joint International Research Laboratory of Agriculture and Agri‐Product SafetyThe Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Yiping Qi
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMarylandUSA
- Institute for Bioscience and Biotechnology ResearchUniversity of MarylandRockvilleMarylandUSA
| | - Yong Zhang
- Department of BiotechnologySchool of Life Science and TechnologyCenter for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
73
|
Kono T, Laimins L. Genomic Instability and DNA Damage Repair Pathways Induced by Human Papillomaviruses. Viruses 2021; 13:1821. [PMID: 34578402 PMCID: PMC8472259 DOI: 10.3390/v13091821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/29/2021] [Accepted: 09/08/2021] [Indexed: 12/22/2022] Open
Abstract
Human papillomaviruses (HPV) are the causative agents of cervical and other anogenital cancers as well as those of the oropharynx. HPV proteins activate host DNA damage repair factors to promote their viral life cycle in stratified epithelia. Activation of both the ATR pathway and the ATM pathway are essential for viral replication and differentiation-dependent genome amplification. These pathways are also important for maintaining host genomic integrity and their dysregulation or mutation is often seen in human cancers. The APOBEC3 family of cytidine deaminases are innate immune factors that are increased in HPV positive cells leading to the accumulation of TpC mutations in cellular DNAs that contribute to malignant progression. The activation of DNA damage repair factors may corelate with expression of APOBEC3 in HPV positive cells. These pathways may actively drive tumor development implicating/suggesting DNA damage repair factors and APOBEC3 as possible therapeutic targets.
Collapse
Affiliation(s)
- Takeyuki Kono
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Department of Otolaryngology Head and Neck Surgery, School of Medicine, Keio University, Tokyo 1608582, Japan
| | - Laimonis Laimins
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| |
Collapse
|
74
|
Randall LB, Sretenovic S, Wu Y, Yin D, Zhang T, Eck JV, Qi Y. Genome- and transcriptome-wide off-target analyses of an improved cytosine base editor. PLANT PHYSIOLOGY 2021; 187:73-87. [PMID: 34618139 PMCID: PMC8418419 DOI: 10.1093/plphys/kiab264] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/13/2021] [Indexed: 05/17/2023]
Abstract
Cytosine base editors (CBEs) are the promising tools for precise genome editing in plants. It is important to investigate potential off-target effects of an efficient CBE at the genome and transcriptome levels in a major crop. Based on comparison of five cytidine deaminases and two different promoters for expressing single-guide RNAs (sgRNAs), we tested a highly efficient A3A/Y130F-BE3 system for efficient C-to-T base editing in tomato (Solanum lycopersicum). We then conducted whole-genome sequencing of four base-edited tomato plants, three Green fluorescent protein (GFP)-expressing control plants, and two wild-type plants. The sequencing depths ranged from 25× to 49× with read mapping rates >97%. No sgRNA-dependent off-target mutations were detected. Our data show an average of approximately 1,000 single-nucleotide variations (SNVs) and approximately 100 insertions and deletions (indels) per GFP control plant. Base-edited plants had on average elevated levels of SNVs (approximately 1,250) and indels (approximately 300) per plant. On average, about 200 more C-to-T (G-to-A) mutations were found in a base-edited plant than a GFP control plant, suggesting some level of sgRNA-independent off-target effects, though the difference is not statistically significant. We also conducted RNA sequencing of the same four base-edited plants and three GFP control plants. An average of approximately 200 RNA SNVs was discovered per plant for either base-edited or GFP control plants. Furthermore, no specific enrichment of C-to-U mutations can be found in the base-edited plants. Hence, we cannot find any evidence for bona fide off-target mutations by A3A/Y130F-BE3 at the transcriptome level.
Collapse
Affiliation(s)
| | - Simon Sretenovic
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742, USA
| | - Yuechao Wu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Desuo Yin
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742, USA
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Joyce Van Eck
- The Boyce Thompson Institute, Ithaca, New York 14853, USA
- Plant Breeding and Genetics Section, Cornell University, Ithaca, New York 14853, USA
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, USA
| |
Collapse
|
75
|
King JJ, Borzooee F, Im J, Asgharpour M, Ghorbani A, Diamond CP, Fifield H, Berghuis L, Larijani M. Structure-Based Design of First-Generation Small Molecule Inhibitors Targeting the Catalytic Pockets of AID, APOBEC3A, and APOBEC3B. ACS Pharmacol Transl Sci 2021; 4:1390-1407. [PMID: 34423273 PMCID: PMC8369683 DOI: 10.1021/acsptsci.1c00091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Indexed: 12/12/2022]
Abstract
![]()
Activation-induced
cytidine deaminase (AID) initiates antibody
diversification by mutating immunoglobulin loci in B lymphocytes.
AID and related APOBEC3 (A3) enzymes also induce genome-wide mutations
and lesions implicated in tumorigenesis and tumor progression. The
most prevalent mutation signatures across diverse tumor genomes are
attributable to the mistargeted mutagenic activities of AID/A3s. Thus,
inhibiting AID/A3s has been suggested to be of therapeutic benefit.
We previously used a computational-biochemical approach to gain insight
into the structure of AID’s catalytic pocket, which resulted
in the discovery of a novel type of regulatory catalytic pocket closure
that regulates AID/A3s that we termed the “Schrodinger’s
CATalytic pocket”. Our findings were subsequently confirmed
by direct structural studies. Here, we describe our search for small
molecules that target the catalytic pocket of AID. We identified small
molecules that inhibit purified AID, AID in cell extracts, and endogenous
AID of lymphoma cells. Analogue expansion yielded derivatives with
improved potencies. These were found to also inhibit A3A and A3B,
the two most tumorigenic siblings of AID. Two compounds exhibit low
micromolar IC50 inhibition of AID and A3A, exhibiting the
strongest potency for A3A. Docking suggests key interactions between
their warheads and residues lining the catalytic pockets of AID, A3A,
and A3B and between the tails and DNA-interacting residues on the
surface proximal to the catalytic pocket opening. Accordingly, mutants
of these residues decreased inhibition potency. The chemistry and
abundance of key stabilizing interactions between the small molecules
and residues within and immediately outside the catalytic pockets
are promising for therapeutic development.
Collapse
Affiliation(s)
- Justin J King
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3 V6, Canada
| | - Faezeh Borzooee
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3 V6, Canada
| | - Junbum Im
- Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3 V6, Canada.,BC Cancer Research/Terry Fox Labs, University of British Columbia, Vancouver, British Columbia BC V5Z 1L3, Canada
| | - Mahdi Asgharpour
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3 V6, Canada
| | - Atefeh Ghorbani
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3 V6, Canada
| | - Cody P Diamond
- Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3 V6, Canada
| | - Heather Fifield
- Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3 V6, Canada
| | - Lesley Berghuis
- Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3 V6, Canada
| | - Mani Larijani
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3 V6, Canada
| |
Collapse
|
76
|
Wang T, Loo CE, Kohli RM. Enzymatic approaches for profiling cytosine methylation and hydroxymethylation. Mol Metab 2021; 57:101314. [PMID: 34375743 PMCID: PMC8829811 DOI: 10.1016/j.molmet.2021.101314] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 12/20/2022] Open
Abstract
Background In mammals, modifications to cytosine bases, particularly in cytosine-guanine (CpG) dinucleotide contexts, play a major role in shaping the epigenome. The canonical epigenetic mark is 5-methylcytosine (5mC), but oxidized versions of 5mC, including 5-hydroxymethylcytosine (5hmC), are now known to be important players in epigenomic dynamics. Understanding the functional role of these modifications in gene regulation, normal development, and pathological conditions requires the ability to localize these modifications in genomic DNA. The classical approach for sequencing cytosine modifications has involved differential deamination via the chemical sodium bisulfite; however, bisulfite is destructive, limiting its utility in important biological or clinical settings where detection of low frequency populations is critical. Additionally, bisulfite fails to resolve 5mC from 5hmC. Scope of review To summarize how enzymatic rather than chemical approaches can be leveraged to localize and resolve different cytosine modifications in a non-destructive manner. Major conclusions Nature offers a suite of enzymes with biological roles in cytosine modification in organisms spanning from bacteriophages to mammals. These enzymatic activities include methylation by DNA methyltransferases, oxidation of 5mC by TET family enzymes, hypermodification of 5hmC by glucosyltransferases, and the generation of transition mutations from cytosine to uracil by DNA deaminases. Here, we describe how insights into the natural reactivities of these DNA-modifying enzymes can be leveraged to convert them into powerful biotechnological tools. Application of these enzymes in sequencing can be accomplished by relying on their natural activity, exploiting their ability to discriminate between cytosine modification states, reacting them with functionalized substrate analogs to introduce chemical handles, or engineering the DNA-modifying enzymes to take on new reactivities. We describe how these enzymatic reactions have been combined and permuted to localize DNA modifications with high specificity and without the destructive limitations posed by chemical methods for epigenetic sequencing. Chemical sequencing methods damage DNA and can confound cytosine modifications. DNA modifying enzymes offer non-destructive and selective biotechnological tools. DNA deaminases, methyltransferases, oxygenases and glucosyltransferases can be used. Permuting enzymes with various activities can reveal distinct cytosine states. Engineered enzymes utilizing unnatural co-substrates expand sequencing scope.
Collapse
Affiliation(s)
- Tong Wang
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christian E Loo
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rahul M Kohli
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
77
|
Hou S, Lee JM, Myint W, Matsuo H, Kurt Yilmaz N, Schiffer CA. Structural basis of substrate specificity in human cytidine deaminase family APOBEC3s. J Biol Chem 2021; 297:100909. [PMID: 34171358 PMCID: PMC8313598 DOI: 10.1016/j.jbc.2021.100909] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 01/22/2023] Open
Abstract
The human cytidine deaminase family of APOBEC3s (A3s) plays critical roles in both innate immunity and the development of cancers. A3s comprise seven functionally overlapping but distinct members that can be exploited as nucleotide base editors for treating genetic diseases. Although overall structurally similar, A3s have vastly varying deamination activity and substrate preferences. Recent crystal structures of ssDNA-bound A3s together with experimental studies have provided some insights into distinct substrate specificities among the family members. However, the molecular interactions responsible for their distinct biological functions and how structure regulates substrate specificity are not clear. In this study, we identified the structural basis of substrate specificities in three catalytically active A3 domains whose crystal structures have been previously characterized: A3A, A3B- CTD, and A3G-CTD. Through molecular modeling and dynamic simulations, we found an interdependency between ssDNA substrate binding conformation and nucleotide sequence specificity. In addition to the U-shaped conformation seen in the crystal structure with the CTC0 motif, A3A can accommodate the CCC0 motif when ssDNA is in a more linear (L) conformation. A3B can also bind both U- and L-shaped ssDNA, unlike A3G, which can stably recognize only linear ssDNA. These varied conformations are stabilized by sequence-specific interactions with active site loops 1 and 7, which are highly variable among A3s. Our results explain the molecular basis of previously observed substrate specificities in A3s and have implications for designing A3-specific inhibitors for cancer therapy as well as engineering base-editing systems for gene therapy.
Collapse
Affiliation(s)
- Shurong Hou
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jeong Min Lee
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Wazo Myint
- Basic Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Hiroshi Matsuo
- Basic Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| |
Collapse
|
78
|
Das S, Agarwal DK, Mandal B, Rao VR, Kundu T. Detection of the Chilli Leaf Curl Virus Using an Attenuated Total Reflection-Mediated Localized Surface-Plasmon-Resonance-Based Optical Platform. ACS OMEGA 2021; 6:17413-17423. [PMID: 34278127 PMCID: PMC8280655 DOI: 10.1021/acsomega.1c01702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/09/2021] [Indexed: 05/16/2023]
Abstract
The development of a nanoparticle-based optical platform has been presented as a biosensor for detecting target-specific plant virus DNA. The binding dynamics of gold nanoparticles has been studied on the amine-functionalized surface by the attenuated total reflection (ATR)-based evanescent wave absorption method monitoring the localized surface plasmon resonance (LSPR). The developed surface was established as a refractive index sensor by monitoring the LSPR absorption peak of gold nanoparticles. This nanoparticle-immobilized surface was explored to establish as a biosensing platform with target-specific immunoglobulin (IgG) antibody-antigen interaction. The IgG concentration-dependent variation of absorbance was correlated with the refractive index change. After successfully establishing this ATR configuration as an LSPR-based biosensor, the single-stranded DNA of the chilli leaf curl virus was detected using its complementary DNA sequence as a receptor. The limit of detection of this sensor was determined to be 1.0 μg/mL for this target viral DNA. This ATR absorption technique has enormous potential as an LSPR based nano-biosensor for the detection of other begomoviruses.
Collapse
Affiliation(s)
- Sonatan Das
- Centre
for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Dilip Kumar Agarwal
- Department
of Physics, Indian Institute of Technology
Bombay, Mumbai 400076, India
| | - Bikash Mandal
- Advanced
Centre for Plant Virology, Indian Agricultural
Research Institute, Pusa, New Delhi, Delhi 110012, India
| | - V. Ramgopal Rao
- Centre
for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai 400076, India
- Department
of Electrical Engineering, Indian Institute
of Technology Bombay, Mumbai 400076, India
| | - Tapanendu Kundu
- Centre
for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai 400076, India
- Department
of Physics, Indian Institute of Technology
Bombay, Mumbai 400076, India
| |
Collapse
|
79
|
Chervova A, Fatykhov B, Koblov A, Shvarov E, Preobrazhenskaya J, Vinogradov D, Ponomarev GV, Gelfand MS, Kazanov MD. Analysis of gene expression and mutation data points on contribution of transcription to the mutagenesis by APOBEC enzymes. NAR Cancer 2021; 3:zcab025. [PMID: 34316712 PMCID: PMC8253550 DOI: 10.1093/narcan/zcab025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022] Open
Abstract
Since the discovery of the role of the APOBEC enzymes in human cancers, the mechanisms of this type of mutagenesis remain little understood. Theoretically, targeting of single-stranded DNA by the APOBEC enzymes could occur during cellular processes leading to the unwinding of DNA double-stranded structure. Some evidence points to the importance of replication in the APOBEC mutagenesis, while the role of transcription is still underexplored. Here, we analyzed gene expression and whole genome sequencing data from five types of human cancers with substantial APOBEC activity to estimate the involvement of transcription in the APOBEC mutagenesis and compare its impact with that of replication. Using the TCN motif as the mutation signature of the APOBEC enzymes, we observed a correlation of active APOBEC mutagenesis with gene expression, confirmed the increase of APOBEC-induced mutations in early-replicating regions and estimated the relative impact of transcription and replication on the APOBEC mutagenesis. We also found that the known effect of higher density of APOBEC-induced mutations on the lagging strand was highest in middle-replicating regions and observed higher APOBEC mutation density on the sense strand, the latter bias positively correlated with the gene expression level.
Collapse
Affiliation(s)
- Almira Chervova
- Institute of Oncology, Radiology and Nuclear Medicine, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117997, Russia
| | - Bulat Fatykhov
- Department of Control and Applied Mathematics, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
| | | | | | - Julia Preobrazhenskaya
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Dmitry Vinogradov
- Research and Training Center of Bioinformatics, Institute for Information Transmission Problems (the Kharkevich Institute, RAS), Moscow, 127051, Russia
| | - Gennady V Ponomarev
- Research and Training Center of Bioinformatics, Institute for Information Transmission Problems (the Kharkevich Institute, RAS), Moscow, 127051, Russia
| | - Mikhail S Gelfand
- Research and Training Center of Bioinformatics, Institute for Information Transmission Problems (the Kharkevich Institute, RAS), Moscow, 127051, Russia
| | - Marat D Kazanov
- Research and Training Center of Bioinformatics, Institute for Information Transmission Problems (the Kharkevich Institute, RAS), Moscow, 127051, Russia
| |
Collapse
|
80
|
Tang G, Xie B, Hong X, Qin H, Wang J, Huang H, Hao P, Li X. Creating RNA Specific C-to-U Editase from APOBEC3A by Separation of Its Activities on DNA and RNA Substrates. ACS Synth Biol 2021; 10:1106-1115. [PMID: 33938211 DOI: 10.1021/acssynbio.0c00627] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
APOBEC3A (A3A) is a cytidine deaminase involved in innate immune response and is able to catalyze deamination on both DNA and RNA substrates. It was used in creating the CRISPR-mediated base editor, but has since been held back due to its dual activities. On the other hand, it has been a challenge to separate A3A's dual activities in order to enable it for single-base RNA editors. Here we developed the reporter system for C-to-U RNA editing and employed rational design for mutagenesis to differentiate deaminase activities on RNA and DNA substrates to obtain an RNA-specific editase. Generation and examination of 23 previous A3A mutants showed their deamination activity on RNA was mostly abolished when their activity on DNA was impaired, with the exception of mutant N57Q that displayed an inverse change. We designed new mutations on Loops 1 and 7 based on A3A's crystal structure and found mutants H29R and Y132G had differential effects on catalytic activity on RNA and DNA substrates. In order to engineer an A3A with RNA-specific deaminase activity, we combined Y132G with mutations in Loop 1 or helix 6 by rational design. Two multipoint mutants, Y132G/K30R and Y132G/G188A/R189A/L190A, were successful in retaining high deaminase activity on RNA substrate while eliminating deaminase activity on DNA. We, for the first time, created novel human A3A variants with RNA-specific cytidine deaminase activity, providing insight into A3A's mechanism on substrate recognition and a new addition of a toolset to the creation of a RNA-specific C-to-U base editor.
Collapse
Affiliation(s)
- Guiyue Tang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Bingran Xie
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiangna Hong
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Hang Qin
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jingfang Wang
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hai Huang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Pei Hao
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xuan Li
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
81
|
Alvarez-Gonzalez J, Yasgar A, Maul RW, Rieffer AE, Crawford DJ, Salamango DJ, Dorjsuren D, Zakharov AV, Jansen DJ, Rai G, Marugan J, Simeonov A, Harris RS, Kohli RM, Gearhart PJ. Small Molecule Inhibitors of Activation-Induced Deaminase Decrease Class Switch Recombination in B Cells. ACS Pharmacol Transl Sci 2021; 4:1214-1226. [PMID: 34151211 DOI: 10.1021/acsptsci.1c00064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Indexed: 11/30/2022]
Abstract
Activation-induced deaminase (AID) not only mutates DNA within the immunoglobulin loci to generate antibody diversity, but it also promotes development of B cell lymphomas. To tame this mutagen, we performed a quantitative high-throughput screen of over 90 000 compounds to see if AID activity could be mitigated. The enzymatic activity was assessed in biochemical assays to detect cytosine deamination and in cellular assays to measure class switch recombination. Three compounds showed promise via inhibition of switching in a transformed B cell line and in murine splenic B cells. These compounds have similar chemical structures, which suggests a shared mechanism of action. Importantly, the inhibitors blocked AID, but not a related cytosine DNA deaminase, APOBEC3B. We further determined that AID was continually expressed for several days after B cell activation to induce switching. This first report of small molecules that inhibit AID can be used to gain regulatory control over base editors.
Collapse
Affiliation(s)
- Juan Alvarez-Gonzalez
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Adam Yasgar
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20816, United States
| | - Robert W Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Amanda E Rieffer
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Daniel J Crawford
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daniel J Salamango
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Dorjbal Dorjsuren
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20816, United States
| | - Alexey V Zakharov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20816, United States
| | - Daniel J Jansen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20816, United States
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20816, United States
| | - Juan Marugan
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20816, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20816, United States
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rahul M Kohli
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| |
Collapse
|
82
|
Cas12a Base Editors Induce Efficient and Specific Editing with Low DNA Damage Response. Cell Rep 2021; 31:107723. [PMID: 32492431 DOI: 10.1016/j.celrep.2020.107723] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/28/2019] [Accepted: 05/12/2020] [Indexed: 12/19/2022] Open
Abstract
The advent of base editors (BEs) holds great potential for correcting pathogenic-related point mutations to treat relevant diseases. However, Cas9 nickase (nCas9)-derived BEs lead to DNA double-strand breaks, which can trigger unwanted DNA damage response (DDR). Here, we show that the original version of catalytically dead Cas12a (dCas12a)-conjugated BEs induce a basal level of DNA breaks and minimally activate DDR proteins, including H2AX, ATM, ATR, and p53. By fusing dCas12a with engineered human apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3A (APOBEC3A), we further develop the BEACON (base editing induced by human APOBEC3A and Cas12a without DNA break) system to achieve enhanced deamination efficiency and editing specificity. Efficient C-to-T editing is achieved by BEACON in mammalian cells at levels comparable to AncBE4max, with only low levels of DDR and minimal RNA off-target mutations. Importantly, BEACON induces in vivo base editing in mouse embryos, and targeted C-to-T conversions are detected in F0 mice.
Collapse
|
83
|
Structural Characterization of a Minimal Antibody against Human APOBEC3B. Viruses 2021; 13:v13040663. [PMID: 33921405 PMCID: PMC8070380 DOI: 10.3390/v13040663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 01/03/2023] Open
Abstract
APOBEC3B (A3B) is one of seven human APOBEC3 DNA cytosine deaminases that restrict viral infections as part of the overall innate immune response, but it also plays a major role in tumor evolution by mutating genomic DNA. Given the importance of A3B as a restriction factor of viral infections and as a driver of multiple human cancers, selective antibodies against A3B are highly desirable for its specific detection in various research and possibly diagnostic applications. Here, we describe a high-affinity minimal antibody, designated 5G7, obtained via a phage display screening against the C-terminal catalytic domain (ctd) of A3B. 5G7 also binds APOBEC3A that is highly homologous to A3Bctd but does not bind the catalytic domain of APOBEC3G, another Z1-type deaminase domain. The crystal structure of 5G7 shows a canonical arrangement of the heavy and light chain variable domains, with their complementarity-determining region (CDR) loops lining an antigen-binding cleft that accommodates a pair of α-helices. To understand the mechanism of A3Bctd recognition by 5G7, we used the crystal structures of A3Bctd and 5G7 as templates and computationally predicted the A3B-5G7 complex structure. Stable binding poses obtained by the simulation were further tested by site-directed mutagenesis and in vitro binding analyses. These studies mapped the epitope for 5G7 to a portion of C-terminal α6 helix of A3Bctd, with Arg374 playing an essential role. The same region of A3Bctd was used previously as a peptide antigen for generating a rabbit monoclonal antibody (mAb 5210-87-13), suggesting that this region is particularly immunogenic and that these antibodies from very different origins may share similar binding modes. Our studies provide a platform for the development of selective antibodies against A3B and other APOBEC3 family enzymes.
Collapse
|
84
|
Insights into the Structures and Multimeric Status of APOBEC Proteins Involved in Viral Restriction and Other Cellular Functions. Viruses 2021; 13:v13030497. [PMID: 33802945 PMCID: PMC8002816 DOI: 10.3390/v13030497] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022] Open
Abstract
Apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) proteins belong to a family of deaminase proteins that can catalyze the deamination of cytosine to uracil on single-stranded DNA or/and RNA. APOBEC proteins are involved in diverse biological functions, including adaptive and innate immunity, which are critical for restricting viral infection and endogenous retroelements. Dysregulation of their functions can cause undesired genomic mutations and RNA modification, leading to various associated diseases, such as hyper-IgM syndrome and cancer. This review focuses on the structural and biochemical data on the multimerization status of individual APOBECs and the associated functional implications. Many APOBECs form various multimeric complexes, and multimerization is an important way to regulate functions for some of these proteins at several levels, such as deaminase activity, protein stability, subcellular localization, protein storage and activation, virion packaging, and antiviral activity. The multimerization of some APOBECs is more complicated than others, due to the associated complex RNA binding modes.
Collapse
|
85
|
Law EK, Levin-Klein R, Jarvis MC, Kim H, Argyris PP, Carpenter MA, Starrett GJ, Temiz NA, Larson LK, Durfee C, Burns MB, Vogel RI, Stavrou S, Aguilera AN, Wagner S, Largaespada DA, Starr TK, Ross SR, Harris RS. APOBEC3A catalyzes mutation and drives carcinogenesis in vivo. J Exp Med 2021; 217:152061. [PMID: 32870257 PMCID: PMC7953736 DOI: 10.1084/jem.20200261] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/08/2020] [Accepted: 07/22/2020] [Indexed: 12/24/2022] Open
Abstract
The APOBEC3 family of antiviral DNA cytosine deaminases is implicated as the second largest source of mutation in cancer. This mutational process may be a causal driver or inconsequential passenger to the overall tumor phenotype. We show that human APOBEC3A expression in murine colon and liver tissues increases tumorigenesis. All other APOBEC3 family members, including APOBEC3B, fail to promote liver tumor formation. Tumor DNA sequences from APOBEC3A-expressing animals display hallmark APOBEC signature mutations in TCA/T motifs. Bioinformatic comparisons of the observed APOBEC3A mutation signature in murine tumors, previously reported APOBEC3A and APOBEC3B mutation signatures in yeast, and reanalyzed APOBEC mutation signatures in human tumor datasets support cause-and-effect relationships for APOBEC3A-catalyzed deamination and mutagenesis in driving multiple human cancers.
Collapse
Affiliation(s)
- Emily K Law
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Rena Levin-Klein
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Matthew C Jarvis
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Hyoung Kim
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Prokopios P Argyris
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN.,Division of Oral and Maxillofacial Pathology, School of Dentistry, University of Minnesota, Minneapolis, MN
| | - Michael A Carpenter
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Gabriel J Starrett
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN.,Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Nuri A Temiz
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Health Informatics, University of Minnesota, Minneapolis, MN
| | - Lindsay K Larson
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Cameron Durfee
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Michael B Burns
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN.,Department of Biology, Loyola University, Chicago, IL
| | - Rachel I Vogel
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, MN
| | - Spyridon Stavrou
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Alexya N Aguilera
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Sandra Wagner
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - David A Largaespada
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Timothy K Starr
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, MN
| | - Susan R Ross
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Reuben S Harris
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| |
Collapse
|
86
|
Langenbucher A, Bowen D, Sakhtemani R, Bournique E, Wise JF, Zou L, Bhagwat AS, Buisson R, Lawrence MS. An extended APOBEC3A mutation signature in cancer. Nat Commun 2021; 12:1602. [PMID: 33707442 PMCID: PMC7952602 DOI: 10.1038/s41467-021-21891-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 02/17/2021] [Indexed: 12/11/2022] Open
Abstract
APOBEC mutagenesis, a major driver of cancer evolution, is known for targeting TpC sites in DNA. Recently, we showed that APOBEC3A (A3A) targets DNA hairpin loops. Here, we show that DNA secondary structure is in fact an orthogonal influence on A3A substrate optimality and, surprisingly, can override the TpC sequence preference. VpC (non-TpC) sites in optimal hairpins can outperform TpC sites as mutational hotspots. This expanded understanding of APOBEC mutagenesis illuminates the genomic Twin Paradox, a puzzling pattern of closely spaced mutation hotspots in cancer genomes, in which one is a canonical TpC site but the other is a VpC site, and double mutants are seen only in trans, suggesting a two-hit driver event. Our results clarify this paradox, revealing that both hotspots in these twins are optimal A3A substrates. Our findings reshape the notion of a mutation signature, highlighting the additive roles played by DNA sequence and DNA structure.
Collapse
Affiliation(s)
- Adam Langenbucher
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Danae Bowen
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Ramin Sakhtemani
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | - Elodie Bournique
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Jillian F Wise
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Cancer Immunology, Institute for Cancer Research, University of Oslo, Oslo, Norway
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Ashok S Bhagwat
- Department of Chemistry, Wayne State University, Detroit, MI, USA.
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Rémi Buisson
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, School of Medicine, University of California Irvine, Irvine, CA, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA.
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
87
|
Lin M, Malik FK, Guo JT. A comparative study of protein-ssDNA interactions. NAR Genom Bioinform 2021; 3:lqab006. [PMID: 33655206 PMCID: PMC7902235 DOI: 10.1093/nargab/lqab006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/24/2020] [Accepted: 01/26/2021] [Indexed: 12/18/2022] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) play crucial roles in DNA replication, recombination and repair, and serve as key players in the maintenance of genomic stability. While a number of SSBs bind single-stranded DNA (ssDNA) non-specifically, the others recognize and bind specific ssDNA sequences. The mechanisms underlying this binding discrepancy, however, are largely unknown. Here, we present a comparative study of protein-ssDNA interactions by annotating specific and non-specific SSBs and comparing structural features such as DNA-binding propensities and secondary structure types of residues in SSB-ssDNA interactions, protein-ssDNA hydrogen bonding and π-π interactions between specific and non-specific SSBs. Our results suggest that protein side chain-DNA base hydrogen bonds are the major contributors to protein-ssDNA binding specificity, while π-π interactions may mainly contribute to binding affinity. We also found the enrichment of aspartate in the specific SSBs, a key feature in specific protein-double-stranded DNA (dsDNA) interactions as reported in our previous study. In addition, no significant differences between specific and non-specific groups with respect of conformational changes upon ssDNA binding were found, suggesting that the flexibility of SSBs plays a lesser role than that of dsDNA-binding proteins in conferring binding specificity.
Collapse
Affiliation(s)
- Maoxuan Lin
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Fareeha K Malik
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- Research Center of Modeling and Simulation, National University of Science and Technology, Islamabad, 44000, Pakistan
| | - Jun-tao Guo
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
88
|
Cheng AZ, Moraes SN, Shaban NM, Fanunza E, Bierle CJ, Southern PJ, Bresnahan WA, Rice SA, Harris RS. APOBECs and Herpesviruses. Viruses 2021; 13:v13030390. [PMID: 33671095 PMCID: PMC7998176 DOI: 10.3390/v13030390] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/14/2022] Open
Abstract
The apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) family of DNA cytosine deaminases provides a broad and overlapping defense against viral infections. Successful viral pathogens, by definition, have evolved strategies to escape restriction by the APOBEC enzymes of their hosts. HIV-1 and related retroviruses are thought to be the predominant natural substrates of APOBEC enzymes due to obligate single-stranded (ss)DNA replication intermediates, abundant evidence for cDNA strand C-to-U editing (genomic strand G-to-A hypermutation), and a potent APOBEC degradation mechanism. In contrast, much lower mutation rates are observed in double-stranded DNA herpesviruses and the evidence for APOBEC mutation has been less compelling. However, recent work has revealed that Epstein-Barr virus (EBV), Kaposi’s sarcoma-associated herpesvirus (KSHV), and herpes simplex virus-1 (HSV-1) are potential substrates for cellular APOBEC enzymes. To prevent APOBEC-mediated restriction these viruses have repurposed their ribonucleotide reductase (RNR) large subunits to directly bind, inhibit, and relocalize at least two distinct APOBEC enzymes—APOBEC3B and APOBEC3A. The importance of this interaction is evidenced by genetic inactivation of the EBV RNR (BORF2), which results in lower viral infectivity and higher levels of C/G-to-T/A hypermutation. This RNR-mediated mechanism therefore likely functions to protect lytic phase viral DNA replication intermediates from APOBEC-catalyzed DNA C-to-U deamination. The RNR-APOBEC interaction defines a new pathogen-host conflict that the virus must win in real-time for transmission and pathogenesis. However, partial losses over evolutionary time may also benefit the virus by providing mutational fuel for adaptation.
Collapse
Affiliation(s)
- Adam Z. Cheng
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (S.N.M.); (N.M.S.); (E.F.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.B.); (P.J.S.); (W.A.B.); (S.A.R.)
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence: (A.Z.C.); (R.S.H.)
| | - Sofia N. Moraes
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (S.N.M.); (N.M.S.); (E.F.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.B.); (P.J.S.); (W.A.B.); (S.A.R.)
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nadine M. Shaban
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (S.N.M.); (N.M.S.); (E.F.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.B.); (P.J.S.); (W.A.B.); (S.A.R.)
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Elisa Fanunza
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (S.N.M.); (N.M.S.); (E.F.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.B.); (P.J.S.); (W.A.B.); (S.A.R.)
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Craig J. Bierle
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.B.); (P.J.S.); (W.A.B.); (S.A.R.)
- Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Peter J. Southern
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.B.); (P.J.S.); (W.A.B.); (S.A.R.)
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wade A. Bresnahan
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.B.); (P.J.S.); (W.A.B.); (S.A.R.)
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen A. Rice
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.B.); (P.J.S.); (W.A.B.); (S.A.R.)
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (S.N.M.); (N.M.S.); (E.F.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.B.); (P.J.S.); (W.A.B.); (S.A.R.)
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence: (A.Z.C.); (R.S.H.)
| |
Collapse
|
89
|
Barzak FM, Ryan TM, Kvach MV, Kurup HM, Aihara H, Harris RS, Filichev VV, Harjes E, Jameson GB. Small-Angle X-ray Scattering Models of APOBEC3B Catalytic Domain in a Complex with a Single-Stranded DNA Inhibitor. Viruses 2021; 13:290. [PMID: 33673243 PMCID: PMC7918907 DOI: 10.3390/v13020290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
In normal cells APOBEC3 (A3A-A3H) enzymes as part of the innate immune system deaminate cytosine to uracil on single-stranded DNA (ssDNA) to scramble DNA in order to give protection against a range of exogenous retroviruses, DNA-based parasites, and endogenous retroelements. However, some viruses and cancer cells use these enzymes, especially A3A and A3B, to escape the adaptive immune response and thereby lead to the evolution of drug resistance. We have synthesized first-in-class inhibitors featuring modified ssDNA. We present models based on small-angle X-ray scattering (SAXS) data that (1) confirm that the mode of binding of inhibitor to an active A3B C-terminal domain construct in the solution state is the same as the mode of binding substrate to inactive mutants of A3A and A3B revealed in X-ray crystal structures and (2) give insight into the disulfide-linked inactive dimer formed under the oxidizing conditions of purification.
Collapse
Affiliation(s)
- Fareeda M. Barzak
- School of Fundamental Sciences, Massey University, Private Bag 11 222, New Zealand; (F.M.B.); (M.V.K.); (H.M.K.)
| | - Timothy M. Ryan
- SAXS/WAXS, Australian Synchrotron/ANSTO, 800 Blackburn Road, Clayton, VIC 3168, Australia;
| | - Maksim V. Kvach
- School of Fundamental Sciences, Massey University, Private Bag 11 222, New Zealand; (F.M.B.); (M.V.K.); (H.M.K.)
| | - Harikrishnan M. Kurup
- School of Fundamental Sciences, Massey University, Private Bag 11 222, New Zealand; (F.M.B.); (M.V.K.); (H.M.K.)
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (H.A.); (R.S.H.)
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (H.A.); (R.S.H.)
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Vyacheslav V. Filichev
- School of Fundamental Sciences, Massey University, Private Bag 11 222, New Zealand; (F.M.B.); (M.V.K.); (H.M.K.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Elena Harjes
- School of Fundamental Sciences, Massey University, Private Bag 11 222, New Zealand; (F.M.B.); (M.V.K.); (H.M.K.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Geoffrey B. Jameson
- School of Fundamental Sciences, Massey University, Private Bag 11 222, New Zealand; (F.M.B.); (M.V.K.); (H.M.K.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| |
Collapse
|
90
|
Tompkins KJ, Houtti M, Litzau LA, Aird EJ, Everett BA, Nelson AT, Pornschloegl L, Limón-Swanson LK, Evans RL, Evans K, Shi K, Aihara H, Gordon WR. Molecular underpinnings of ssDNA specificity by Rep HUH-endonucleases and implications for HUH-tag multiplexing and engineering. Nucleic Acids Res 2021; 49:1046-1064. [PMID: 33410911 PMCID: PMC7826260 DOI: 10.1093/nar/gkaa1248] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
Replication initiator proteins (Reps) from the HUH-endonuclease superfamily process specific single-stranded DNA (ssDNA) sequences to initiate rolling circle/hairpin replication in viruses, such as crop ravaging geminiviruses and human disease causing parvoviruses. In biotechnology contexts, Reps are the basis for HUH-tag bioconjugation and a critical adeno-associated virus genome integration tool. We solved the first co-crystal structures of Reps complexed to ssDNA, revealing a key motif for conferring sequence specificity and for anchoring a bent DNA architecture. In combination, we developed a deep sequencing cleavage assay, termed HUH-seq, to interrogate subtleties in Rep specificity and demonstrate how differences can be exploited for multiplexed HUH-tagging. Together, our insights allowed engineering of only four amino acids in a Rep chimera to predictably alter sequence specificity. These results have important implications for modulating viral infections, developing Rep-based genomic integration tools, and enabling massively parallel HUH-tag barcoding and bioconjugation applications.
Collapse
Affiliation(s)
- Kassidy J Tompkins
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Mo Houtti
- Department of Computer Science and Engineering, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Lauren A Litzau
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Eric J Aird
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Blake A Everett
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Andrew T Nelson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Leland Pornschloegl
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Lidia K Limón-Swanson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Robert L Evans
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Karen Evans
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Wendy R Gordon
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| |
Collapse
|
91
|
Wong L, Vizeacoumar FS, Vizeacoumar FJ, Chelico L. APOBEC1 cytosine deaminase activity on single-stranded DNA is suppressed by replication protein A. Nucleic Acids Res 2021; 49:322-339. [PMID: 33330905 PMCID: PMC7797036 DOI: 10.1093/nar/gkaa1201] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/22/2022] Open
Abstract
Many APOBEC cytidine deaminase members are known to induce ‘off-target’ cytidine deaminations in 5′TC motifs in genomic DNA that contribute to cancer evolution. In this report, we characterized APOBEC1, which is a possible cancer related APOBEC since APOBEC1 mRNA is highly expressed in certain types of tumors, such as lung adenocarcinoma. We found a low level of APOBEC1-induced DNA damage, as measured by γH2AX foci, in genomic DNA of a lung cancer cell line that correlated to its inability to compete in vitro with replication protein A (RPA) for ssDNA. This suggests that RPA can act as a defense against off-target deamination for some APOBEC enzymes. Overall, the data support the model that the ability of an APOBEC to compete with RPA can better predict genomic damage than combined analysis of mRNA expression levels in tumors and analysis of mutation signatures.
Collapse
Affiliation(s)
- Lai Wong
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Frederick S Vizeacoumar
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon S7N 5E5, Canada
| | - Franco J Vizeacoumar
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon S7N 5E5, Canada.,Cancer Research, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan S7S 0A6, Canada
| | - Linda Chelico
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| |
Collapse
|
92
|
Maiti A, Hou S, Schiffer CA, Matsuo H. Interactions of APOBEC3s with DNA and RNA. Curr Opin Struct Biol 2021; 67:195-204. [PMID: 33486429 DOI: 10.1016/j.sbi.2020.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
APOBEC3 enzymes are key enzymes in our innate immune system regulating antiviral response in HIV and unfortunately adding diversity in cancer as they deaminate cytosine. Seven unique single and double domain APOBEC3s provide them with unique activity and specificity profiles for this deamination. Recent crystal and NMR structures of APOBEC3 complexes are unraveling the variety of epitopes involved in binding nucleic acids, including at the catalytic site, elsewhere on the catalytic domain and in the inactive N-terminal domain. The interplay between these diverse interactions is critical to uncovering the mechanisms by which APOBEC3s recognize and process their substrates.
Collapse
Affiliation(s)
- Atanu Maiti
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Shurong Hou
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01655, USA.
| | - Hiroshi Matsuo
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
| |
Collapse
|
93
|
Salamango DJ, Harris RS. Dual Functionality of HIV-1 Vif in APOBEC3 Counteraction and Cell Cycle Arrest. Front Microbiol 2021; 11:622012. [PMID: 33510734 PMCID: PMC7835321 DOI: 10.3389/fmicb.2020.622012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/11/2020] [Indexed: 01/02/2023] Open
Abstract
Accessory proteins are a key feature that distinguishes primate immunodeficiency viruses such as human immunodeficiency virus type I (HIV-1) from other retroviruses. A prime example is the virion infectivity factor, Vif, which hijacks a cellular co-transcription factor (CBF-β) to recruit a ubiquitin ligase complex (CRL5) to bind and degrade antiviral APOBEC3 enzymes including APOBEC3D (A3D), APOBEC3F (A3F), APOBEC3G (A3G), and APOBEC3H (A3H). Although APOBEC3 antagonism is essential for viral pathogenesis, and a more than sufficient functional justification for Vif’s evolution, most viral proteins have evolved multiple functions. Indeed, Vif has long been known to trigger cell cycle arrest and recent studies have shed light on the underlying molecular mechanism. Vif accomplishes this function using the same CBF-β/CRL5 ubiquitin ligase complex to degrade a family of PPP2R5 phospho-regulatory proteins. These advances have helped usher in a new era of accessory protein research and fresh opportunities for drug development.
Collapse
Affiliation(s)
- Daniel J Salamango
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, United States
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, United States.,Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
94
|
Wei Y, Silke JR, Aris P, Xia X. Coronavirus genomes carry the signatures of their habitats. PLoS One 2020; 15:e0244025. [PMID: 33351847 PMCID: PMC7755226 DOI: 10.1371/journal.pone.0244025] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
Coronaviruses such as SARS-CoV-2 regularly infect host tissues that express antiviral proteins (AVPs) in abundance. Understanding how they evolve to adapt or evade host immune responses is important in the effort to control the spread of infection. Two AVPs that may shape viral genomes are the zinc finger antiviral protein (ZAP) and the apolipoprotein B mRNA editing enzyme-catalytic polypeptide-like 3 (APOBEC3). The former binds to CpG dinucleotides to facilitate the degradation of viral transcripts while the latter frequently deaminates C into U residues which could generate notable viral sequence variations. We tested the hypothesis that both APOBEC3 and ZAP impose selective pressures that shape the genome of an infecting coronavirus. Our investigation considered a comprehensive number of publicly available genomes for seven coronaviruses (SARS-CoV-2, SARS-CoV, and MERS infecting Homo sapiens, Bovine CoV infecting Bos taurus, MHV infecting Mus musculus, HEV infecting Sus scrofa, and CRCoV infecting Canis lupus familiaris). We show that coronaviruses that regularly infect tissues with abundant AVPs have CpG-deficient and U-rich genomes; whereas those that do not infect tissues with abundant AVPs do not share these sequence hallmarks. Among the coronaviruses surveyed herein, CpG is most deficient in SARS-CoV-2 and a temporal analysis showed a marked increase in C to U mutations over four months of SARS-CoV-2 genome evolution. Furthermore, the preferred motifs in which these C to U mutations occur are the same as those subjected to APOBEC3 editing in HIV-1. These results suggest that both ZAP and APOBEC3 shape the SARS-CoV-2 genome: ZAP imposes a strong CpG avoidance, and APOBEC3 constantly edits C to U. Evolutionary pressures exerted by host immune systems onto viral genomes may motivate novel strategies for SARS-CoV-2 vaccine development.
Collapse
Affiliation(s)
- Yulong Wei
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jordan R. Silke
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Parisa Aris
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Xuhua Xia
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
95
|
Zhang Z, Perković M, Gu Q, Balakrishnan K, Sangwiman A, Häussinger D, Lindemann D, Münk C. HIV-2 Vif and foamy virus Bet antagonize APOBEC3B by different mechanisms. Virology 2020; 554:17-27. [PMID: 33333348 DOI: 10.1016/j.virol.2020.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 11/17/2022]
Abstract
The family of human APOBEC3 (A3) restriction factors is formed by seven different proteins, A3A-D and A3F-H. Among these A3s, A3B harbors strong restriction activity against several retroviruses, such as SIV, and MLV. How lentiviruses and other retroviruses, prevalent in many primate species, counteract A3B is poorly understood. In this study, we found that A3B strongly inhibited SIVmac and HIV-2 infectivity, which was antagonized by their Vif proteins. Both SIVmac and HIV-2 Vifs diminished the protein level of A3B in viral producer cells, and hindered A3B incorporation into viral particles. We observed that HIV-2 Vif binds A3B and induces its degradation by assembly of an A3-Vif-CUL5-ElonginB/C E3-ligase complex. A3B and HIV-2 Vif localize and interact in the nucleus. In addition, we also found that the accessory protein Bet of prototype foamy virus (PFV) significantly antagonized the anti-SIVmac activity of A3B. Like Vif, Bet prevented the incorporation of A3B into viral particles. However, in contrast to Vif Bet did not induce the degradation of A3B. Rather, Bet binds A3B to block formation of high molecular weight A3B complexes and induces A3B cytoplasmic trapping. In summary, these findings indicate that A3B is recognized by diverse retroviruses and counteracted by virus-specific pathways that could be targeted to inhibit A3B mutating activity in cancers.
Collapse
Affiliation(s)
- Zeli Zhang
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Mario Perković
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Qinyong Gu
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Kannan Balakrishnan
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Anucha Sangwiman
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Dirk Lindemann
- Institute of Virology, Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, 01307, Dresden, Germany; CRTD/DFG-Center for Regenerative Therapies, Technische Universität Dresden, 01307, Dresden, Germany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
96
|
Conner KL, Shaik AN, Marshall KA, Floyd AM, Ekinci E, Lindquist J, Sawant A, Lei W, Adolph MB, Chelico L, Siriwardena SU, Bhagwat A, Kim S, Cote ML, Patrick S. APOBEC3 enzymes mediate efficacy of cisplatin and are epistatic with base excision repair and mismatch repair in platinum response. NAR Cancer 2020; 2:zcaa033. [PMID: 33196045 PMCID: PMC7646253 DOI: 10.1093/narcan/zcaa033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 01/05/2023] Open
Abstract
Identifying the mechanisms mediating cisplatin response is essential for improving patient response. Previous research has identified base excision repair (BER) and mismatch repair (MMR) activity in sensitizing cells to cisplatin. Cisplatin forms DNA adducts including interstrand cross-links (ICLs) that distort the DNA helix, forcing adjacent cytosines to become extrahelical. These extrahelical cytosines provide a substrate for cytosine deaminases. Herein, we show that APOBEC3 (A3) enzymes are capable of deaminating the extrahelical cytosines to uracils and sensitizing breast cancer cells to cisplatin. Knockdown of A3s results in resistance to cisplatin and induction of A3 expression in cells with low A3 expression increases sensitivity to cisplatin. We show that the actions of A3s are epistatic with BER and MMR. We propose that A3-induced cytosine deamination to uracil at cisplatin ICLs results in repair of uracils by BER, which blocks ICL DNA repair and enhances cisplatin efficacy and improves breast cancer outcomes.
Collapse
Affiliation(s)
- Kayla L Conner
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Institute, Detroit, MI 48201, USA
| | - Asra N Shaik
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Institute, Detroit, MI 48201, USA
| | - Katie A Marshall
- Department of Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ashley M Floyd
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Institute, Detroit, MI 48201, USA
| | - Elmira Ekinci
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Institute, Detroit, MI 48201, USA
| | - Jacob Lindquist
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Institute, Detroit, MI 48201, USA
| | - Akshada Sawant
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Wen Lei
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Institute, Detroit, MI 48201, USA
| | | | - Linda Chelico
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, 103 Hospital Drive, Saskatoon, SK S7N 5E5, Canada
| | - Sachini U Siriwardena
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Ashok Bhagwat
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Seongho Kim
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Institute, Detroit, MI 48201, USA
| | - Michele L Cote
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Institute, Detroit, MI 48201, USA
| | - Steve M Patrick
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Institute, Detroit, MI 48201, USA
| |
Collapse
|
97
|
Porto EM, Komor AC, Slaymaker IM, Yeo GW. Base editing: advances and therapeutic opportunities. Nat Rev Drug Discov 2020; 19:839-859. [PMID: 33077937 PMCID: PMC7721651 DOI: 10.1038/s41573-020-0084-6] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2020] [Indexed: 12/19/2022]
Abstract
Base editing - the introduction of single-nucleotide variants (SNVs) into DNA or RNA in living cells - is one of the most recent advances in the field of genome editing. As around half of known pathogenic genetic variants are due to SNVs, base editing holds great potential for the treatment of numerous genetic diseases, through either temporary RNA or permanent DNA base alterations. Recent advances in the specificity, efficiency, precision and delivery of DNA and RNA base editors are revealing exciting therapeutic opportunities for these technologies. We expect the correction of single point mutations will be a major focus of future precision medicine.
Collapse
Affiliation(s)
- Elizabeth M Porto
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Alexis C Komor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| | - Ian M Slaymaker
- Synthetic Biology Department, Beam Therapeutics, Cambridge, MA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Biomedical Sciences and Bioinformatics and Systems Biology Graduate Programs, University of California, San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
98
|
Granadillo Rodríguez M, Flath B, Chelico L. The interesting relationship between APOBEC3 deoxycytidine deaminases and cancer: a long road ahead. Open Biol 2020; 10:200188. [PMID: 33292100 PMCID: PMC7776566 DOI: 10.1098/rsob.200188] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/26/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is considered a group of diseases characterized by uncontrolled growth and spread of abnormal cells and is propelled by somatic mutations. Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) family of enzymes are endogenous sources of somatic mutations found in multiple human cancers. While these enzymes normally act as an intrinsic immune defence against viruses, they can also catalyse 'off-target' cytidine deamination in genomic single-stranded DNA intermediates. The deamination of cytosine forms uracil, which is promutagenic in DNA. Key factors to trigger the APOBEC 'off-target' activity are overexpression in a non-normal cell type, nuclear localization and replication stress. The resulting uracil-induced mutations contribute to genomic variation, which may result in neutral, beneficial or harmful consequences for the cancer. This review summarizes the functional and biochemical basis of the APOBEC3 enzyme activity and highlights their relationship with the most well-studied cancers in this particular context such as breast, lung, bladder, and human papillomavirus-associated cancers. We focus on APOBEC3A, APOBEC3B and APOBEC3H haplotype I because they are the leading candidates as sources of somatic mutations in these and other cancers. Also, we discuss the prognostic value of the APOBEC3 expression in drug resistance and response to therapies.
Collapse
Affiliation(s)
| | | | - Linda Chelico
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
99
|
The Role of APOBECs in Viral Replication. Microorganisms 2020; 8:microorganisms8121899. [PMID: 33266042 PMCID: PMC7760323 DOI: 10.3390/microorganisms8121899] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC) proteins are a diverse and evolutionarily conserved family of cytidine deaminases that provide a variety of functions from tissue-specific gene expression and immunoglobulin diversity to control of viruses and retrotransposons. APOBEC family expansion has been documented among mammalian species, suggesting a powerful selection for their activity. Enzymes with a duplicated zinc-binding domain often have catalytically active and inactive domains, yet both have antiviral function. Although APOBEC antiviral function was discovered through hypermutation of HIV-1 genomes lacking an active Vif protein, much evidence indicates that APOBECs also inhibit virus replication through mechanisms other than mutagenesis. Multiple steps of the viral replication cycle may be affected, although nucleic acid replication is a primary target. Packaging of APOBECs into virions was first noted with HIV-1, yet is not a prerequisite for viral inhibition. APOBEC antagonism may occur in viral producer and recipient cells. Signatures of APOBEC activity include G-to-A and C-to-T mutations in a particular sequence context. The importance of APOBEC activity for viral inhibition is reflected in the identification of numerous viral factors, including HIV-1 Vif, which are dedicated to antagonism of these deaminases. Such viral antagonists often are only partially successful, leading to APOBEC selection for viral variants that enhance replication or avoid immune elimination.
Collapse
|
100
|
Maiti A, Myint W, Delviks-Frankenberry KA, Hou S, Kanai T, Balachandran V, Sierra Rodriguez C, Tripathi R, Kurt Yilmaz N, Pathak VK, Schiffer CA, Matsuo H. Crystal Structure of a Soluble APOBEC3G Variant Suggests ssDNA to Bind in a Channel that Extends between the Two Domains. J Mol Biol 2020; 432:6042-6060. [PMID: 33098858 DOI: 10.1016/j.jmb.2020.10.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 11/16/2022]
Abstract
APOBEC3G (A3G) is a single-stranded DNA (ssDNA) cytosine deaminase that can restrict HIV-1 infection by mutating the viral genome. A3G consists of a non-catalytic N-terminal domain (NTD) and a catalytic C-terminal domain (CTD) connected by a short linker. While the CTD catalyzes cytosine deamination, the NTD is believed to provide additional affinity for ssDNA. Structures of both A3G domains have been solved individually; however, a full-length A3G structure has been challenging. Recently, crystal structures of full-length rhesus macaque A3G variants were solved which suggested dimerization mechanisms and RNA binding surfaces, whereas the dimerization appeared to compromise catalytic activity. We determined the crystal structure of a soluble variant of human A3G (sA3G) at 2.5 Å and from these data generated a model structure of wild-type A3G. This model demonstrated that the NTD was rotated 90° relative to the CTD along the major axis of the molecule, an orientation that forms a positively charged channel connected to the CTD catalytic site, consisting of NTD loop-1 and CTD loop-3. Structure-based mutations, in vitro deamination and DNA binding assays, and HIV-1 restriction assays identify R24, located in the NTD loop-1, as essential to a critical interaction with ssDNA. Furthermore, sA3G was shown to bind a deoxy-cytidine dinucleotide near the catalytic Zn2+, yet not in the catalytic position, where the interactions between deoxy-cytidines and CTD loop-1 and loop-7 residues were different from those formed with substrate. These new interactions suggest a mechanism explaining why A3G exhibits a 3' to 5' directional preference in processive deamination.
Collapse
Affiliation(s)
- Atanu Maiti
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Wazo Myint
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Krista A Delviks-Frankenberry
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Shurong Hou
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Tapan Kanai
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Department of Chemistry, Banasthali University, Banasthali 304022, Rajasthan, India
| | | | | | - Rashmi Tripathi
- Department of Bioscience and Biotechnology, Banasthali University, Banasthali 304022, Rajasthan, India
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Vinay K Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Hiroshi Matsuo
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| |
Collapse
|