51
|
|
52
|
Díaz-López A, Moreno-Bueno G, Cano A. Role of microRNA in epithelial to mesenchymal transition and metastasis and clinical perspectives. Cancer Manag Res 2014; 6:205-16. [PMID: 24812525 PMCID: PMC4008290 DOI: 10.2147/cmar.s38156] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The microRNAs (miRNAs) are a class of small, 20–22 nucleotides in length, endogenously expressed noncoding RNAs that regulate multiple targets posttranscriptionally. Interestingly, miRNAs have emerged as regulators of most physiological and pathological processes, including metastatic tumor progression, in part by controlling a reversible process called epithelial-to-mesenchymal transition (EMT). The activation of EMT increases the migratory and invasive properties fundamental for tumor cell spread while activation of the reverse mesenchymal-to-epithelial transition is required for metastasis outgrowth. The EMT triggering leads to the activation of a core of transcription factors (EMT-TFs) – SNAIL1/SNAIL2, bHLH (E47, E2-2, and TWIST1/TWIST2), and ZEB1/ZEB2 – that act as E-cadherin repressors and, ultimately, coordinate EMT. Recent evidence indicates that several miRNAs regulate the expression of EMT-TFs or EMT-activating signaling pathways. Interestingly, some miRNAs and EMT-TFs form tightly interconnected negative feedback loops that control epithelial cell plasticity, providing self-reinforcing signals and robustness to maintain the epithelial or mesenchymal cell status. Among the most significant feedback loops, we focus on the ZEB/miR-200 and the SNAIL1/miR-34 networks that hold a clear impact in the regulation of the epithelial-mesenchymal state. Recent insights into the p53 modulation of the EMT-TF/miRNA loops and epigenetic regulatory mechanisms in the context of metastasis dissemination will also be discussed. Understanding the regulation of EMT by miRNAs opens new avenues for the diagnosis and prognosis of tumors and identifies potential therapeutic targets that might help to negatively impact on metastasis dissemination and increasing patient survival.
Collapse
Affiliation(s)
- Antonio Díaz-López
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), IdiPAZ, Madrid, Spain
| | - Gema Moreno-Bueno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), IdiPAZ, Madrid, Spain ; Fundación MDAnderson Internacional, Madrid, Spain
| | - Amparo Cano
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), IdiPAZ, Madrid, Spain
| |
Collapse
|
53
|
Chatterjee P, Bhattacharyya M, Bandyopadhyay S, Roy D. Studying the system-level involvement of microRNAs in Parkinson's disease. PLoS One 2014; 9:e93751. [PMID: 24690883 PMCID: PMC3972105 DOI: 10.1371/journal.pone.0093751] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/08/2014] [Indexed: 12/15/2022] Open
Abstract
Background Parkinson's Disease (PD) is a progressive neurologic disorder that affects movement and balance. Recent studies have revealed the importance of microRNA (miR) in PD. However, the detailed role of miR and its regulation by Transcription Factor (TF) remain unexplored. In this work for the first time we have studied TF-miR-mRNA regulatory network as well as miR co-expression network in PD. Result We compared the 204 differentially expressed miRs from microarray data with 73 PD related miRs obtained from literature, Human MicroRNA Disease Database and found a significant overlap of 47 PD related miRs (p-value<0.05). Functional enrichment analyses of these 47 common (Group1) miRs and the remaining 157 (Group2) miRs revealed similar kinds of over-representative GO Biological Processes and KEGG pathways. This strengthens the possibility that some of the Group 2 miRs can have functional roles in PD progression, hitherto unidentified in any study. In order to explore the cross talk between TF, miR and target mRNA, regulatory networks were constructed. Study of these networks resulted in 14 Inter-Regulatory hub miRs whereas miR co-expression network revealed 18 co-expressed hub miRs. Of these 32 hub miRs, 23 miRs were previously unidentified with respect to their association with PD. Hierarchical clustering analysis further strengthens the roles of these novel miRs in different PD pathways. Furthermore hsa-miR-92a appeared as novel hub miR in both regulatory and co-expression network indicating its strong functional role in PD. High conservation patterns were observed for most of these 23 novel hub miRs across different species including human. Thus these 23 novel hub miRs can be considered as potential biomarkers for PD. Conclusion Our study identified 23 novel miR markers which can open up new avenues for future studies and shed lights on potential therapeutic targets for PD.
Collapse
Affiliation(s)
- Paulami Chatterjee
- Department of Biophysics, Bose Institute, Acharya J.C. Bose Centenary Building, Kolkata, India
| | | | | | - Debjani Roy
- Department of Biophysics, Bose Institute, Acharya J.C. Bose Centenary Building, Kolkata, India
- * E-mail:
| |
Collapse
|
54
|
Kolesnikoff N, Attema JL, Roslan S, Bert AG, Schwarz QP, Gregory PA, Goodall GJ. Specificity protein 1 (Sp1) maintains basal epithelial expression of the miR-200 family: implications for epithelial-mesenchymal transition. J Biol Chem 2014; 289:11194-11205. [PMID: 24627491 DOI: 10.1074/jbc.m113.529172] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is required for the specification of tissues during embryonic development and is recapitulated during the metastatic progression of tumors. The miR-200 family plays a critical role in enforcing the epithelial state with their expression lost in cells undergoing EMT. EMT can be mediated by activation of the ZEB1 and ZEB2 (ZEB) transcription factors, which repress miR-200 expression via a self-reinforcing double negative feedback loop to promote the mesenchymal state. However, it remains unclear what factors drive and maintain epithelial-specific expression of miR-200 in the absence of EMT-inducing factors. Here, we show that the transcription factor Specificity Protein 1 (Sp1) binds to the miR-200b∼200a∼429 proximal promoter and activates miR-200 expression in epithelial cells. In mesenchymal cells, Sp1 expression is maintained, but its ability to activate the miR-200 promoter is perturbed by ZEB-mediated repression. Reduction of Sp1 expression caused changes in EMT-associated markers in epithelial cells. Furthermore, we observed co-expression of Sp1 and miR-200 during mouse embryonic development wherein miR-200 expression was only lost in regions with high ZEB expression. Together, these findings indicate that miR-200 family members require Sp1 to drive basal expression and to maintain an epithelial state.
Collapse
Affiliation(s)
- Natasha Kolesnikoff
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5000, Australia
| | - Joanne L Attema
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5000, Australia,; Discipline of Medicine, The University of Adelaide, Adelaide, South Australia 5005, Australia, and
| | - Suraya Roslan
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5000, Australia
| | - Andrew G Bert
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5000, Australia
| | - Quenten P Schwarz
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5000, Australia
| | - Philip A Gregory
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5000, Australia,; Discipline of Medicine, The University of Adelaide, Adelaide, South Australia 5005, Australia, and.
| | - Gregory J Goodall
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5000, Australia,; Discipline of Medicine, The University of Adelaide, Adelaide, South Australia 5005, Australia, and; School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| |
Collapse
|
55
|
Lehmann U. Aberrant DNA methylation of microRNA genes in human breast cancer - a critical appraisal. Cell Tissue Res 2014; 356:657-64. [PMID: 24509818 DOI: 10.1007/s00441-014-1793-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/02/2014] [Indexed: 12/11/2022]
Abstract
Aberrant DNA methylation of regulatory sequences is a well-documented mechanism of functional deletion of genes with anti-tumourigenic properties including microRNAs. This review discusses the publications describing aberrant methylation of microRNA genes in human breast cancer cells. Among the anti-tumourigenic properties of epigenetically inactivated microRNA genes, the inhibition of proliferation and of epithelial-to-mesenchymal transition (EMT) are the best studied. Several studies are conceptually very interesting and present a comprehensive functional characterization of anti-tumorigenic microRNAs. The link between microRNA expression and gene methylation is not addressed directly by all studies and a number of studies are limited in their strength by not including primary breast cancer specimens or by analysing very small sets of primary human specimens. The publications cover a wide range of DNA methylation detection techniques, often making direct comparison of results challenging. Despite the identification and thorough characterization of many interesting candidates and functionally important microRNA genes affected by DNA methylation, the translation of microRNA gene methylation as a new biomarker into the daily routine practice has not yet worked out.
Collapse
Affiliation(s)
- Ulrich Lehmann
- Institute of Pathology, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany,
| |
Collapse
|
56
|
Wee EJH, Rauf S, Koo KM, Shiddiky MJA, Trau M. μ-eLCR: a microfabricated device for electrochemical detection of DNA base changes in breast cancer cell lines. LAB ON A CHIP 2013; 13:4385-91. [PMID: 24061339 DOI: 10.1039/c3lc50528f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Microfabricated devices for the electrochemical detection of single DNA base changes in cancer cell lines are highly desirable due to the inherent advantages such as portability, simplicity, and the rapid and inexpensive nature of electrochemical readout methods. Moreover, molecular sensors that use microscale-footprint working electrodes have shown high signal-to-noise ratio. Herein we report a microdevice-based electrochemical assay (μ-eLCR) measuring ligase chain reaction (LCR)-amplified long and short "knife" motifs which reflect the presence or absence of a DNA base change of interest in a target sequence. This μ-eLCR approach has higher sensitivity (4.4 to 10 fold improvement over macrodisk electrodes) and good reproducibility (%RSD 6.5%, n = 12) for the detection of LCR-amplified DNA bases. The devices also exhibited excellent sensitivity for the detection of DNA methylation (C to T base change in a locus associated with cancer metastasis) in two cell lines and serum derived DNA samples. We believe that the μ-eLCR device may be a useful diagnostic tool for inexpensive and rapid detection of single DNA base change applications such as DNA methylation and single nucleotide polymorphism (SNP) detection.
Collapse
Affiliation(s)
- Eugene J H Wee
- Centre for Biomarker Research and Development, Australian Institute for Bioengineering and Nanotechnology (AIBN), Brisbane, QLD 4072, Australia.
| | | | | | | | | |
Collapse
|
57
|
Aure MR, Leivonen SK, Fleischer T, Zhu Q, Overgaard J, Alsner J, Tramm T, Louhimo R, Alnæs GIG, Perälä M, Busato F, Touleimat N, Tost J, Børresen-Dale AL, Hautaniemi S, Troyanskaya OG, Lingjærde OC, Sahlberg KK, Kristensen VN. Individual and combined effects of DNA methylation and copy number alterations on miRNA expression in breast tumors. Genome Biol 2013; 14:R126. [PMID: 24257477 PMCID: PMC4053776 DOI: 10.1186/gb-2013-14-11-r126] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 11/20/2013] [Indexed: 01/31/2023] Open
Abstract
Background The global effect of copy number and epigenetic alterations on miRNA expression in cancer is poorly understood. In the present study, we integrate genome-wide DNA methylation, copy number and miRNA expression and identify genetic mechanisms underlying miRNA dysregulation in breast cancer. Results We identify 70 miRNAs whose expression was associated with alterations in copy number or methylation, or both. Among these, five miRNA families are represented. Interestingly, the members of these families are encoded on different chromosomes and are complementarily altered by gain or hypomethylation across the patients. In an independent breast cancer cohort of 123 patients, 41 of the 70 miRNAs were confirmed with respect to aberration pattern and association to expression. In vitro functional experiments were performed in breast cancer cell lines with miRNA mimics to evaluate the phenotype of the replicated miRNAs. let-7e-3p, which in tumors is found associated with hypermethylation, is shown to induce apoptosis and reduce cell viability, and low let-7e-3p expression is associated with poorer prognosis. The overexpression of three other miRNAs associated with copy number gain, miR-21-3p, miR-148b-3p and miR-151a-5p, increases proliferation of breast cancer cell lines. In addition, miR-151a-5p enhances the levels of phosphorylated AKT protein. Conclusions Our data provide novel evidence of the mechanisms behind miRNA dysregulation in breast cancer. The study contributes to the understanding of how methylation and copy number alterations influence miRNA expression, emphasizing miRNA functionality through redundant encoding, and suggests novel miRNAs important in breast cancer.
Collapse
|
58
|
Human RNAi pathway: crosstalk with organelles and cells. Funct Integr Genomics 2013; 14:31-46. [PMID: 24197738 DOI: 10.1007/s10142-013-0344-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 10/03/2013] [Accepted: 10/07/2013] [Indexed: 12/12/2022]
Abstract
Understanding gene regulation mechanisms has been a serious challenge in biology. As a novel mechanism, small non-coding RNAs are an alternative means of gene regulation in a specific and efficient manner. There are growing reports on regulatory roles of these RNAs including transcriptional gene silencing/activation and post-transcriptional gene silencing events. Also, there are several known small non-coding RNAs which all work through RNA interference pathway. Interestingly, these small RNAs are secreted from cells toward targeted cells presenting new communication approach in cell-cell or cell-organ signal transduction. In fact, understanding cellular and molecular basis of these pathways will strongly improve developing targeted therapies and potent and specific regulatory tools. This study will review some of the most recent findings in this subject and will introduce a super-pathway RNA interference-based small RNA silencing network.
Collapse
|
59
|
Kang S, Kim B, Park SB, Jeong G, Kang HS, Liu R, Kim SJ. Stage-specific methylome screen identifies that NEFL is downregulated by promoter hypermethylation in breast cancer. Int J Oncol 2013; 43:1659-65. [PMID: 24026393 DOI: 10.3892/ijo.2013.2094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/26/2013] [Indexed: 11/06/2022] Open
Abstract
Aberrant hypermethylation of promoter regions in specific genes is a key event in the formation and progression of breast cancers, and an increasing number of marker genes have been identified. However, few genes which show methylation change in accordance with the progression of breast cancer have been identified. To identify genes which consistently undergo promoter methylation alterations as the tumor develops from a benign to a malignant form, genome-wide methylation databases of breast cancer cell lines from stage I to stage IV were analyzed. Heatmap and cluster analysis revealed that the genome-wide methylation changes showed a good accordance with tumor progression. Seven out of 14,495 genes were found to be consistently increased alongside the promoter methylation level through the normal cell line to the cancer stage IV cell lines. NEFL, one of the in silico hypermethylated genes in cancer, showed hypermethylation and lower expression in the cancer cell line MDA-MB-231, as well as in cancer tissues (methylation, p<0.05; expression, p<0.01). The expression was restored by inducing demethylation of the promoter in MDA-MB-231 cells. Our findings may lend credence to the possibility of using tumor stage-specific alterations in methylation patterns as biomarkers for estimating prognosis and assessing treatment options for breast cancer.
Collapse
Affiliation(s)
- Seongeun Kang
- Department of Life Science, Dongguk University-Seoul, Seoul 100-715, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
60
|
Fan M, Krutilina R, Sun J, Sethuraman A, Yang CH, Wu ZH, Yue J, Pfeffer LM. Comprehensive analysis of microRNA (miRNA) targets in breast cancer cells. J Biol Chem 2013; 288:27480-27493. [PMID: 23921383 DOI: 10.1074/jbc.m113.491803] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) regulate mRNA stability and translation through the action of the RNAi-induced silencing complex. In this study, we systematically identified endogenous miRNA target genes by using AGO2 immunoprecipitation (AGO2-IP) and microarray analyses in two breast cancer cell lines, MCF7 and MDA-MB-231, representing luminal and basal-like breast cancer, respectively. The expression levels of ∼70% of the AGO2-IP mRNAs were increased by DROSHA or DICER1 knockdown. In addition, integrated analysis of miRNA expression profiles, mRNA-AGO2 interaction, and the 3'-UTR of mRNAs revealed that >60% of the AGO2-IP mRNAs were putative targets of the 50 most abundantly expressed miRNAs. Together, these results suggested that the majority of the AGO2-associated mRNAs were bona fide miRNA targets. Functional enrichment analysis uncovered that the AGO2-IP mRNAs were involved in regulation of cell cycle, apoptosis, adhesion/migration/invasion, stress responses (e.g. DNA damage and endoplasmic reticulum stress and hypoxia), and cell-cell communication (e.g. Notch and Ephrin signaling pathways). A role of miRNAs in regulating cell migration/invasion and stress response was further defined by examining the impact of DROSHA knockdown on cell behaviors. We demonstrated that DROSHA knockdown enhanced cell migration and invasion, whereas it sensitized cells to cell death induced by suspension culture, glucose depletion, and unfolding protein stress. Data from an orthotopic xenograft model showed that DROSHA knockdown resulted in reduced growth of primary tumors but enhanced lung metastasis. Taken together, these results suggest that miRNAs collectively function to promote survival of tumor cells under stress but suppress cell migration/invasion in breast cancer cells.
Collapse
Affiliation(s)
- Meiyun Fan
- Departments of Pathology and Laboratory Medicine, Center for Adult Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163.
| | - Raisa Krutilina
- Departments of Pathology and Laboratory Medicine, Center for Adult Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Jing Sun
- Departments of Pathology and Laboratory Medicine, Center for Adult Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Aarti Sethuraman
- Departments of Pathology and Laboratory Medicine, Center for Adult Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Chuan He Yang
- Departments of Pathology and Laboratory Medicine, Center for Adult Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Zhao-Hui Wu
- Departments of Pathology and Laboratory Medicine, Center for Adult Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Junming Yue
- Departments of Pathology and Laboratory Medicine, Center for Adult Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Lawrence M Pfeffer
- Departments of Pathology and Laboratory Medicine, Center for Adult Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| |
Collapse
|
61
|
Hansberg-Pastor V, González-Arenas A, Peña-Ortiz MA, García-Gómez E, Rodríguez-Dorantes M, Camacho-Arroyo I. The role of DNA methylation and histone acetylation in the regulation of progesterone receptor isoforms expression in human astrocytoma cell lines. Steroids 2013; 78:500-7. [PMID: 23474171 DOI: 10.1016/j.steroids.2013.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/11/2013] [Accepted: 02/14/2013] [Indexed: 11/21/2022]
Abstract
Many progesterone (P4) effects are mediated by its intracellular receptor (PR), which has two isoforms, PR-A and PR-B, each of them with different function and regulation. Differential PR expression in cancer cells has been associated to a PR isoform-specific promoter methylation. In astrocytomas, the most frequent and aggressive brain tumors, PR isoforms expression is directly correlated to the tumor's evolution grade. However, there is no evidence of the role of epigenetic regulation of PR expression in astrocytomas. We evaluated the effect of the demethylating agent 5-aza-2'-deoxycytidine (5AzadC) and the histone deacetylase inhibitor trichostatin A (TSA) on PR expression in human astrocytoma cell lines U373 (grade III) and D54 (grade IV) by RT-PCR and Western blot. Total PR expression increased with 5 μM 5AzadC treatment, whereas PR-B expression increased with 5 and 10 μM 5AzadC treatment in U373 cells, but not in D54 cells. In U373 cells, PR-A protein content augmented with 10 μM 5AzadC treatment, while PR-B content increased with 5 and 10 μM 5AzadC. PR-B expression was not modified by the TSA concentrations that were used, and the combination with 5AzadC did not change the effects of the latter. The study of 5AzadC effects on the number of astrocytoma cells showed that P4 treatment increased the number of U373 cells, whereas 5AzadC and the combined treatment with P4 reduced it. Our results suggest that PR-B expression is regulated by methylation and not by histone acetylation in U373 cells, and that DNA demethylation reduced the number of U373 cells.
Collapse
Affiliation(s)
- Valeria Hansberg-Pastor
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán 04510, México, DF, Mexico
| | | | | | | | | | | |
Collapse
|
62
|
Manavalan TT, Teng Y, Litchfield LM, Muluhngwi P, Al-Rayyan N, Klinge CM. Reduced expression of miR-200 family members contributes to antiestrogen resistance in LY2 human breast cancer cells. PLoS One 2013; 8:e62334. [PMID: 23626803 PMCID: PMC3633860 DOI: 10.1371/journal.pone.0062334] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/20/2013] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION The role of miRNAs in acquired endocrine-resistant breast cancer is not fully understood. One hallmark of tumor progression is epithelial-to-mesenchymal transition (EMT), characterized by a loss of cell adhesion resulting from reduced E-cadherin and increased cell mobility. miR-200 family members regulate EMT by suppressing expression of transcriptional repressors ZEB1/2. Previously we reported that the expression of miR-200a, miR-200b, and miR-200c was lower in LY2 endocrine-resistant, mesenchymal breast cancer cells compared to parental, endocrine sensitive, epithelial MCF-7 breast cancer cells. Here we investigated the regulation of miR-200 family members and their role in endocrine-sensitivity in breast cancer cells. RESULTS miR-200 family expression was progressively reduced in a breast cancer cell line model of advancing endocrine/tamoxifen (TAM) resistance. Concomitant with miR-200 decrease, there was an increase in ZEB1 mRNA expression. Overexpression of miR-200b or miR-200c in LY2 cells altered cell morphology to a more epithelial appearance and inhibited cell migration. Further, miR-200b and miR-200c overexpression sensitized LY2 cells to growth inhibition by estrogen receptor (ER) antagonists TAM and fulvestrant. Knockdown of ZEB1 in LY2 cells recapitulated the effect of miR-200b and miR-200c overexpression resulting in inhibition of LY2 cell proliferation by TAM and fulvestrant, but not the aromatase inhibitor exemestane. Demethylating agent 5-aza-2'-deoxycytidine (5-aza-dC) in combination with histone deacetylase inhibitor trichostatin A (TSA) increased miR-200b and miR-200c in LY2 cells. Concomitant with the increase in miR-200b and miR-200c, ZEB1 expression was decreased and cells appeared more epithelial in morphology and were sensitized to TAM and fulvestrant inhibition. Likewise, knockdown of ZEB1 increased antiestrogen sensitivity of LY2 cells resulting in inhibition of cell proliferation. CONCLUSIONS Our data indicate that reduced miRNA-200b and miR-200c expression contributes to endocrine resistance in breast cancer cells and that the reduced expression of these miR-200 family members in endocrine-resistant cells can be reversed by 5-aza-dC+TSA.
Collapse
Affiliation(s)
- Tissa T. Manavalan
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Yun Teng
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Lacey M. Litchfield
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Penn Muluhngwi
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Numan Al-Rayyan
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Carolyn M. Klinge
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| |
Collapse
|
63
|
Ye J, Wu X, Wu D, Wu P, Ni C, Zhang Z, Chen Z, Qiu F, Xu J, Huang J. miRNA-27b targets vascular endothelial growth factor C to inhibit tumor progression and angiogenesis in colorectal cancer. PLoS One 2013; 8:e60687. [PMID: 23593282 PMCID: PMC3625233 DOI: 10.1371/journal.pone.0060687] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 03/01/2013] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers globally and is one of the leading causes of cancer-related deaths due to therapy resistance and metastasis. Understanding the mechanism underlying colorectal carcinogenesis is essential for the diagnosis and treatment of CRC. microRNAs (miRNAs) can act as either oncogenes or tumor suppressors in many cancers. A tumor suppressor role for miR-27b has recently been reported in neuroblastoma, while no information about miR-27b in CRC is available. In this study, we demonstrated that miR-27b expression is decreased in most CRC tissues and determined that overexpression of miR-27b represses CRC cell proliferation, colony formation and tumor growth in vitro and in vivo. We identified vascular endothelial growth factor C (VEGFC) as a novel target gene of miR-27b and determined that miR-27b functioned as an inhibitor of tumor progression and angiogenesis through targeting VEGFC in CRC. We further determined that DNA hypermethylation of miR-27b CpG islands decreases miR-27b expression. In summary, an anti-tumor role for miR-27b and its novel target VEGFC in vivo could lead to tumor necrosis and provide a rationale for developing miR-27b as a therapeutic agent.
Collapse
Affiliation(s)
- Jun Ye
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianguo Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dang Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pin Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Ni
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhigang Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhigang Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fuming Qiu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinghong Xu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Huang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
64
|
Yu Y, Wu J, Guan L, Qi L, Tang Y, Ma B, Zhan J, Wang Y, Fang W, Zhang H. Kindlin 2 promotes breast cancer invasion via epigenetic silencing of the microRNA200 gene family. Int J Cancer 2013; 133:1368-79. [PMID: 23483548 DOI: 10.1002/ijc.28151] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 02/20/2013] [Indexed: 02/06/2023]
Abstract
Kindlin 2, as a focal adhesion protein, controls integrin activation and regulates Wnt signaling in an integrin-binding independent manner. However, the association of Kindlin 2 with cancer-related microRNAs is unknown. Here, we report that Kindlin 2 markedly downregulates the expression of miR-200 family by inducing CpG island hypermethylation. Mechanistically, Kindlin 2 forms a complex with DNMT3A in the cell nucleus and the two proteins co-occupy the promoter of miRNA-200b. Functionally, repression of miR-200b is required for Kindlin 2-induced breast cancer cell invasion and tumor formation. Our data indicate that Kindlin 2 plays a novel role in epigenetic repression of miR-200 family, a mechanism that promotes breast cancer invasion.
Collapse
Affiliation(s)
- Yu Yu
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education of China, Peking University Health Science Center, Beijing, 100191, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Abstract
With the advent of next generation sequencing techniques a previously unknown world of non-coding RNA molecules have been discovered. Non-coding RNA transcripts likely outnumber the group of protein coding sequences and hold promise of many new discoveries and mechanistic explanations for essential biological phenomena and pathologies. The best characterized non-coding RNA family consists in humans of about 1400 microRNAs for which abundant evidence have demonstrated fundamental importance in normal development, differentiation, growth control and in human diseases such as cancer. In this review, we summarize the current knowledge and concepts concerning the involvement of microRNAs in cancer, which have emerged from the study of cell culture and animal model systems, including the regulation of key cancer-related pathways, such as cell cycle control and the DNA damage response. Importantly, microRNA molecules are already entering the clinic as diagnostic and prognostic biomarkers for patient stratification and also as therapeutic targets and agents.
Collapse
Affiliation(s)
- Martin D Jansson
- Biotech Research and Innovation Centre and Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | | |
Collapse
|
66
|
Castilla MÁ, Díaz-Martín J, Sarrió D, Romero-Pérez L, López-García MÁ, Vieites B, Biscuola M, Ramiro-Fuentes S, Isacke CM, Palacios J. MicroRNA-200 family modulation in distinct breast cancer phenotypes. PLoS One 2012; 7:e47709. [PMID: 23112837 PMCID: PMC3480416 DOI: 10.1371/journal.pone.0047709] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 09/14/2012] [Indexed: 12/28/2022] Open
Abstract
The epithelial to mesenchymal transition (EMT) contributes to tumor invasion and metastasis in a variety of cancer types. In human breast cancer, gene expression studies have determined that basal-B/claudin-low and metaplastic cancers exhibit EMT-related characteristics, but the molecular mechanisms underlying this observation are unknown. As the family of miR-200 microRNAs has been shown to regulate EMT in normal tissues and cancer, here we evaluated whether the expression of the miR-200 family (miR-200f) and their epigenetic state correlate with EMT features in human breast carcinomas. We analyzed by qRT-PCR the expression of miR-200f members and various EMT-transcriptional inducers in a series of 70 breast cancers comprising an array of phenotypic subtypes: estrogen receptor positive (ER+), HER2 positive (HER2+), and triple negative (TN), including a subset of metaplastic breast carcinomas (MBCs) with sarcomatous (homologous or heterologous) differentiation. No MBCs with squamous differentiation were included. The DNA methylation status of miR-200f loci in tumor samples were inspected using Sequenom MassArray® MALDI-TOF platform. We also used two non-tumorigenic breast basal cell lines that spontaneously undergo EMT to study the modulation of miR-200f expression during EMT in vitro. We demonstrate that miR-200f is strongly decreased in MBCs compared with other cancer types. TN and HER2+ breast cancers also exhibited lower miR-200f expression than ER+ tumors. Significantly, the decreased miR-200f expression found in MBCs is accompanied by an increase in the expression levels of EMT-transcriptional inducers, and hypermethylation of the miR-200c-141 locus. Similar to tumor samples, we demonstrated that downregulation of miR-200f and hypermethylation of the miR-200c-141 locus, together with upregulation of EMT-transcriptional inducers also occur in an in vitro cellular model of spontaneous EMT. Thus, the expression and methylation status of miR-200f could be used as hypothetical biomarkers to assess the occurrence of EMT in breast cancer.
Collapse
Affiliation(s)
- María Ángeles Castilla
- Instituto de Biomedicina de Sevilla-CSIC-Universidad de Sevilla, Hospital Universitario Virgen del Rocío, Department of Pathology, Seville, Spain
- Red temática de investigación cooperativa en cáncer (RTICC), Spain
| | - Juan Díaz-Martín
- Instituto de Biomedicina de Sevilla-CSIC-Universidad de Sevilla, Hospital Universitario Virgen del Rocío, Department of Pathology, Seville, Spain
- Red temática de investigación cooperativa en cáncer (RTICC), Spain
| | - David Sarrió
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Laura Romero-Pérez
- Instituto de Biomedicina de Sevilla-CSIC-Universidad de Sevilla, Hospital Universitario Virgen del Rocío, Department of Pathology, Seville, Spain
- Red temática de investigación cooperativa en cáncer (RTICC), Spain
| | - María Ángeles López-García
- Instituto de Biomedicina de Sevilla-CSIC-Universidad de Sevilla, Hospital Universitario Virgen del Rocío, Department of Pathology, Seville, Spain
- Red temática de investigación cooperativa en cáncer (RTICC), Spain
| | - Begoña Vieites
- Instituto de Biomedicina de Sevilla-CSIC-Universidad de Sevilla, Hospital Universitario Virgen del Rocío, Department of Pathology, Seville, Spain
- Red temática de investigación cooperativa en cáncer (RTICC), Spain
| | - Michele Biscuola
- Instituto de Biomedicina de Sevilla-CSIC-Universidad de Sevilla, Hospital Universitario Virgen del Rocío, Department of Pathology, Seville, Spain
- Red temática de investigación cooperativa en cáncer (RTICC), Spain
| | - Susana Ramiro-Fuentes
- Instituto de Biomedicina de Sevilla-CSIC-Universidad de Sevilla, Hospital Universitario Virgen del Rocío, Department of Pathology, Seville, Spain
| | - Clare M. Isacke
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - José Palacios
- Instituto de Biomedicina de Sevilla-CSIC-Universidad de Sevilla, Hospital Universitario Virgen del Rocío, Department of Pathology, Seville, Spain
- Red temática de investigación cooperativa en cáncer (RTICC), Spain
- Hospital Universitario Ramón y Cajal, Department of Pathology, Madrid, Spain
| |
Collapse
|
67
|
Abstract
With the advent of next generation sequencing techniques a previously unknown world of non-coding RNA molecules have been discovered. Non-coding RNA transcripts likely outnumber the group of protein coding sequences and hold promise of many new discoveries and mechanistic explanations for essential biological phenomena and pathologies. The best characterized non-coding RNA family consists in humans of about 1400 microRNAs for which abundant evidence have demonstrated fundamental importance in normal development, differentiation, growth control and in human diseases such as cancer. In this review, we summarize the current knowledge and concepts concerning the involvement of microRNAs in cancer, which have emerged from the study of cell culture and animal model systems, including the regulation of key cancer-related pathways, such as cell cycle control and the DNA damage response. Importantly, microRNA molecules are already entering the clinic as diagnostic and prognostic biomarkers for patient stratification and also as therapeutic targets and agents.
Collapse
Affiliation(s)
- Martin D Jansson
- Biotech Research and Innovation Centre and Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | | |
Collapse
|
68
|
Abstract
microRNAs (miRNAs) are small, non-coding RNAs with critical roles in fine-tuning a wide array of biological processes including development, metabolism, and homeostasis. miRNAs expression, similarly to that of protein-coding genes, is regulated by multiple transcriptional networks as well as the epigenetic machinery. miRNA genes can be epigenetically regulated by DNA methylation or specific histone modifications. In addition, miRNAs can themselves repress key enzymes that drive epigenetic remodeling, generating regulatory circuits that have a significant effect in the transcriptional landscape of the cell. Recent evidences also suggest that miRNAs can directly modulate gene transcription in the nucleus through the recognition of specific target sites in promoter regions. Given the widespread distribution of epigenetic marks and miRNA target sites in the genome, the regulatory circuits linking both mechanisms are likely to have a major impact in genome transcription and cell physiology. Not surprisingly, tumor-associated aberrations in the miRNA or epigenetic machineries are widely distributed in human cancer, and we are just starting to understand their relevance in diagnosis, prognosis or therapy.
Collapse
Affiliation(s)
- Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029 Madrid, Spain.
| |
Collapse
|