51
|
Jin L, Wu Y, Kim CK, Xue Y. Theoretical study on the aminolysis of ester catalyzed by TBD: Hydrogen bonding or covalent bonding of the catalyst? ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.theochem.2009.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
52
|
The transition state for peptide bond formation reveals the ribosome as a water trap. Proc Natl Acad Sci U S A 2010; 107:1888-93. [PMID: 20080677 DOI: 10.1073/pnas.0914192107] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent progress in elucidating the peptide bond formation process on the ribosome has led to notion of a proton shuttle mechanism where the 2'-hydroxyl group of the P-site tRNA plays a key role in mediating proton transfer between the nucleophile and leaving group, whereas ribosomal groups do not actively participate in the reaction. Despite these advances, the detailed nature of the transition state for peptidyl transfer and the role of several trapped water molecules in the peptidyl transferase center remain major open questions. Here, we employ high-level quantum chemical ab initio calculations to locate and characterize global transition states for the reaction, described by a molecular model encompassing all the key elements of the reaction center. The calculated activation enthalpy as well as structures are in excellent agreement with experimental data and point to feasibility of an eight-membered "double proton shuttle" mechanism in which an auxiliary water molecule, observed both in computer simulations and crystal structures, actively participates. A second conserved water molecule is found to be of key importance for stabilizing developing negative charge on the substrate oxyanion and its presence is catalytically favorable both in terms of activation enthalpy and entropy. Transition states calculated both for six- and eight-membered mechanisms are invariably late and do not involve significant charge development on the attacking amino group. Predicted kinetic isotope effects consistent with this picture are similar to those observed for uncatalyzed ester aminolysis reactions in solution.
Collapse
|
53
|
What recent ribosome structures have revealed about the mechanism of translation. Nature 2009; 461:1234-42. [DOI: 10.1038/nature08403] [Citation(s) in RCA: 533] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 10/01/2009] [Indexed: 11/08/2022]
|
54
|
Yonath A. Large facilities and the evolving ribosome, the cellular machine for genetic-code translation. J R Soc Interface 2009; 6 Suppl 5:S575-85. [PMID: 19656820 DOI: 10.1098/rsif.2009.0167.focus] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Well-focused X-ray beams, generated by advanced synchrotron radiation facilities, yielded high-resolution diffraction data from crystals of ribosomes, the cellular nano-machines that translate the genetic code into proteins. These structures revealed the decoding mechanism, localized the mRNA path and the positions of the tRNA molecules in the ribosome and illuminated the interactions of the ribosome with initiation, release and recycling factors. They also showed that the ribosome is a ribozyme whose active site is situated within a universal symmetrical region that is embedded in the otherwise asymmetric ribosome structure. As this highly conserved region provides the machinery required for peptide bond formation and for ribosome polymerase activity, it may be the remnant of the proto-ribosome, a dimeric pre-biotic machine that formed peptide bonds and non-coded polypeptide chains. Synchrotron radiation also enabled the determination of structures of complexes of ribosomes with antibiotics targeting them, which revealed the principles allowing for their clinical use, revealed resistance mechanisms and showed the bases for discriminating pathogens from hosts, hence providing valuable structural information for antibiotics improvement.
Collapse
Affiliation(s)
- Ada Yonath
- Department of Structural Biology, Weizmann Institute, 76100 Rehovot, Israel.
| |
Collapse
|
55
|
Davidovich C, Belousoff M, Bashan A, Yonath A. The evolving ribosome: from non-coded peptide bond formation to sophisticated translation machinery. Res Microbiol 2009; 160:487-92. [PMID: 19619641 DOI: 10.1016/j.resmic.2009.07.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 07/02/2009] [Accepted: 07/04/2009] [Indexed: 11/25/2022]
Abstract
Structural analysis supported by biochemical, mutagenesis and computational evidence, revealed that the contemporary ribosome's active site is a universal symmetrical pocket made of ribosomal RNA. This pocket seems to be the remnant of the proto-ribosome, a dimeric RNA assembly evolved by gene duplication, capable of autonomously catalyzing peptide bond formation and non-coded amino acid polymerization.
Collapse
Affiliation(s)
- Chen Davidovich
- The Department of Structural Biology, Weizmann Institute, Rehovot, Israel
| | | | | | | |
Collapse
|
56
|
Simonović M, Steitz TA. A structural view on the mechanism of the ribosome-catalyzed peptide bond formation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:612-23. [PMID: 19595805 DOI: 10.1016/j.bbagrm.2009.06.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 06/23/2009] [Accepted: 06/25/2009] [Indexed: 10/20/2022]
Abstract
The ribosome is a large ribonucleoprotein particle that translates genetic information encoded in mRNA into specific proteins. Its highly conserved active site, the peptidyl-transferase center (PTC), is located on the large (50S) ribosomal subunit and is comprised solely of rRNA, which makes the ribosome the only natural ribozyme with polymerase activity. The last decade witnessed a rapid accumulation of atomic-resolution structural data on both ribosomal subunits as well as on the entire ribosome. This has allowed studies on the mechanism of peptide bond formation at a level of detail that surpasses that for the classical protein enzymes. A current understanding of the mechanism of the ribosome-catalyzed peptide bond formation is the focus of this review. Implications on the mechanism of peptide release are discussed as well.
Collapse
Affiliation(s)
- Miljan Simonović
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, MBRB 1170, 900 S Ashland Ave., Chicago, IL 60607, USA
| | | |
Collapse
|
57
|
Forster AC. Low modularity of aminoacyl-tRNA substrates in polymerization by the ribosome. Nucleic Acids Res 2009; 37:3747-55. [PMID: 19376831 PMCID: PMC2699524 DOI: 10.1093/nar/gkp240] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Aminoacyl-transfer RNAs contain four standardized units: amino acids, an invariant 3′-terminal CCA, trinucleotide anticodons and tRNA bodies. The degree of interchangeability of the three variable modules is poorly understood, despite its role in evolution and the engineering of translation to incorporate unnatural amino acids. Here, a purified translation system is used to investigate effects of various module swaps on the efficiency of multiple ribosomal incorporations of unnatural aminoacyl-tRNA substrates per peptide product. The yields of products containing three to five adjacent l-amino acids with unnatural side chains are low and cannot be improved by optimization or explained simply by any single factor tested. Though combinations of modules that allow quantitative single unnatural incorporations are found readily, finding combinations that enable efficient synthesis of products containing multiple unnatural amino acids is challenging. This implies that assaying multiple, as opposed to single, incorporations per product is a more stringent assay of substrate activity. The unpredictability of most results illustrates the multifactorial nature of substrate recognition and the value of synthetic biology for testing our understanding of translation. Data indicate that the degree of interchangeability of the modules of aminoacyl-tRNAs is low.
Collapse
Affiliation(s)
- Anthony C Forster
- Department of Pharmacology and Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, 2222 Pierce Ave., Nashville, TN 37232, USA.
| |
Collapse
|
58
|
Pan D, Qin H, Cooperman BS. Synthesis and functional activity of tRNAs labeled with fluorescent hydrazides in the D-loop. RNA (NEW YORK, N.Y.) 2009; 15:346-354. [PMID: 19118261 PMCID: PMC2648706 DOI: 10.1261/rna.1257509] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 10/24/2008] [Indexed: 05/27/2023]
Abstract
We describe an optimized procedure for replacing the dihydrouridine residues of charged tRNAs with Cy3 and Cy5 dyes linked to a hydrazide group, and demonstrate that the labeled molecules are functional in ribosomal activities including 30S initiation complex formation, EF-Tu-dependent binding to the ribosome, translocation, and polypeptide synthesis. This procedure should be straightforwardly generalizable to the incorporation of other hydrazide-linked fluorophores into tRNA or other dihydrouridine-containing RNAs. In addition, we use a rapid turnover FRET experiment, measuring energy transfer between Cy5-labeled tRNA(fMet) and Cy3-labeled fMetPhe-tRNA(Phe), to obtain direct evidence supporting the hypothesis that the early steps of translocation involve movements of the flexible 3'-single-stranded regions of the tRNAs, with the considerable increase in the distance separating the two tRNA tertiary cores occurring later in the process.
Collapse
MESH Headings
- Carbocyanines/chemistry
- Fluorescence Resonance Energy Transfer
- Fluorescent Dyes/chemistry
- Methods
- Nucleic Acid Conformation
- Peptide Elongation Factor Tu/metabolism
- Peptides/metabolism
- Poly U/metabolism
- Protein Biosynthesis
- RNA, Fungal/chemical synthesis
- RNA, Fungal/chemistry
- RNA, Transfer/chemical synthesis
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- RNA, Transfer, Amino Acyl/chemical synthesis
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Met/chemical synthesis
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/metabolism
- Ribosome Subunits, Small/metabolism
- Uridine/chemistry
Collapse
Affiliation(s)
- Dongli Pan
- Department of Chemistry, University of Pennsylvania, Philadelphia, 19104-6323, USA
| | | | | |
Collapse
|
59
|
Ribosome: an Ancient Cellular Nano-Machine for Genetic Code Translation. NATO SCIENCE FOR PEACE AND SECURITY SERIES B: PHYSICS AND BIOPHYSICS 2009. [DOI: 10.1007/978-90-481-2368-1_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
60
|
Recognition of non-alpha-amino substrates by pyrrolysyl-tRNA synthetase. J Mol Biol 2008; 385:1352-60. [PMID: 19100747 DOI: 10.1016/j.jmb.2008.11.059] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 11/26/2008] [Indexed: 11/23/2022]
Abstract
Pyrrolysyl-tRNA synthetase (PylRS), an aminoacyl-tRNA synthetase (aaRS) recently found in some methanogenic archaea and bacteria, recognizes an unusually large lysine derivative, L-pyrrolysine, as the substrate, and attaches it to the cognate tRNA (tRNA(Pyl)). The PylRS-tRNA(Pyl) pair interacts with none of the endogenous aaRS-tRNA pairs in Escherichia coli, and thus can be used as a novel aaRS-tRNA pair for genetic code expansion. The crystal structures of the Methanosarcina mazei PylRS revealed that it has a unique, large pocket for amino acid binding, and the wild type M. mazei PylRS recognizes the natural lysine derivative as well as many lysine analogs, including N(epsilon)-(tert-butoxycarbonyl)-L-lysine (Boc-lysine), with diverse side chain sizes and structures. Moreover, the PylRS only loosely recognizes the alpha-amino group of the substrate, whereas most aaRSs, including the structurally and genetically related phenylalanyl-tRNA synthetase (PheRS), strictly recognize the main chain groups of the substrate. We report here that wild type PylRS can recognize substrates with a variety of main-chain alpha-groups: alpha-hydroxyacid, non-alpha-amino-carboxylic acid, N(alpha)-methyl-amino acid, and D-amino acid, each with the same side chain as that of Boc-lysine. In contrast, PheRS recognizes none of these amino acid analogs. By expressing the wild type PylRS and its cognate tRNA(Pyl) in E. coli in the presence of the alpha-hydroxyacid analog of Boc-lysine (Boc-LysOH), the amber codon (UAG) was recoded successfully as Boc-LysOH, and thus an ester bond was site-specifically incorporated into a protein molecule. This PylRS-tRNA(Pyl) pair is expected to expand the backbone diversity of protein molecules produced by both in vivo and in vitro ribosomal translation.
Collapse
|
61
|
Youngman EM, McDonald ME, Green R. Peptide release on the ribosome: mechanism and implications for translational control. Annu Rev Microbiol 2008; 62:353-73. [PMID: 18544041 DOI: 10.1146/annurev.micro.61.080706.093323] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peptide release, the reaction that hydrolyzes a completed protein from the peptidyl-tRNA upon completion of translation, is catalyzed in the active site of the large subunit of the ribosome and requires a class I release factor protein. The ribosome and release factor protein cooperate to accomplish two tasks: recognition of the stop codon and catalysis of peptidyl-tRNA hydrolysis. Although many fundamental questions remain, substantial progress has been made in the past several years. This review summarizes those advances and presents current models for the mechanisms of stop codon specificity and catalysis of peptide release. Finally, we discuss how these views fit into a larger emerging theme in the translation field: the importance of induced fit and conformational changes for progression through the translation cycle.
Collapse
Affiliation(s)
- Elaine M Youngman
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
62
|
|
63
|
Rodriguez-Correa D, Dahlberg AE. Kinetic and thermodynamic studies of peptidyltransferase in ribosomes from the extreme thermophile Thermus thermophilus. RNA (NEW YORK, N.Y.) 2008; 14:2314-2318. [PMID: 18824514 PMCID: PMC2578854 DOI: 10.1261/rna.1146008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 08/12/2008] [Indexed: 05/26/2023]
Abstract
Throughout evolution, emerging organisms survived by adapting existing biochemical processes to new reaction conditions. Simple protein enzymes balanced changes in structural stability with changes that permitted optimal catalysis by adjustments in both entropic and enthalpic contributions to the free energy of activation for the reaction. Study of adaptive mechanisms by large multicomponent enzymes such as the ribosome has been largely unexplored. Here we have determined the kinetic and thermodynamic parameters of peptidyltransferase in ribosomes from the extreme thermophile Thermus thermophilus. Activity of thermophilic enzymes can be assayed over a wide range of temperatures, enabling one to measure accurate catalytic rates and determine enthalpic and entropic contributions to the free energy of activation of the reaction. Differences in the reaction conditions used here and in published studies on mesophilic ribosomes prevent direct comparison, but our data on Thermus ribosomes suggest that these ribosomes have adapted to changing environments using the same strategies as simple protein enzymes, balancing stability and flexibility without loss of catalytic rate. This strategy must be a very ancient process, perhaps first used by primitive ribosomes in the RNA World.
Collapse
Affiliation(s)
- Daniel Rodriguez-Correa
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | | |
Collapse
|
64
|
Simonović M, Steitz TA. Peptidyl-CCA deacylation on the ribosome promoted by induced fit and the O3'-hydroxyl group of A76 of the unacylated A-site tRNA. RNA (NEW YORK, N.Y.) 2008; 14:2372-8. [PMID: 18818369 PMCID: PMC2578858 DOI: 10.1261/rna.1118908] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The last step in ribosome-catalyzed protein synthesis is the hydrolytic release of the newly formed polypeptide from the P-site bound tRNA. Hydrolysis of the ester link of the peptidyl-tRNA is stimulated normally by the binding of release factors (RFs). However, an unacylated tRNA or just CCA binding to the ribosomal A site can also stimulate deacylation under some nonphysiological conditions. Although the sequence of events is well described by biochemical studies, the structural basis of the mechanism underlying this process is not well understood. Two new structures of the large ribosomal subunit of Haloarcula marismortui complexed with a peptidyl-tRNA analog in the P site and two oligonucleotide mimics of unacylated tRNA, CCA and CA, in the A site show that the binding of either CA or CCA induces a very similar conformational change in the peptidyl-transferase center as induced by aminoacyl-CCA. However, only CCA positions a water molecule appropriately to attack the carbonyl carbon of the peptidyl-tRNA and stabilizes the proper orientation of the ester link for hydrolysis. We, thus, conclude that both the ability of the O3'-hydroxyl group of the A-site A76 to position the water and the A-site CCA induced conformational change of the PTC are critical for the catalysis of the deacylation of the peptidyl-tRNA by CCA, and perhaps, an analogous mechanism is used by RFs.
Collapse
Affiliation(s)
- Miljan Simonović
- Howard Hughes Medical Institute, New Haven, Connecticut 06520-8114, USA
| | | |
Collapse
|
65
|
Wohlgemuth I, Brenner S, Beringer M, Rodnina MV. Modulation of the rate of peptidyl transfer on the ribosome by the nature of substrates. J Biol Chem 2008; 283:32229-35. [PMID: 18809677 DOI: 10.1074/jbc.m805316200] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ribosome catalyzes peptide bond formation between peptidyl-tRNA in the P site and aminoacyl-tRNA in the A site. Here, we show that the nature of the C-terminal amino acid residue in the P-site peptidyl-tRNA strongly affects the rate of peptidyl transfer. Depending on the C-terminal amino acid of the peptidyl-tRNA, the rate of reaction with the small A-site substrate puromycin varied between 100 and 0.14 s(-1), regardless of the tRNA identity. The reactivity decreased in the order Lys = Arg > Ala > Ser > Phe = Val > Asp >> Pro, with Pro being by far the slowest. However, when Phe-tRNA(Phe) was used as A-site substrate, the rate of peptide bond formation with any peptidyl-tRNA was approximately 7 s(-1), which corresponds to the rate of binding of Phe-tRNA(Phe) to the A site (accommodation). Because accommodation is rate-limiting for peptide bond formation, the reaction rate is uniform for all peptidyl-tRNAs, regardless of the variations of the intrinsic chemical reactivities. On the other hand, the 50-fold increase in the reaction rate for peptidyl-tRNA ending with Pro suggests that full-length aminoacyl-tRNA in the A site greatly accelerates peptide bond formation.
Collapse
Affiliation(s)
- Ingo Wohlgemuth
- Institute of Physical Biochemistry, University of Witten/Herdecke, Stockumer Strasse 10, D-58448 Witten, Germany
| | | | | | | |
Collapse
|
66
|
Ledoux S, Uhlenbeck OC. Different aa-tRNAs are selected uniformly on the ribosome. Mol Cell 2008; 31:114-23. [PMID: 18614050 DOI: 10.1016/j.molcel.2008.04.026] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 01/16/2008] [Accepted: 04/25/2008] [Indexed: 10/21/2022]
Abstract
Ten E. coli aminoacyl-tRNAs (aa-tRNAs) were assessed for their ability to decode cognate codons on E. coli ribosomes by using three assays that evaluate the key steps in the decoding pathway. Despite a wide variety of structural features, each aa-tRNA exhibited similar kinetic and thermodynamic properties in each assay. This surprising kinetic and thermodynamic uniformity is likely to reflect the importance of ribosome conformational changes in defining the rates and affinities of the decoding process as well as the evolutionary "tuning" of each aa-tRNA sequence to modify their individual interactions with the ribosome at each step.
Collapse
Affiliation(s)
- Sarah Ledoux
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208, USA
| | | |
Collapse
|
67
|
Huang KS, Carrasco N, Pfund E, Strobel SA. Transition state chirality and role of the vicinal hydroxyl in the ribosomal peptidyl transferase reaction. Biochemistry 2008; 47:8822-7. [PMID: 18672893 DOI: 10.1021/bi800299u] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ribosomal peptidyl transferase is a biologically essential catalyst responsible for protein synthesis. The reaction is expected to proceed through a transition state approaching tetrahedral geometry with a specific chirality. To establish that stereospecificity, we synthesized two diastereomers of a transition state inhibitor with mimics for each of the four ligands around the reactive chiral center. Preferential binding of the inhibitor that mimics a transition state with S chirality establishes the spatial position of the nascent peptide and the oxyanion and places the amine near the critical A76 2'-OH group on the P-site tRNA. Another inhibitor series with 2'-NH 2 and 2'-SH substitutions at the critical 2'-OH group was used to test the neutrality of the 2'-OH group as predicted if the hydroxyl functions as a proton shuttle in the transition state. The lack of significant pH-dependent binding by these inhibitors argues that the 2'-OH group remains neutral in the transition state. Both of these observations are consistent with a proton shuttle mechanism for the peptidyl transferase reaction.
Collapse
Affiliation(s)
- Kevin S Huang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | | | |
Collapse
|
68
|
|
69
|
Brunelle JL, Shaw JJ, Youngman EM, Green R. Peptide release on the ribosome depends critically on the 2' OH of the peptidyl-tRNA substrate. RNA (NEW YORK, N.Y.) 2008; 14:1526-31. [PMID: 18567817 PMCID: PMC2491474 DOI: 10.1261/rna.1057908] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Peptide release on the ribosome is catalyzed by protein release factors (RFs) on recognition of stop codons positioned in the A site of the small ribosomal subunit. Here we show that the 2' OH of the peptidyl-tRNA substrate plays an essential role in catalysis of the peptide release reaction. These observations parallel earlier studies of the mechanism of the peptidyl transfer reaction and argue that related mechanisms are at the heart of catalysis for these reactions.
Collapse
Affiliation(s)
- Julie L Brunelle
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
70
|
Johansson M, Bouakaz E, Lovmar M, Ehrenberg M. The kinetics of ribosomal peptidyl transfer revisited. Mol Cell 2008; 30:589-98. [PMID: 18538657 DOI: 10.1016/j.molcel.2008.04.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2007] [Revised: 01/04/2008] [Accepted: 04/15/2008] [Indexed: 10/22/2022]
Abstract
The speed of protein synthesis determines the growth rate of bacteria. Current biochemical estimates of the rate of protein elongation are small and incompatible with the rate of protein elongation in the living cell. With a cell-free system for protein synthesis, optimized for speed and accuracy, we have estimated the rate of peptidyl transfer from a peptidyl-tRNA in P site to a cognate aminoacyl-tRNA in A site at various temperatures. We have found these rates to be much larger than previously measured and fully compatible with the speed of protein elongation for E. coli cells growing in rich medium. We have found large activation enthalpy and small activation entropy for peptidyl transfer, similar to experimental estimates of these parameters for A site analogs of aminoacyl-tRNA. Our work has opened a useful kinetic window for biochemical studies of protein synthesis, bridging the gap between in vitro and in vivo data on ribosome function.
Collapse
Affiliation(s)
- Magnus Johansson
- Department of Cell and Molecular Biology, BMC, Uppsala University, Box 596, S-751 24 Uppsala, Sweden
| | | | | | | |
Collapse
|
71
|
Bashan A, Yonath A. Correlating ribosome function with high-resolution structures. Trends Microbiol 2008; 16:326-35. [PMID: 18547810 DOI: 10.1016/j.tim.2008.05.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 05/03/2008] [Accepted: 05/07/2008] [Indexed: 10/22/2022]
Abstract
Ribosome research has undergone astonishing progress in recent years. Crystal structures have shed light on the functional properties of the translation machinery and revealed how the striking architecture of the ribosome is ingeniously designed as the framework for its unique capabilities: precise decoding, substrate-mediated peptide-bond formation and efficient polymerase activity. New findings include the two concerted elements of tRNA translocation: sideways shift and a ribosomal-navigated rotatory motion; the dynamics of the nascent-chain exit tunnel and the shelter formed by the ribosome-bound trigger-factor, which acts as a chaperone to prevent nascent-chain aggregation and misfolding. The availability of these structures has also illuminated the action, selectivity, resistance and synergism of antibiotics that target ribosomes.
Collapse
Affiliation(s)
- Anat Bashan
- Department of Structural Biology, Weizmann Institute, Rehovot, 76100, Israel
| | | |
Collapse
|
72
|
Beringer M. Modulating the activity of the peptidyl transferase center of the ribosome. RNA (NEW YORK, N.Y.) 2008; 14:795-801. [PMID: 18369182 PMCID: PMC2327356 DOI: 10.1261/rna.980308] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The peptidyl transferase (PT) center of the ribosome catalyzes two nucleophilic reactions, peptide bond formation between aminoacylated tRNA substrates and, together with release factor, peptide release. Structure and function of the PT center are modulated by binding of aminoacyl-tRNA or release factor, thus providing the basis for the specificity of catalysis. Another way by which the function of the PT center is controlled is signaling from the peptide exit tunnel. The SecM nascent peptide induces ribosome stalling, presumably by inhibition of peptide bond formation. Similarly, the release factor-induced hydrolytic activity of the PT center can be suppressed by the TnaC nascent peptide contained in the exit tunnel. Thus, local and long-range conformational rearrangements can lead to changes in the reaction specificity and catalytic activity of the PT center.
Collapse
Affiliation(s)
- Malte Beringer
- Institute of Physical Biochemistry, University of Witten/Herdecke, 58448 Witten, Germany.
| |
Collapse
|
73
|
Pan D, Zhang CM, Kirillov S, Hou YM, Cooperman BS. Perturbation of the tRNA tertiary core differentially affects specific steps of the elongation cycle. J Biol Chem 2008; 283:18431-40. [PMID: 18448426 DOI: 10.1074/jbc.m801560200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tRNA tertiary core region is important for both tRNA stability and activity in the translation elongation cycle. Here we report the effects of mutating each of two highly conserved base pairs in the tertiary core of Phe-tRNA(Phe), 18-55 and 19-56, on rate and equilibrium constants for specific steps of this cycle, beginning with formation of aminoacyl-tRNA.EF-Tu.GTP ternary complexs and culminating with translocation of A-site-bound peptidyl-tRNA into the P-site. We find that codon-dependent binding of aminoacyl-tRNA to the A/T-site and proofreading of near-cognate tRNA are sensitive to perturbation of either base pair; formation of the ternary complex and accommodation from the A/T to the A-site are sensitive to 18-55 perturbation only, and translocation of peptidyl-tRNA from the A- to P-site is insensitive to perturbation of either. These results underline the importance of the core region in promoting the efficiency and accuracy of translation, and they likely reflect different requirements for structural integrity of the core during specific steps of the elongation cycle.
Collapse
Affiliation(s)
- Dongli Pan
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | | | | | | | | |
Collapse
|
74
|
Lang K, Erlacher M, Wilson DN, Micura R, Polacek N. The role of 23S ribosomal RNA residue A2451 in peptide bond synthesis revealed by atomic mutagenesis. ACTA ACUST UNITED AC 2008; 15:485-92. [PMID: 18439847 DOI: 10.1016/j.chembiol.2008.03.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 03/06/2008] [Accepted: 03/17/2008] [Indexed: 11/18/2022]
Abstract
Peptide bond formation is a fundamental reaction in biology, catalyzed by the ribosomal peptidyl-transferase ribozyme. Although all active-site 23S ribosomal RNA nucleotides are universally conserved, atomic mutagenesis suggests that these nucleobases do not carry functional groups directly involved in peptide bond formation. Instead, a single ribose 2'-hydroxyl group at A2451 was identified to be of pivotal importance. Here, we altered the chemical characteristics by replacing its 2'-hydroxyl with selected functional groups and demonstrate that hydrogen donor capability is essential for transpeptidation. We propose that the A2451-2'-hydroxyl directly hydrogen bonds to the P-site tRNA-A76 ribose. This promotes an effective A76 ribose C2'-endo conformation to support amide synthesis via a proton shuttle mechanism. Simultaneously, the direct interaction of A2451 with A76 renders the intramolecular transesterification of the peptide from the 3'- to 2'-oxygen unfeasible, thus promoting effective peptide bond synthesis.
Collapse
Affiliation(s)
- Kathrin Lang
- Institute of Organic Chemistry, Center for Molecular Biosciences (CMBI), University of Innsbruck, Innsbruck, Austria
| | | | | | | | | |
Collapse
|
75
|
Abstract
The current view of ribosomal peptidyl transfer is that the ribosome is a ribozyme and that ribosomal proteins are not involved in catalysis of the chemical reaction. This view is largely based on the first crystal structures of bacterial large ribosomal subunits that did not show any protein components near the peptidyl transferase center (PTC). Recent crystallographic data on the full 70S ribosome from Thermus thermophilus, however, show that ribosomal protein L27 extends with its N-terminus into the PTC in accordance with independent biochemical data, thus raising the question of whether the ribozyme picture is strictly valid. We have carried out extensive computer simulations of the peptidyl transfer reaction in the T. thermophilus ribosome to address the role of L27. The results show a reaction rate similar to that obtained in earlier simulations of the Haloarcula marismortui reaction. Furthermore, deletion of L27 is predicted to only give a minor rate reduction, in agreement with biochemical data, suggesting that the ribozyme view is indeed valid. The N-terminus of L27 is predicted to interact with the A76 phosphate group of the A-site tRNA, thereby explaining the observed impairment of A-site substrate binding for ribosomes lacking L27. Simulations are also reported for the reaction with puromycin, an A-site tRNA analogue which lacks the A76 phosphate group. The calculated energetics shows that this substrate can cause a downward p K a shift of L27 and that the reaction proceeds faster with the L27 N-terminus deprotonated, in contrast to the situation with aminoacyl-tRNA substrates. These results could explain the observed differences in pH dependence between the puromycin and C-puromycin reactions, where the former reaction has been seen to depend on an additional ionizing group besides the attacking amine, and our model predicts this ionizing group to be the N-terminal amine of L27.
Collapse
Affiliation(s)
- Stefan Trobro
- Department of Cell and Molecular Biology, Uppsala Biomedical Center, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
| | | |
Collapse
|
76
|
Felnagle EA, Jackson EE, Chan YA, Podevels AM, Berti AD, McMahon MD, Thomas MG. Nonribosomal peptide synthetases involved in the production of medically relevant natural products. Mol Pharm 2008; 5:191-211. [PMID: 18217713 PMCID: PMC3131160 DOI: 10.1021/mp700137g] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Natural products biosynthesized wholly or in part by nonribosomal peptide synthetases (NRPSs) are some of the most important drugs currently used clinically for the treatment of a variety of diseases. Since the initial research into NRPSs in the early 1960s, we have gained considerable insights into the mechanism by which these enzymes assemble these natural products. This review will present a brief history of how the basic mechanistic steps of NRPSs were initially deciphered and how this information has led us to understand how nature modified these systems to generate the enormous structural diversity seen in nonribosomal peptides. This review will also briefly discuss how drug development and discovery are being influenced by what we have learned from nature about nonribosomal peptide biosynthesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michael G. Thomas
- Department of Bacteriology, University of Wisconsin-Madison, Madison WI 53706
| |
Collapse
|
77
|
Youngman EM, He SL, Nikstad LJ, Green R. Stop codon recognition by release factors induces structural rearrangement of the ribosomal decoding center that is productive for peptide release. Mol Cell 2008; 28:533-43. [PMID: 18042450 DOI: 10.1016/j.molcel.2007.09.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 08/28/2007] [Accepted: 09/07/2007] [Indexed: 11/24/2022]
Abstract
Peptide release on the ribosome is catalyzed in the large subunit peptidyl transferase center by release factors on recognition of stop codons in the small subunit decoding center. Here we examine the role of the decoding center in this process. Mutation of decoding center nucleotides or removal of 2'OH groups from the codon--deleterious in the related process of tRNA selection--has only mild effects on peptide release. The miscoding antibiotic paromomycin, which binds the decoding center and promotes the critical steps of tRNA selection, instead dramatically inhibits peptide release. Differences in the kinetic mechanism of paromomycin inhibition on stop and sense codons, paired with correlated structural changes monitored by chemical footprinting, suggest that recognition of stop codons by release factors induces specific structural rearrangements in the small subunit decoding center. We propose that, like other steps in translation, the specificity of peptide release is achieved through an induced-fit mechanism.
Collapse
Affiliation(s)
- Elaine M Youngman
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
78
|
Hoogstraten CG, Sumita M. Structure-function relationships in RNA and RNP enzymes: recent advances. Biopolymers 2008; 87:317-28. [PMID: 17806104 DOI: 10.1002/bip.20836] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The structural biology of ribozymes and ribonucleoprotein (RNP) enzymes is now sufficiently advanced that a true dialogue between structural and functional studies is possible. In this review, we consider three important systems in which an integration of structural and biochemical data has recently led to major advances in mechanistic understanding. In the hammerhead ribozyme, application-driven biochemical studies led to the discovery of a key structural interaction that had been omitted from previously-studied constructs. A new crystal structure of the resulting, tertiary-stabilized hammerhead has resolved a remarkable number of longstanding paradoxes in the structure-function relationship of this ribozyme. In the Group I intron ribozyme, a flurry of high-resolution structures has largely confirmed, but in some cases refined or challenged, a detailed model of a metalloenzyme active site that had previously been derived by meticulous quantitative metal ion rescue experiments. Finally, for the peptidyl transferase center of the ribosome, recent biochemical and chemical results motivated by the pioneering crystal structures have suggested a picture of a catalytic mechanism dominated by proximity and orientation effects and substrate-assisted catalysis. These results refocus attention on catalysis as a property of the integrated RNP machinery as a whole, as opposed to a narrow concern with the RNA functional groups in immediate contact with the reactive center.
Collapse
Affiliation(s)
- Charles G Hoogstraten
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
79
|
Ohta A, Murakami H, Higashimura E, Suga H. Synthesis of Polyester by Means of Genetic Code Reprogramming. ACTA ACUST UNITED AC 2007; 14:1315-22. [DOI: 10.1016/j.chembiol.2007.10.015] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 09/11/2007] [Accepted: 10/22/2007] [Indexed: 11/28/2022]
|
80
|
Ohuchi M, Murakami H, Suga H. The flexizyme system: a highly flexible tRNA aminoacylation tool for the translation apparatus. Curr Opin Chem Biol 2007; 11:537-42. [PMID: 17884697 DOI: 10.1016/j.cbpa.2007.08.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 08/05/2007] [Accepted: 08/06/2007] [Indexed: 11/17/2022]
Abstract
Flexizymes are de novo ribozymes capable of charging a wide variety of non-natural amino acids on tRNAs. The flexizyme system enables reprogramming of the genetic code by reassigning the codons that are generally assigned to natural amino acids to non-natural residues, and thus mRNA-directed synthesis of non-natural polypeptides can be achieved. In this review, we comprehensively summarize the history of the flexizyme system and its subsequent development into a practical tool. Furthermore, applications to the synthesis of novel biopolymers via genetic code reprogramming and perspectives for future applications are described.
Collapse
Affiliation(s)
- Masaki Ohuchi
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | | | | |
Collapse
|
81
|
Samel SA, Schoenafinger G, Knappe TA, Marahiel MA, Essen LO. Structural and functional insights into a peptide bond-forming bidomain from a nonribosomal peptide synthetase. Structure 2007; 15:781-92. [PMID: 17637339 DOI: 10.1016/j.str.2007.05.008] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 05/15/2007] [Accepted: 05/16/2007] [Indexed: 11/29/2022]
Abstract
The crystal structure of the bidomain PCP-C from modules 5 and 6 of the nonribosomal tyrocidine synthetase TycC was determined at 1.8 A resolution. The bidomain structure reveals a V-shaped condensation domain, the canyon-like active site groove of which is associated with the preceding peptidyl carrier protein (PCP) domain at its donor side. The relative arrangement of the PCP and the peptide bond-forming condensation (C) domain places the active sites approximately 50 A apart. Accordingly, this PCP-C structure represents a conformational state prior to peptide transfer from the donor-PCP to the acceptor-PCP domain, implying the existence of additional states of PCP-C domain interaction during catalysis. Additionally, PCP-C exerts a mode of cyclization activity that mimics peptide bond formation catalyzed by C domains. Based on mutational data and pK value analysis of active site residues, it is suggested that nonribosomal peptide bond formation depends on electrostatic interactions rather than on general acid/base catalysis.
Collapse
Affiliation(s)
- Stefan A Samel
- Department of Chemistry/Biochemistry, Philipps-Universität, Hans-Meerwein-Strasse, D-35032 Marburg, Germany
| | | | | | | | | |
Collapse
|
82
|
Trobro S, Aqvist J. A Model for How Ribosomal Release Factors Induce Peptidyl-tRNA Cleavage in Termination of Protein Synthesis. Mol Cell 2007; 27:758-66. [PMID: 17803940 DOI: 10.1016/j.molcel.2007.06.032] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 05/15/2007] [Accepted: 06/21/2007] [Indexed: 10/22/2022]
Abstract
A major unresolved question in messenger RNA translation is how ribosomal release factors terminate protein synthesis. Class 1 release factors decode stop codons and trigger hydrolysis of the bond between the nascent polypeptide and tRNA some 75 A away from the decoding site. While the gross features of the release factor-ribosome interaction have been revealed by low-resolution crystal structures, there is no information on the atomic level at either the decoding or peptidyl transfer center. We used extensive computer simulations, constrained by experimental data, to predict how bacterial release factors induce peptide dissociation from the ribosome. A distinct structural solution is presented for how the methylated Gln residue of the universally conserved GGQ release factor motif inserts into the ribosomal A site and promotes rapid reaction with the peptidyl-tRNA substrate. This model explains key mutation experiments and shows that the ribosomal peptidyl transfer center catalyzes its two chemical reactions by a common mechanism.
Collapse
Affiliation(s)
- Stefan Trobro
- Department of Cell and Molecular Biology, Uppsala Biomedical Center, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
| | | |
Collapse
|
83
|
Beringer M, Rodnina MV. Importance of tRNA interactions with 23S rRNA for peptide bond formation on the ribosome: studies with substrate analogs. Biol Chem 2007; 388:687-91. [PMID: 17570820 DOI: 10.1515/bc.2007.077] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The major enzymatic activity of the ribosome is the catalysis of peptide bond formation. The active site -- the peptidyl transferase center -- is composed of ribosomal RNA (rRNA), and interactions between rRNA and the reactants, peptidyl-tRNA and aminoacyl-tRNA, are crucial for the reaction to proceed rapidly and efficiently. Here, we describe the influence of rRNA interactions with cytidine residues in A-site substrate analogs (C-puromycin or CC-puromycin), mimicking C74 and C75 of tRNA on the reaction. Base-pairing of C75 with G2553 of 23S rRNA accelerates peptide bond formation, presumably by stabilizing the peptidyl transferase center in its productive conformation. When C74 is also present in the substrate analog, the reaction is slowed down considerably, indicating a slow step in substrate binding to the active site, which limits the reaction rate. The tRNA-rRNA interactions lead to a robust reaction that is insensitive to pH changes or base substitutions in 23S rRNA at the active site of the ribosome.
Collapse
Affiliation(s)
- Malte Beringer
- Institute of Physical Biochemistry, University of Witten/Herdecke, Witten, Germany
| | | |
Collapse
|
84
|
Amort M, Wotzel B, Bakowska-Zywicka K, Erlacher MD, Micura R, Polacek N. An intact ribose moiety at A2602 of 23S rRNA is key to trigger peptidyl-tRNA hydrolysis during translation termination. Nucleic Acids Res 2007; 35:5130-40. [PMID: 17660192 PMCID: PMC1976462 DOI: 10.1093/nar/gkm539] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Peptide bond formation and peptidyl-tRNA hydrolysis are the two elementary chemical reactions of protein synthesis catalyzed by the ribosomal peptidyl transferase ribozyme. Due to the combined effort of structural and biochemical studies, details of the peptidyl transfer reaction have become increasingly clearer. However, significantly less is known about the molecular events that lead to peptidyl-tRNA hydrolysis at the termination phase of translation. Here we have applied a recently introduced experimental system, which allows the ribosomal peptidyl transferase center (PTC) to be chemically engineered by the introduction of non-natural nucleoside analogs. By this approach single functional group modifications are incorporated, thus allowing their functional contributions in the PTC to be unravelled with improved precision. We show that an intact ribose sugar at the 23S rRNA residue A2602 is crucial for efficient peptidyl-tRNA hydrolysis, while having no apparent functional relevance for transpeptidation. Despite the fact that all investigated active site residues are universally conserved, the removal of the complete nucleobase or the ribose 2′-hydroxyl at A2602, U2585, U2506, A2451 or C2063 has no or only marginal inhibitory effects on the overall rate of peptidyl-tRNA hydrolysis. These findings underscore the exceptional functional importance of the ribose moiety at A2602 for triggering peptide release.
Collapse
Affiliation(s)
- Melanie Amort
- Innsbruck Biocenter, Medical University Innsbruck, Division of Genomics and RNomics, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland and CMBI, Leopold-Franzens-University Innsbruck, Institute of Organic Chemistry, Innrain 52a, 6020 Innsbruck, Austria
| | - Brigitte Wotzel
- Innsbruck Biocenter, Medical University Innsbruck, Division of Genomics and RNomics, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland and CMBI, Leopold-Franzens-University Innsbruck, Institute of Organic Chemistry, Innrain 52a, 6020 Innsbruck, Austria
| | - Kamilla Bakowska-Zywicka
- Innsbruck Biocenter, Medical University Innsbruck, Division of Genomics and RNomics, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland and CMBI, Leopold-Franzens-University Innsbruck, Institute of Organic Chemistry, Innrain 52a, 6020 Innsbruck, Austria
| | - Matthias D. Erlacher
- Innsbruck Biocenter, Medical University Innsbruck, Division of Genomics and RNomics, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland and CMBI, Leopold-Franzens-University Innsbruck, Institute of Organic Chemistry, Innrain 52a, 6020 Innsbruck, Austria
| | - Ronald Micura
- Innsbruck Biocenter, Medical University Innsbruck, Division of Genomics and RNomics, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland and CMBI, Leopold-Franzens-University Innsbruck, Institute of Organic Chemistry, Innrain 52a, 6020 Innsbruck, Austria
| | - Norbert Polacek
- Innsbruck Biocenter, Medical University Innsbruck, Division of Genomics and RNomics, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland and CMBI, Leopold-Franzens-University Innsbruck, Institute of Organic Chemistry, Innrain 52a, 6020 Innsbruck, Austria
- *To whom correspondence should be addressed.+43 (0)512 9003 70251 +43 (0)512 9003 73100
| |
Collapse
|
85
|
Abstract
Peptide bond formation on the ribosome takes place in an active site composed of RNA. Recent progress of structural, biochemical, and computational approaches has provided a fairly detailed picture of the catalytic mechanism of the reaction. The ribosome accelerates peptide bond formation by lowering the activation entropy of the reaction due to positioning the two substrates, ordering water in the active site, and providing an electrostatic network that stabilizes the reaction intermediates. Proton transfer during the reaction appears to be promoted by a concerted proton shuttle mechanism that involves ribose hydroxyl groups on the tRNA substrate.
Collapse
Affiliation(s)
- Malte Beringer
- Institute of Physical Biochemistry, University of Witten/Herdecke, Witten, Germany
| | | |
Collapse
|
86
|
Changalov MM, Petkov DD. Linear free energy relationships and kinetic isotope effects reveal the chemistry of the Ado 2′-OH group. Tetrahedron Lett 2007. [DOI: 10.1016/j.tetlet.2007.01.139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
87
|
Abstract
Beta-lactam antibiotics restrict bacterial growth by inhibiting DD-peptidases. These enzymes catalyze the final transpeptidation step in bacterial cell wall biosynthesis. Although much structural information is now available for these enzymes, the mechanism of the actual transpeptidation reaction has not been studied in detail. The reaction is known to involve a double-displacement mechanism with an acyl-enzyme intermediate, which can be attacked by water, specific amino acids, peptides, and other acyl acceptors. We describe in this paper an investigation of acyl acceptor specificity and assess the need for general base catalysis in the deacylation transition state of the Streptomyces R61 DD-peptidase. We show, by the criterion of solvent deuterium kinetic isotope effect measurements and proton inventories, that the transition states of specific and nonspecific substrates are very similar, at least with respect to proton motion. The transition states for attack (tetrahedral intermediate formation) by d-amino acids and Gly-l-Xaa dipeptides do not include a general base catalyst, while such catalysis is essential for reaction with water and d-alpha-hydroxy acids. D-Alpha-hydroxy acids act as acyl acceptors for glycyl substrates but not for more specific d-alanyl substrates; hydroxy acids actually behave, more generally, as mixed inhibitors of the DD-peptidase. The structural and mechanistic bases of these observations are discussed; they should inform transition state analogue design.
Collapse
Affiliation(s)
| | | | - R.F. Pratt
- Corresponding Author: Dr. R.F. Pratt, address above, telephone 860-685-2629; e-mail: ; Fax: 860-685-2211
| |
Collapse
|
88
|
Rodnina MV, Beringer M, Wintermeyer W. How ribosomes make peptide bonds. Trends Biochem Sci 2006; 32:20-6. [PMID: 17157507 DOI: 10.1016/j.tibs.2006.11.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Revised: 11/02/2006] [Accepted: 11/23/2006] [Indexed: 11/21/2022]
Abstract
Ribosomes are molecular machines that synthesize proteins in the cell. Recent biochemical analyses and high-resolution crystal structures of the bacterial ribosome have shown that the active site for the formation of peptide bonds--the peptidyl-transferase center--is composed solely of rRNA. Thus, the ribosome is the largest known RNA catalyst and the only natural ribozyme that has a synthetic activity. The ribosome employs entropic catalysis to accelerate peptide-bond formation by positioning substrates, reorganizing water in the active site and providing an electrostatic network that stabilizes reaction intermediates. Proton transfer during the reaction seems to be promoted by a concerted shuttle mechanism that involves ribose hydroxyl groups on the tRNA substrate.
Collapse
Affiliation(s)
- Marina V Rodnina
- Institute of Physical Biochemistry, University of Witten/Herdecke, D-58448 Witten, Germany.
| | | | | |
Collapse
|
89
|
Korostelev A, Trakhanov S, Laurberg M, Noller HF. Crystal Structure of a 70S Ribosome-tRNA Complex Reveals Functional Interactions and Rearrangements. Cell 2006; 126:1065-77. [PMID: 16962654 DOI: 10.1016/j.cell.2006.08.032] [Citation(s) in RCA: 382] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 08/10/2006] [Accepted: 08/30/2006] [Indexed: 11/16/2022]
Abstract
Our understanding of the mechanism of protein synthesis has undergone rapid progress in recent years as a result of low-resolution X-ray and cryo-EM structures of ribosome functional complexes and high-resolution structures of ribosomal subunits and vacant ribosomes. Here, we present the crystal structure of the Thermus thermophilus 70S ribosome containing a model mRNA and two tRNAs at 3.7 A resolution. Many structural details of the interactions between the ribosome, tRNA, and mRNA in the P and E sites and the ways in which tRNA structure is distorted by its interactions with the ribosome are seen. Differences between the conformations of vacant and tRNA-bound 70S ribosomes suggest an induced fit of the ribosome structure in response to tRNA binding, including significant changes in the peptidyl-transferase catalytic site.
Collapse
Affiliation(s)
- Andrei Korostelev
- Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | | | | | | |
Collapse
|
90
|
Wohlgemuth I, Beringer M, Rodnina MV. Rapid peptide bond formation on isolated 50S ribosomal subunits. EMBO Rep 2006; 7:699-703. [PMID: 16799464 PMCID: PMC1500836 DOI: 10.1038/sj.embor.7400732] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 05/05/2006] [Accepted: 05/16/2006] [Indexed: 11/09/2022] Open
Abstract
The catalytic site of the ribosome, the peptidyl transferase centre, is located on the large (50S in bacteria) ribosomal subunit. On the basis of results obtained with small substrate analogues, isolated 50S subunits seem to be less active in peptide bond formation than 70S ribosomes by several orders of magnitude, suggesting that the reaction mechanisms on 50S subunits and 70S ribosomes may be different. Here we show that with full-size fMet-tRNA(fMet) and puromycin or C-puromycin as peptide donor and acceptor substrates, respectively, the reaction proceeds as rapidly on 50S subunits as on 70S ribosomes, indicating that the intrinsic activity of 50S subunits is not different from that of 70S ribosomes. The faster reaction on 50S subunits with fMet-tRNA(fMet), compared with oligonucleotide substrate analogues, suggests that full-size transfer RNA in the P site is important for maintaining the active conformation of the peptidyl transferase centre.
Collapse
Affiliation(s)
- Ingo Wohlgemuth
- Institute of Physical Biochemistry, University of Witten/Herdecke, Stockumer Strasse 10, 58448 Witten, Germany
| | - Malte Beringer
- Institute of Physical Biochemistry, University of Witten/Herdecke, Stockumer Strasse 10, 58448 Witten, Germany
| | - Marina V Rodnina
- Institute of Physical Biochemistry, University of Witten/Herdecke, Stockumer Strasse 10, 58448 Witten, Germany
- Tel: +49 2302 926205; Fax: +49 2302 926117; E-mail:
| |
Collapse
|