51
|
Shao B, Feng Y, Zhang H, Yu F, Li Q, Tan C, Xu H, Ying J, Li L, Yang D, Peng W, Tang J, Li S, Ren G, Tao Q, Xiang T. The 3p14.2 tumour suppressor ADAMTS9 is inactivated by promoter CpG methylation and inhibits tumour cell growth in breast cancer. J Cell Mol Med 2017; 22:1257-1271. [PMID: 29193730 PMCID: PMC5783842 DOI: 10.1111/jcmm.13404] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 08/29/2017] [Indexed: 12/14/2022] Open
Abstract
Chromosome region 3p12‐14 is an important tumour suppressor gene (TSG) locus for multiple cancers. ADAMTS9, a member of the metalloprotease large family, has been identified as a candidate 3p14.2 TSG inactivated by aberrant promoter CpG methylation in several carcinomas, but little known about its expression and function in breast cancer. In this report, ADAMTS9 expression and methylation was analysed in breast cancer cell lines and tissue samples. ADAMTS9 RNA was significantly down‐regulated in breast cancer cell lines (6/8). After treating the cells with demethylation agent Aza and TSA,ADAMTS9 expression was dramatically increased. Bisulphite genomic sequencing and methylation‐specific PCR detected promoter methylation, which was associated with decreased ADAMTS9 expression. Hypermethylation was also detected in 130/219 (59.4%) of primary tumours but only in 4.5% (2/44) of paired surgical margin tissues. Ectopic expression of ADAMTS9 in tumor cells induced significant growth suppression, cell cycle arrest at the G0/G1 phase, enhanced apoptosis and reduced cell migration and invasion. Conditioned culture medium from ADAMTS9‐transfected BT549 cells markedly disrupted tube formation ability of human umbilical vein endothelial cell (HUVEC) in Matrigel. Furthermore, ADAMTS9 inhibited AKT signaling and its downstream targets (MDM2, p53, p21, p27, E‐cadherin, VIM, SNAIL, VEGFA, NFκB‐p65 and MMP2). In addition, we demonstrated, for the first time, that ADAMTS9 inhibits AKT signaling, through suppressing its upstream activators EGFR and TGFβ1/TβR(I/II) in breast cancer cells. Our results suggest that ADAMTS9 is a TSG epigenetically inactivated in breast cancer, which functions through blocking EGFR‐ and TGFβ1/TβR(I/II)‐activated AKT signaling.
Collapse
Affiliation(s)
- Bianfei Shao
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yixiao Feng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongbin Zhang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fang Yu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,The Second people's hospital of JingDe Zhen, Jiangxi, China
| | - Qianqian Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Cui Tan
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongying Xu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,The Sixth people's hospital of Chongqing, Chongqing, China
| | - Jianming Ying
- Cancer Epigenetics Laboratory, State Key Laboratory of Oncology in South China, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Hong Kong, China.,Department of Pathology, Cancer Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Lili Li
- Cancer Epigenetics Laboratory, State Key Laboratory of Oncology in South China, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Hong Kong, China
| | - Dejuan Yang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyan Peng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Tang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuman Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Tao
- Cancer Epigenetics Laboratory, State Key Laboratory of Oncology in South China, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Hong Kong, China
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
52
|
Lambert MJ, Portfors CV. Adaptive sequence convergence of the tumor suppressor ADAMTS9 between small-bodied mammals displaying exceptional longevity. Aging (Albany NY) 2017; 9:573-582. [PMID: 28244876 PMCID: PMC5361682 DOI: 10.18632/aging.101180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/11/2017] [Indexed: 12/18/2022]
Abstract
Maximum lifespan varies by two orders of magnitude across mammals. How such divergent lifespans have evolved remains an open question, with ramifications that may potentially lead to therapies for age-related diseases in humans. Several species of microbats as well as the naked mole-rat live much longer than expected given their small sizes, show reduced susceptibility to neoplasia, and largely remain healthy and reproductively capable throughout the majority of their extended lifespans. The convergent evolution of extreme longevity in these two groups allows for the opportunity to identify potentially important aging related genes that have undergone adaptive sequence convergence in these long-lived, yet small-bodied species. Here, we have tested 4,628 genes for evidence of convergence between the microbats and naked mole-rat. We find a strong signal of adaptive sequence convergence in the gene A disintegrin-like and metalloprotease with thrombospondin type 1 motifs 9 (ADAMTS9). We also provide evidence that the shared substitutions were driven by selection. Intriguingly, ADAMTS9 is a known inhibitor of the mTor pathway and has been implicated in several aging related processes.
Collapse
Affiliation(s)
- Matthew J Lambert
- School of Biological Sciences, Washington State University, Vancouver, WA 98686, USA
| | - Christine V Portfors
- School of Biological Sciences, Washington State University, Vancouver, WA 98686, USA
| |
Collapse
|
53
|
Li B, Wang L, Li Z, Wang W, Zhi X, Huang X, Zhang Q, Chen Z, Zhang X, He Z, Xu J, Zhang L, Xu H, Zhang D, Xu Z. miR-3174 Contributes to Apoptosis and Autophagic Cell Death Defects in Gastric Cancer Cells by Targeting ARHGAP10. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 9:294-311. [PMID: 29246308 PMCID: PMC5684471 DOI: 10.1016/j.omtn.2017.10.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 01/04/2023]
Abstract
Gastric cancer (GC) is a major health problem worldwide because of its high morbidity and mortality. Considering the well-established roles of miRNA in the regulation of GC carcinogenesis and progression, we screened differentially expressed microRNAs (miRNAs) by using The Cancer Genome Atlas (TCGA) and the GEO databases. We found that miR-3174 was the most significantly differentially expressed miRNA in GC. Ectopic miR-3174 expression was also detected in clinical GC patient samples and cell lines and associated with poor patient prognosis. Apoptosis and autophagic cell death are two types of programmed cell death, whereas both are deficient in gastric cancer. Our functional analyses demonstrated that miR-3174 inhibited mitochondria-dependent apoptosis and autophagic cell death in GC. Moreover, high expression of miR-3174 also resulted in Cisplatin resistance in GC cells. Using bioinformatics analyses combined with in vitro and in vivo experiments, we determined that miR-3174 directly targets ARHGAP10. Notably, ARHGAP10 promoted mitochondria-dependent apoptosis by enhancing p53 expression, which was followed by Bax trans-activation and caspase cleavage. ARHGAP10 also facilitated autophagic cell death by suppressing mammalian target of rapamycin complex 1 (mTOC1) activity. Our results reveal a potential miRNA-based clinical therapeutic target that may also serve as a predictive marker for GC.
Collapse
Affiliation(s)
- Bowen Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Lu Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Zheng Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Weizhi Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Xiaofei Zhi
- Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Xiaoxu Huang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Qiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Zheng Chen
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xuan Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Zhongyuan He
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Jianghao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Lu Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Diancai Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| |
Collapse
|
54
|
FOXF1 transcription factor promotes lung regeneration after partial pneumonectomy. Sci Rep 2017; 7:10690. [PMID: 28878348 PMCID: PMC5587533 DOI: 10.1038/s41598-017-11175-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/09/2017] [Indexed: 12/28/2022] Open
Abstract
FOXF1, a member of the forkhead box family of transcription factors, has been previously shown to be critical for lung development, homeostasis, and injury responses. However, the role of FOXF1 in lung regeneration is unknown. Herein, we performed partial pneumonectomy, a model of lung regeneration, in mice lacking one Foxf1 allele in endothelial cells (PDGFb-iCre/Foxf1 fl/+ mice). Endothelial cell proliferation was significantly reduced in regenerating lungs from mice deficient for endothelial Foxf1. Decreased endothelial proliferation was associated with delayed lung regeneration as shown by reduced respiratory volume in Foxf1-deficient lungs. FACS-sorted endothelial cells isolated from regenerating PDGFb-iCre/Foxf1 fl/+ and control lungs were used for RNAseq analysis to identify FOXF1 target genes. Foxf1 deficiency altered expression of numerous genes including those regulating extracellular matrix remodeling (Timp3, Adamts9) and cell cycle progression (Cdkn1a, Cdkn2b, Cenpj, Tubb4a), which are critical for lung regeneration. Deletion of Foxf1 increased Timp3 mRNA and protein, decreasing MMP14 activity in regenerating lungs. ChIPseq analysis for FOXF1 and histone methylation marks identified DNA regulatory regions within the Cd44, Cdkn1a, and Cdkn2b genes, indicating they are direct FOXF1 targets. Thus FOXF1 stimulates lung regeneration following partial pneumonectomy via direct transcriptional regulation of genes critical for extracellular matrix remodeling and cell cycle progression.
Collapse
|
55
|
Nie Y, Wu K, Yu J, Liang Q, Cai X, Shang Y, Zhou J, Pan K, Sun L, Fang J, Yuan Y, You W, Fan D. A global burden of gastric cancer: the major impact of China. Expert Rev Gastroenterol Hepatol 2017; 11:651-661. [PMID: 28351219 DOI: 10.1080/17474124.2017.1312342] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gastric cancer (GC) is a highly aggressive cancer and a major cause of cancer-related deaths worldwide. Approximately half of the world's GC cases and deaths occur in china. GC presents challenges in early diagnosis and effective therapy due to a lack of understanding of the underlying molecular biology. The primary goals of this review are to outline current GC research in china and describe future trends in this field. Areas covered: This review mainly focuses on a series of GC-related advances China has achieved. Considerable progress has been made in understanding the role of H. pylori in GC by a series of population-based studies in well-established high-risk areas; A few germline and somatic alterations have been identified by 'omics' studies; Studies on the mechanisms of malignant phenotypes have helped us to form an in-depth understanding of GC and advance drug discovery. Moreover, identification of potential biomarkers and targeted therapies have facilitated the diagnosis and treatment of GC. However, many challenges remain. Expert commentary: To combat GC, sufficient funding is important. More attention should be paid on early diagnosis and the discovery of novel efficient biomarkers and the development of biomarker-based or targeted therapeutics in GC.
Collapse
Affiliation(s)
- Yongzhan Nie
- a State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Kaichun Wu
- a State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Jun Yu
- b Department of Medicine and Therapeutics and Institute of Digestive Disease , Chinese University of Hong Kong , Hong Kong , China
| | - Qiaoyi Liang
- b Department of Medicine and Therapeutics and Institute of Digestive Disease , Chinese University of Hong Kong , Hong Kong , China
| | - Xiqiang Cai
- a State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Yulong Shang
- a State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Jinfeng Zhou
- a State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Kaifeng Pan
- c Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University School of Oncology , Peking University Cancer Hospital & Institute , Beijing , China
| | - Liping Sun
- d Tumor Etiology and Screening, Department of Cancer Institute and General Surgery , The First Affiliated Hospital of China Medical University , Shenyang , China
| | - Jingyuan Fang
- e Renji Hospital , Shanghai Jiao-Tong University School of Medicine , Shanghai , China
| | - Yuan Yuan
- d Tumor Etiology and Screening, Department of Cancer Institute and General Surgery , The First Affiliated Hospital of China Medical University , Shenyang , China
| | - Weicheng You
- c Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University School of Oncology , Peking University Cancer Hospital & Institute , Beijing , China
| | - Daiming Fan
- a State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| |
Collapse
|
56
|
Xu H, Xiao Q, Fan Y, Xiang T, Li C, Li C, Li S, Hui T, Zhang L, Li H, Li L, Ren G. Epigenetic silencing of ADAMTS18 promotes cell migration and invasion of breast cancer through AKT and NF-κB signaling. Cancer Med 2017; 6:1399-1408. [PMID: 28503860 PMCID: PMC5463072 DOI: 10.1002/cam4.1076] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 03/17/2017] [Accepted: 03/18/2017] [Indexed: 12/16/2022] Open
Abstract
ADAMTS18 dysregulation plays an important role in many disease processes including cancer. We previously found ADAMTS18 as frequently methylated tumor suppressor gene (TSG) for multiple carcinomas, however, its biological functions and underlying molecular mechanisms in breast carcinogenesis remain unknown. Here, we found that ADAMTS18 was silenced or downregulated in breast cancer cell lines. ADAMTS18 was reduced in primary breast tumor tissues as compared with their adjacent noncancer tissues. ADAMTS18 promoter methylation was detected in 70.8% of tumor tissues by methylation-specific PCR, but none of the normal tissues. Demethylation treatment restored ADAMTS18 expression in silenced breast cell lines. Ectopic expression of ADAMTS18 in breast tumor cells resulted in inhibition of cell migration and invasion. Nude mouse model further confirmed that ADAMTS18 suppressed breast cancer metastasis in vivo. Further mechanistic studies showed that ADAMTS18 suppressed epithelial-mesenchymal transition (EMT), further inhibited migration and invasion of breast cancer cells. ADAMT18 deregulated AKT and NF-κB signaling, through inhibiting phosphorylation levels of AKT and p65. Thus, ADAMTS18 as an antimetastatic tumor suppressor antagonizes AKT and NF-κB signaling in breast tumorigenesis. Its methylation could be a potential tumor biomarker for breast cancer.
Collapse
Affiliation(s)
- Hongying Xu
- Chongqing Key Laboratory of Molecular Oncology and EpigeneticsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Qian Xiao
- Chongqing Key Laboratory of Molecular Oncology and EpigeneticsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Yu Fan
- Chongqing Key Laboratory of Molecular Oncology and EpigeneticsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and EpigeneticsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Chen Li
- Cancer Epigenetics LaboratoryDepartment of Clinical OncologyState Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health SciencesCUHK Shenzhen Research InstituteThe Chinese University of Hong KongHong Kong
| | - Chunhong Li
- Department of OncologySuining Center HospitalSuiningChina
| | - Shuman Li
- Chongqing Key Laboratory of Molecular Oncology and EpigeneticsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Tianli Hui
- Chongqing Key Laboratory of Molecular Oncology and EpigeneticsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Lu Zhang
- Chongqing Key Laboratory of Molecular Oncology and EpigeneticsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Hongzhong Li
- Chongqing Key Laboratory of Molecular Oncology and EpigeneticsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Lili Li
- Cancer Epigenetics LaboratoryDepartment of Clinical OncologyState Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health SciencesCUHK Shenzhen Research InstituteThe Chinese University of Hong KongHong Kong
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and EpigeneticsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
57
|
Wang X, Chen W, Zhang J, Khan A, Li L, Huang F, Qiu Z, Wang L, Chen X. Critical Role of ADAMTS2 (A Disintegrin and Metalloproteinase With Thrombospondin Motifs 2) in Cardiac Hypertrophy Induced by Pressure Overload. Hypertension 2017; 69:1060-1069. [PMID: 28373586 DOI: 10.1161/hypertensionaha.116.08581] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 10/29/2016] [Accepted: 03/04/2017] [Indexed: 12/31/2022]
Abstract
ADAMTS2 (A Disintegrin and Metalloproteinase With Thrombospondin Motifs 2) is recognized as a metalloproteinase that promotes the cleavage of amino propeptides of types I, II, III, and V procollagens. However, the role of ADAMTS2 in the heart has not yet been defined. Herein, we observed the upregulated expression of ADAMTS2 in failing human hearts and hypertrophic murine hearts. Mice lacking ADAMTS2 display exacerbated cardiac hypertrophy on pressure overload-induced hypertrophic response, whereas mice with cardiac-specific overexpression of ADAMTS2 display alleviation of this detrimental phenotype. Consistent with these results, in vitro loss or gain of function experiments in neonatal rat cardiomyocytes confirmed that ADAMTS2 negatively regulates cardiomyocyte hypertrophy in response to Ang II. Mechanistically, blockage of the PI3K (phosphoinositide 3-kinase)/AKT (protein kinase B)-dependent signaling pathway with specific inhibitors both in vivo and in vitro could rescue the aggravated hypertrophic response to the loss of ADAMTS2. Collectively, we propose that ADAMTS2 regulates the hypertrophic response through inhibiting the activation of the PI3K/AKT-dependent signaling pathway. Because ADAMTS2 is an extracellular protein, it could be effectively manipulated using pharmacological means to modulate cardiac hypertrophy.
Collapse
Affiliation(s)
- Xiaodi Wang
- From the Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Jiangsu, People's Republic of China
| | - Wen Chen
- From the Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Jiangsu, People's Republic of China
| | - Jie Zhang
- From the Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Jiangsu, People's Republic of China
| | - Aiman Khan
- From the Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Jiangsu, People's Republic of China
| | - Liangpeng Li
- From the Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Jiangsu, People's Republic of China
| | - Fuhua Huang
- From the Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Jiangsu, People's Republic of China
| | - Zhibing Qiu
- From the Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Jiangsu, People's Republic of China
| | - Liming Wang
- From the Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Jiangsu, People's Republic of China
| | - Xin Chen
- From the Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Jiangsu, People's Republic of China.
| |
Collapse
|
58
|
Sonohara F, Inokawa Y, Hayashi M, Kodera Y, Nomoto S. Epigenetic modulation associated with carcinogenesis and prognosis of human gastric cancer. Oncol Lett 2017; 13:3363-3368. [PMID: 28529571 DOI: 10.3892/ol.2017.5912] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/14/2017] [Indexed: 12/17/2022] Open
Abstract
Gastric cancer (GC) is a leading cause of cancer-related death, particularly in Asia. Epidemiological and other clinical studies have identified an association between a number of risk factors, including Helicobacter pylori, and GC. A number of studies have also examined genetic changes associated with the development and progression of GC. When considering the clinical significance of the expression of a specific gene, its epigenetic modulation should be considered. Epigenetic modulation appears to be a primary driver of changes in gastric tissue that promotes carcinogenesis and progression of GC and other neoplasms. The role of epigenetic modulation in GC carcinogenesis and progression has been widely studied in recent years. In the present review, recent results of epigenetic modulation associated with GC and their effects on clinical outcome are examined, with particular respect to DNA methylation, histone modulation and non-coding RNA. A number of studies indicate that epigenetic changes in the expression of specific genes critically affect their clinical significance and further study may reveal epigenetic changes as the basis for targeted molecular therapy or novel biomarkers that predict GC prognosis or extension of this often fatal disease.
Collapse
Affiliation(s)
- Fuminori Sonohara
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan.,Department of Surgery, Aichi-Gakuin University School of Dentistry, Nagoya, Aichi 464-8651, Japan
| | - Yoshikuni Inokawa
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan.,Department of Surgery, Aichi-Gakuin University School of Dentistry, Nagoya, Aichi 464-8651, Japan
| | - Masamichi Hayashi
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Shuji Nomoto
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan.,Department of Surgery, Aichi-Gakuin University School of Dentistry, Nagoya, Aichi 464-8651, Japan
| |
Collapse
|
59
|
Qian Y, Wong CC, Xu J, Chen H, Zhang Y, Kang W, Wang H, Zhang L, Li W, Chu ESH, Go MYY, Chiu PWY, Ng EKW, Chan FKL, Sung JJY, Si J, Yu J. Sodium Channel Subunit SCNN1B Suppresses Gastric Cancer Growth and Metastasis via GRP78 Degradation. Cancer Res 2017; 77:1968-1982. [PMID: 28202509 DOI: 10.1158/0008-5472.can-16-1595] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/14/2016] [Accepted: 12/08/2016] [Indexed: 11/16/2022]
Abstract
There remains a paucity of functional biomarkers in gastric cancer. Here, we report the identification of the sodium channel subunit SCNN1B as a candidate biomarker in gastric cancer. SCNN1B mRNA expression was silenced commonly by promoter hypermethylation in gastric cancer cell lines and primary tumor tissues. Tissue microarray analysis revealed that high expression of SCNN1B was an independent prognostic factor for longer survival in gastric cancer patients, especially those with late-stage disease. Functional studies demonstrated that SCNN1B overexpression was sufficient to suppress multiple features of cancer cell pathophysiology in vitro and in vivo Mechanistic investigations revealed that SCNN1B interacted with the endoplasmic reticulum chaperone, GRP78, and induced its degradation via polyubiquitination, triggering the unfolded protein response (UPR) via activation of PERK, ATF4, XBP1s, and C/EBP homologous protein and leading in turn to caspase-dependent apoptosis. Accordingly, SCNN1B sensitized gastric cancer cells to the UPR-inducing drug tunicamycin. GRP78 overexpression abolished the inhibitory effect of SCNN1B on cell growth and migration, whereas GRP78 silencing aggravated growth inhibition by SCNN1B. In summary, our results identify SCNN1B as a tumor-suppressive function that triggers UPR in gastric cancer cells, with implications for its potential clinical applications as a survival biomarker in gastric cancer patients. Cancer Res; 77(8); 1968-82. ©2017 AACR.
Collapse
Affiliation(s)
- Yun Qian
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China.,Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiaying Xu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Huarong Chen
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Yanquan Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Kang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China.,Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Hua Wang
- School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Weilin Li
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Eagle S H Chu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Minnie Y Y Go
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Philip W Y Chiu
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Enders K W Ng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Francis K L Chan
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Joseph J Y Sung
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Jianmin Si
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
60
|
Patel TN, Roy S, Ravi R. Gastric cancer and related epigenetic alterations. Ecancermedicalscience 2017; 11:714. [PMID: 28144288 PMCID: PMC5243136 DOI: 10.3332/ecancer.2017.714] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer, a malignant and highly proliferative condition, has significantly affected a large population around the globe and is known to be caused by various factors including genetic, epigenetic, and environmental influences. Though the global trend of these cancers is declining, an increase in its frequency is still a threat because of changing lifestyles and dietary habits. However, genetic and epigenetic alterations related to gastric cancers also have an equivalent contribution towards carcinogenic development. DNA methylation is one of the major forms of epigenetic modification which plays a significant role in gastric carcinogenesis. Methylation leads to inactivation of some of the most important genes like DNA repair genes, cell cycle regulators, apoptotic genes, transcriptional regulators, and signalling pathway regulators; which subsequently cause uncontrolled proliferation of cells. Mutations in these genes can be used as suitable prognostic markers for early diagnosis of the disease, since late diagnosis of gastric cancers has a huge negative impact on overall patient survival. In this review, we focus on the important epigenetic mutations that contribute to the development of gastric cancer and the molecular pathogenesis underlying each of them. Methylation, acetylation, and histone modifications play an integral role in the onset of genomic instability, one of the many contributory factors to gastric cancer. This article also covers the constraints of incomplete knowledge of epigenetic factors influencing gastric cancer, thus throwing light on our understanding of the disease.
Collapse
Affiliation(s)
- Trupti N Patel
- Department of Medical Biotechnology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Soumyadipta Roy
- Department of Medical Biotechnology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Revathi Ravi
- Department of Medical Biotechnology, VIT University, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
61
|
Interplay between epigenetics and metabolism in oncogenesis: mechanisms and therapeutic approaches. Oncogene 2017; 36:3359-3374. [PMID: 28092669 PMCID: PMC5485177 DOI: 10.1038/onc.2016.485] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/07/2016] [Accepted: 11/07/2016] [Indexed: 02/06/2023]
Abstract
Epigenetic and metabolic alterations in cancer cells are highly intertwined. Oncogene-driven metabolic rewiring modifies the epigenetic landscape via modulating the activities of DNA and histone modification enzymes at the metabolite level. Conversely, epigenetic mechanisms regulate the expression of metabolic genes, thereby altering the metabolome. Epigenetic-metabolomic interplay has a critical role in tumourigenesis by coordinately sustaining cell proliferation, metastasis and pluripotency. Understanding the link between epigenetics and metabolism could unravel novel molecular targets, whose intervention may lead to improvements in cancer treatment. In this review, we summarized the recent discoveries linking epigenetics and metabolism and their underlying roles in tumorigenesis; and highlighted the promising molecular targets, with an update on the development of small molecule or biologic inhibitors against these abnormalities in cancer.
Collapse
|
62
|
Naschberger E, Liebl A, Schellerer VS, Schütz M, Britzen-Laurent N, Kölbel P, Schaal U, Haep L, Regensburger D, Wittmann T, Klein-Hitpass L, Rau TT, Dietel B, Méniel VS, Clarke AR, Merkel S, Croner RS, Hohenberger W, Stürzl M. Matricellular protein SPARCL1 regulates tumor microenvironment-dependent endothelial cell heterogeneity in colorectal carcinoma. J Clin Invest 2016; 126:4187-4204. [PMID: 27721236 PMCID: PMC5096916 DOI: 10.1172/jci78260] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/06/2016] [Indexed: 12/13/2022] Open
Abstract
Different tumor microenvironments (TMEs) induce stromal cell plasticity that affects tumorigenesis. The impact of TME-dependent heterogeneity of tumor endothelial cells (TECs) on tumorigenesis is unclear. Here, we isolated pure TECs from human colorectal carcinomas (CRCs) that exhibited TMEs with either improved (Th1-TME CRCs) or worse clinical prognosis (control-TME CRCs). Transcriptome analyses identified markedly different gene clusters that reflected the tumorigenic and angiogenic activities of the respective TMEs. The gene encoding the matricellular protein SPARCL1 was most strongly upregulated in Th1-TME TECs. It was also highly expressed in ECs in healthy colon tissues and Th1-TME CRCs but low in control-TME CRCs. In vitro, SPARCL1 expression was induced in confluent, quiescent ECs and functionally contributed to EC quiescence by inhibiting proliferation, migration, and sprouting, whereas siRNA-mediated knockdown increased sprouting. In human CRC tissues and mouse models, vessels with SPARCL1 expression were larger and more densely covered by mural cells. SPARCL1 secretion from quiescent ECs inhibited mural cell migration, which likely led to stabilized mural cell coverage of mature vessels. Together, these findings demonstrate TME-dependent intertumoral TEC heterogeneity in CRC. They further indicate that TEC heterogeneity is regulated by SPARCL1, which promotes the cell quiescence and vessel homeostasis contributing to the favorable prognoses associated with Th1-TME CRCs.
Collapse
Affiliation(s)
- Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Andrea Liebl
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Vera S. Schellerer
- Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Manuela Schütz
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Nathalie Britzen-Laurent
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Patrick Kölbel
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Ute Schaal
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Lisa Haep
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Daniela Regensburger
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Thomas Wittmann
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Ludger Klein-Hitpass
- Institute of Cell Biology, Faculty of Medicine, University Medical Center Essen, Essen, Germany
| | - Tilman T. Rau
- Institute of Pathology, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Barbara Dietel
- Department of Cardiology and Angiology, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Valérie S. Méniel
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Alan R. Clarke
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Susanne Merkel
- Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Roland S. Croner
- Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Werner Hohenberger
- Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| |
Collapse
|
63
|
Wei FZ, Cao Z, Wang X, Wang H, Cai MY, Li T, Hattori N, Wang D, Du Y, Song B, Cao LL, Shen C, Wang L, Wang H, Yang Y, Xie D, Wang F, Ushijima T, Zhao Y, Zhu WG. Epigenetic regulation of autophagy by the methyltransferase EZH2 through an MTOR-dependent pathway. Autophagy 2016; 11:2309-22. [PMID: 26735435 DOI: 10.1080/15548627.2015.1117734] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Macroautophagy is an evolutionarily conserved cellular process involved in the clearance of proteins and organelles. Although the autophagy regulation machinery has been widely studied, the key epigenetic control of autophagy process still remains unknown. Here we report that the methyltransferase EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit) epigenetically represses several negative regulators of the MTOR (mechanistic target of rapamycin [serine/threonine kinase]) pathway, such as TSC2, RHOA, DEPTOR, FKBP11, RGS16 and GPI. EZH2 was recruited to these genes promoters via MTA2 (metastasis associated 1 family, member 2), a component of the nucleosome remodeling and histone deacetylase (NuRD) complex. MTA2 was identified as a new chromatin binding protein whose association with chromatin facilitated the subsequent recruitment of EZH2 to silenced targeted genes, especially TSC2. Downregulation of TSC2 (tuberous sclerosis 2) by EZH2 elicited MTOR activation, which in turn modulated subsequent MTOR pathway-related events, including inhibition of autophagy. In human colorectal carcinoma (CRC) tissues, the expression of MTA2 and EZH2 correlated negatively with expression of TSC2, which reveals a novel link among epigenetic regulation, the MTOR pathway, autophagy induction, and tumorigenesis.
Collapse
Affiliation(s)
- Fu-Zheng Wei
- a Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education); State Key Laboratory of Natural and Biomimetic Drugs; Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function; Department of Biochemistry and Molecular Biology; Peking University Health Science Center ; Beijing , China
| | - Ziyang Cao
- a Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education); State Key Laboratory of Natural and Biomimetic Drugs; Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function; Department of Biochemistry and Molecular Biology; Peking University Health Science Center ; Beijing , China
| | - Xi Wang
- a Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education); State Key Laboratory of Natural and Biomimetic Drugs; Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function; Department of Biochemistry and Molecular Biology; Peking University Health Science Center ; Beijing , China
| | - Hui Wang
- a Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education); State Key Laboratory of Natural and Biomimetic Drugs; Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function; Department of Biochemistry and Molecular Biology; Peking University Health Science Center ; Beijing , China
| | - Mu-Yan Cai
- b State Key Laboratory of Oncology in South China; Sun Yat-Sen University Cancer Center ; Guangzhou , China
| | - Tingting Li
- c Department of Biomedical Informatics ; School of Basic Medical Sciences; Peking University Health Science Center ; Beijing , China
| | - Naoko Hattori
- d Division of Epigenomics; National Cancer Center Research Institute ; Tokyo , Japan
| | - Donglai Wang
- a Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education); State Key Laboratory of Natural and Biomimetic Drugs; Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function; Department of Biochemistry and Molecular Biology; Peking University Health Science Center ; Beijing , China
| | - Yipeng Du
- a Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education); State Key Laboratory of Natural and Biomimetic Drugs; Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function; Department of Biochemistry and Molecular Biology; Peking University Health Science Center ; Beijing , China
| | - Boyan Song
- a Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education); State Key Laboratory of Natural and Biomimetic Drugs; Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function; Department of Biochemistry and Molecular Biology; Peking University Health Science Center ; Beijing , China
| | - Lin-Lin Cao
- a Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education); State Key Laboratory of Natural and Biomimetic Drugs; Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function; Department of Biochemistry and Molecular Biology; Peking University Health Science Center ; Beijing , China
| | - Changchun Shen
- a Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education); State Key Laboratory of Natural and Biomimetic Drugs; Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function; Department of Biochemistry and Molecular Biology; Peking University Health Science Center ; Beijing , China
| | - Lina Wang
- a Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education); State Key Laboratory of Natural and Biomimetic Drugs; Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function; Department of Biochemistry and Molecular Biology; Peking University Health Science Center ; Beijing , China
| | - Haiying Wang
- a Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education); State Key Laboratory of Natural and Biomimetic Drugs; Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function; Department of Biochemistry and Molecular Biology; Peking University Health Science Center ; Beijing , China
| | - Yang Yang
- a Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education); State Key Laboratory of Natural and Biomimetic Drugs; Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function; Department of Biochemistry and Molecular Biology; Peking University Health Science Center ; Beijing , China
| | - Dan Xie
- b State Key Laboratory of Oncology in South China; Sun Yat-Sen University Cancer Center ; Guangzhou , China
| | - Fan Wang
- e Department of Radiation Medicine; School of Basic Medical Sciences ; Peking University ; Beijing , People's Republic of China
| | - Toshikazu Ushijima
- d Division of Epigenomics; National Cancer Center Research Institute ; Tokyo , Japan
| | - Ying Zhao
- a Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education); State Key Laboratory of Natural and Biomimetic Drugs; Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function; Department of Biochemistry and Molecular Biology; Peking University Health Science Center ; Beijing , China
| | - Wei-Guo Zhu
- a Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education); State Key Laboratory of Natural and Biomimetic Drugs; Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function; Department of Biochemistry and Molecular Biology; Peking University Health Science Center ; Beijing , China.,f Peking University-Tsinghua University Center for Life Sciences ; Beijing , China.,g School of Medicine; Shenzhen University ; Shenzhen , China
| |
Collapse
|
64
|
Yu B, Lv X, Su L, Li J, Yu Y, Gu Q, Yan M, Zhu Z, Liu B. MiR-148a Functions as a Tumor Suppressor by Targeting CCK-BR via Inactivating STAT3 and Akt in Human Gastric Cancer. PLoS One 2016; 11:e0158961. [PMID: 27518872 PMCID: PMC4982598 DOI: 10.1371/journal.pone.0158961] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/26/2016] [Indexed: 01/19/2023] Open
Abstract
MicroRNAs (miRNAs) have been widely accepted as a class of gene expression regulators which post-translationally regulate protein expression. These small noncoding RNAs have been proved closely involved in the modulation of various pathobiological processes in cancer. In this research, we demonstrated that miR-148a expression was significantly down-regulated in gastric cancer tissues in comparison with the matched normal mucosal tissues, and its expression was statistically associated with lymph node metastasis. Ectopic expression of miR-148a inhibited tumor cell proliferation and migration in vitro, and inhibited tumor formation in vivo. Subsequently, we identified cholecystokinin B receptor (CCK-BR) as a direct target of miR-148a using western blot and luciferase activity assay. More importantly, siRNA-induced knockdown of CCK-BR elicited similar anti-oncogenic effects (decreased proliferation and migration) as those induced by enforced miR-148a expression. We also found that miR-148a-mediated anti-cancer effects are dependent on the inhibition of STAT3 and Akt activation, which subsequently regulates the pathways involved in cell proliferation and migration. Taken together, our results suggest that miR-148a serves as a tumor suppressor in human gastric carcinogenesis by targeting CCK-BR via inactivating STAT3 and Akt.
Collapse
Affiliation(s)
- Beiqin Yu
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Lv
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liping Su
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfang Li
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingyan Yu
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinlong Gu
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Yan
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenggang Zhu
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingya Liu
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
65
|
Liu Q, Jin J, Ying J, Cui Y, Sun M, Zhang L, Fan Y, Xu B, Zhang Q. Epigenetic inactivation of the candidate tumor suppressor gene ASC/TMS1 in human renal cell carcinoma and its role as a potential therapeutic target. Oncotarget 2016; 6:22706-23. [PMID: 26093088 PMCID: PMC4673193 DOI: 10.18632/oncotarget.4256] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 05/23/2015] [Indexed: 11/25/2022] Open
Abstract
This study investigated the epigenetic alteration and biological function of the pro-apoptotic gene ASC/TMS1 in renal cell carcinoma. ASC/TMS1 was downregulated in five out of six RCC cell lines. A significant downregulation was also detected in sixty-seven paired renal tumors compared with adjacent non-cancerous tissues. The downregulation of ASC/TMS1 was correlated with promoter hypermethylation and could be restored with demethylation treatment. Re-expression of ASC/TMS1 in silenced RCC cell lines inhibited cell viability, colony formation, arrested cell cycle, induced apoptosis, suppressed cell invasion and repressed tumorigenicity in SCID mice. The antitumorigenic function of ASC/TMS1 in renal cancer was partially regulated by activation of p53 and p21 signaling. In addition, restoration of ASC/TMS1 sensitizes RCC cells to DNA damaging agents. Knockdown of ASC/TMS1 reduced DNA damaging agents-induced p53 activation and cell apoptosis. Moreover, ASC/TMS1 hypermethylation was further detected in 41.1% (83/202) of RCC tumors, but only 12% in adjacent non-cancerous tissues. ASC/TMS1 methylation was significantly correlated with higher tumor nuclear grade. In conclusion, ASC/TMS1 is a novel functional tumor suppressor in renal carcinogenesis. ASC/TMS1 tumor specific methylation may be a useful biomarker for designing improved diagnostic and therapeutic strategies for RCC.
Collapse
Affiliation(s)
- Qianling Liu
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Jie Jin
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Jianming Ying
- Department of Pathology, Cancer Institute and Cancer Hospital, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Yun Cui
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Mengkui Sun
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Lian Zhang
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Yu Fan
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Ben Xu
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Qian Zhang
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China
| |
Collapse
|
66
|
Wu WK, Yu J, Chan MT, To KF, Cheng AS. Combinatorial epigenetic deregulation by Helicobacter pylori and Epstein-Barr virus infections in gastric tumourigenesis. J Pathol 2016; 239:245-9. [PMID: 27102722 DOI: 10.1002/path.4731] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 01/06/2023]
Abstract
Epigenetic mechanisms, including DNA methylation, histone modifications, chromatin remodelling and microRNAs, convert environmental signals to transcriptional outputs but are commonly hijacked by pathogenic microorganisms. Recent advances in cancer epigenomics have shed new light on the importance of epigenetic deregulation in Helicobacter pylori- and Epstein-Barr virus (EBV)-driven gastric tumourigenesis. Moreover, it is becoming apparent that epigenetic mechanisms interact through crosstalk and feedback loops, which modify global gene expression patterns. The SWI/SNF remodelling complexes are commonly involved in gastric cancers associated with H. pylori or EBV through different mechanisms, including microRNA-mediated deregulation and genetic mutations. While H. pylori causes epigenetic silencing of tumour-suppressor genes to deregulate cellular pathways, EBV-positive tumours exhibit a widespread and distinctive DNA hypermethylation profile. Given the early successes of epigenetic drugs in haematological malignancies, further studies are mandated to enrich and translate our understanding of combinatorial epigenetic deregulation in gastric cancers into interventional strategies in the clinic. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- William Kk Wu
- Department of Anaesthesia and Intensive Care, Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,State Key Laboratory of Digestive Diseases, Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Jun Yu
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,State Key Laboratory of Digestive Diseases, Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Matthew Tv Chan
- Department of Anaesthesia and Intensive Care, Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Ka F To
- Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,State Key Laboratory of Digestive Diseases, Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Alfred Sl Cheng
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,State Key Laboratory of Digestive Diseases, Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen, People's Republic of China
| |
Collapse
|
67
|
Liu Y, Yasukawa M, Chen K, Hu L, Broaddus RR, Ding L, Mardis ER, Spellman P, Levine DA, Mills GB, Shmulevich I, Sood AK, Zhang W. Association of Somatic Mutations of ADAMTS Genes With Chemotherapy Sensitivity and Survival in High-Grade Serous Ovarian Carcinoma. JAMA Oncol 2016; 1:486-94. [PMID: 26181259 DOI: 10.1001/jamaoncol.2015.1432] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
IMPORTANCE Chemotherapy response in the majority of patients with ovarian cancer remains unpredictable. OBJECTIVE To identify novel molecular markers for predicting chemotherapy response in patients with ovarian cancer. DESIGN, SETTING, AND PARTICIPANTS Observational study of genomics and clinical data of high-grade serous ovarian cancer cases with genomic and clinical data made public between 2009 and 2014 via the Cancer Genome Atlas project. MAIN OUTCOMES AND MEASURES Chemotherapy response (primary outcome) and overall survival (OS), progression-free survival (PFS), and platinum-free duration (secondary outcome). RESULTS In 512 patients with ovarian cancer with available whole-exome sequencing data, mutations from 8 members of the ADAMTS family (ADAMTS mutations) with an overall mutation rate of approximately 10.4% were associated with a significantly higher chemotherapy sensitivity (100% for ADAMTS-mutated vs 64% for ADAMTS wild-type cases; P < .001) and longer platinum-free duration (median platinum-free duration, 21.7 months for ADAMTS-mutated vs 10.1 months for ADAMTS wild-type cases; P = .001). Moreover, ADAMTS mutations were associated with significantly better OS (hazard ratio [HR], 0.54 [95% CI, 0.42-0.89]; P = .01 and median OS, 58.0 months for ADAMTS-mutated vs 41.3 months for ADAMTS wild-type cases) and PFS (HR, 0.42 [95% CI, 0.38-0.70]; P < .001 and median PFS, 31.8 for ADAMTS-mutated vs 15.3 months for ADAMTS wild-type cases). After adjustment by BRCA1 or BRCA2 mutation, surgical stage, residual tumor, and patient age, ADAMTS mutations were significantly associated with better OS (HR, 0.53 [95% CI, 0.32-0.87]; P = .01), PFS (HR, 0.40 [95% CI, 0.25-0.62]; P < .001), and platinum-free survival (HR, 0.45 [95% CI, 0.28-0.73]; P = .001). ADAMTS-mutated cases exhibited a distinct mutation spectrum and were significantly associated with tumors with a higher genome-wide mutation rate than ADAMTS wild-type cases across the whole exome (median mutation number per sample, 121 for ADAMTS-mutated vs 69 for ADAMTS wild-type cases; P < .001). CONCLUSIONS AND RELEVANCE ADAMTS mutations may contribute to outcomes in ovarian cancer cases without BRCA1 or BRCA2 mutations and may have important clinical implications.
Collapse
Affiliation(s)
- Yuexin Liu
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston2Institute for Systems Biology/MD Anderson Cancer Center Genome Data Analysis Center, The Cancer Genome Atlas, Bethesda, Maryland
| | - Maya Yasukawa
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston3Department of Obstetrics and Gynecology, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Hospital and Institute, Tianjin, PR China
| | - Limei Hu
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston
| | - Russell R Broaddus
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston
| | - Li Ding
- Genome Institute, Washington University, St Louis, Missouri
| | | | - Paul Spellman
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland
| | - Douglas A Levine
- Gynecology Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Gordon B Mills
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston
| | - Ilya Shmulevich
- Institute for Systems Biology/MD Anderson Cancer Center Genome Data Analysis Center, The Cancer Genome Atlas, Bethesda, Maryland9Institute for Systems Biology, Seattle, Washington
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston11Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston
| | - Wei Zhang
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston2Institute for Systems Biology/MD Anderson Cancer Center Genome Data Analysis Center, The Cancer Genome Atlas, Bethesda, Maryland
| |
Collapse
|
68
|
IL-37 mediates the antitumor activity in renal cell carcinoma. Med Oncol 2015; 32:250. [PMID: 26464282 DOI: 10.1007/s12032-015-0695-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023]
Abstract
Interleukin (IL)-37 is a natural suppressor of innate inflammatory and immune responses. IL-37 plays an important role in renal function and antitumor activity. The aim of this study was to investigate the role of IL-37 in renal cell carcinoma (Rcc). Serum IL-37 levels in 120 Rcc patients and 50 healthy controls were measured by enzyme-linked immunosorbent assay (ELISA). The Rcc cell lines A498 and Caki-1 were cultured with 0-100 ng/mL of recombinant human IL-37 protein (rhIL-37). Cancer cells were transfected with or without pcDNA3.1-IL-6 to alter IL-6 expression. Cell migration, proliferation, and apoptosis were tested by wound-healing assay, MTT, and flow cytometry, respectively. Levels of IL-6, pSTAT3 Y705, Bcl-2, cyclin D1, and HIF-1α were detected by qRT-PCR, ELISA, or western blot. Additionally, therapeutic effect of rhIL-37 was also confirmed in SCID mice. The expression of IL-37 was decreased in Rcc patients and was negatively correlated with tumor progression. In vitro, IL-37 markedly inhibited the migration and proliferation, and promoted apoptosis in Rcc cells. Furthermore, the expressions of IL-6, pSTAT3 Y705, HIF-1α, Bcl-2, and cyclin D1 were decreased by IL-37. However, these effects were reversed by the transfection of pcDNA3.1-IL-6. In vivo, tumor growth and gene expressions of IL-6 and HIF-1α were suppressed by IL-37. In conclusion, IL-37 might serve as a novel tumor suppressor in Rcc and exert its antitumor activity through inhibiting IL-6/STAT3 signaling.
Collapse
|
69
|
Abstract
DNA methylation plays a significant role in gastric carcinogenesis. The CpG island methylator phenotype (CIMP) characterizes distinct subtypes of gastric cancer (GC) and the relationship between specific methylation patterns and clinicopathological features has been evaluated. Altered DNA methylation is also observed in Helicobacter pylori-infected gastric mucosa, and its potential utility for GC risk estimation has been suggested. The ability to detect small amounts of methylated DNA among tissues allows us to use DNA methylation as a molecular biomarker in GC in a variety of samples, including serum, plasma and gastric washes. The DNA methylation status of nontargeted tissue, particularly blood, has been associated with predisposition to GC. We focus on the recent development of DNA methylation-based biomarkers in GC.
Collapse
Affiliation(s)
- Tomomitsu Tahara
- Department of Gastroenterology, Fujita Health University School of Medicine, 1-98 Dengakugakubo Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Tomiyasu Arisawa
- Department of Gastroenterology, Kanazawa Medical University, Ishikawa, Japan
| |
Collapse
|
70
|
Kelwick R, Desanlis I, Wheeler GN, Edwards DR. The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family. Genome Biol 2015; 16:113. [PMID: 26025392 PMCID: PMC4448532 DOI: 10.1186/s13059-015-0676-3] [Citation(s) in RCA: 424] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that have diverse roles in tissue morphogenesis and patho-physiological remodeling, in inflammation and in vascular biology. The human family includes 19 members that can be sub-grouped on the basis of their known substrates, namely the aggrecanases or proteoglycanases (ADAMTS1, 4, 5, 8, 9, 15 and 20), the procollagen N-propeptidases (ADAMTS2, 3 and 14), the cartilage oligomeric matrix protein-cleaving enzymes (ADAMTS7 and 12), the von-Willebrand Factor proteinase (ADAMTS13) and a group of orphan enzymes (ADAMTS6, 10, 16, 17, 18 and 19). Control of the structure and function of the extracellular matrix (ECM) is a central theme of the biology of the ADAMTS, as exemplified by the actions of the procollagen-N-propeptidases in collagen fibril assembly and of the aggrecanases in the cleavage or modification of ECM proteoglycans. Defects in certain family members give rise to inherited genetic disorders, while the aberrant expression or function of others is associated with arthritis, cancer and cardiovascular disease. In particular, ADAMTS4 and 5 have emerged as therapeutic targets in arthritis. Multiple ADAMTSs from different sub-groupings exert either positive or negative effects on tumorigenesis and metastasis, with both metalloproteinase-dependent and -independent actions known to occur. The basic ADAMTS structure comprises a metalloproteinase catalytic domain and a carboxy-terminal ancillary domain, the latter determining substrate specificity and the localization of the protease and its interaction partners; ancillary domains probably also have independent biological functions. Focusing primarily on the aggrecanases and proteoglycanases, this review provides a perspective on the evolution of the ADAMTS family, their links with developmental and disease mechanisms, and key questions for the future.
Collapse
Affiliation(s)
- Richard Kelwick
- School of Biological Sciences, Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Ines Desanlis
- School of Biological Sciences, Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Grant N Wheeler
- School of Biological Sciences, Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Dylan R Edwards
- School of Biological Sciences, Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
71
|
Abstract
BACKGROUND Gastric cancer and colorectal cancer, the two most frequent cancers within the gastrointestinal tract, account for a large proportion of human malignancies worldwide. The initiation and progression of gastrointestinal cancer (GIC) is controlled by both genetic and epigenetic events. Epigenetic alterations, including changes in DNA methylation, specific histone modifications, chromatin remodeling and noncoding RNA-mediated gene silencing, are potentially reversible and heritable. SUMMARY In this article, we summarize the current advances in epigenetic biomarkers as potential substrates for GIC detection. The combined screening of a panel of methylated genes, hyperacetylated histones, microRNAs or other noncoding RNAs is currently under evaluation to improve sensitivity. KEY MESSAGE Current studies concentrated on the development of cost-effective epigenetic diagnostic biomarkers for GIC based on noninvasive blood or stool samples. The combined blood or stool test with a relatively high sensitivity could be a cost-effective screening tool for the detection of patients with asymptomatic cancers who could therefore choose whether or not to go for further examinations, such as endoscopy or colonoscopy. PRACTICAL IMPLICATIONS A better understanding of epigenetic mechanisms has not only offered new insights into a deeper understanding of the underlying mechanisms of carcinogenesis, but has also allowed identification of clinically relevant putative biomarkers for the early detection, disease monitoring, prognosis and risk assessment of GIC. In particular, noninvasive biomarkers in serum or fecal samples for the detection of GIC could have potential for better compliance and can be incorporated into routine clinical practice in the foreseeable future, pending their validation in large-scale prospective trials.
Collapse
Affiliation(s)
- Hui-Mi Chen
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai Institute of Digestive Disease, China ; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, China ; State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Jing-Yua Fang
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai Institute of Digestive Disease, China ; Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, China ; State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| |
Collapse
|
72
|
Wei J, Zhang J, Si Y, Kanada M, Zhang Z, Terakawa S, Watanabe H. Blockage of LMP1-modulated store-operated Ca(2+) entry reduces metastatic potential in nasopharyngeal carcinoma cell. Cancer Lett 2015; 360:234-44. [PMID: 25697483 DOI: 10.1016/j.canlet.2015.02.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 11/30/2022]
Abstract
Epstein-Barr virus (EBV)-encoded latent membrane proteins (LMPs) expedite progression of EBV-relevant cancers. Of the full set of LMPs, latent membrane protein 1 (LMP1) was identified to uniquely augment store-operated Ca(2+) entry (SOCE). Previously, we reported that the suppression of SOCE exhibited inhibitory effects on cell migration and the extravasation from vasculature in EBV-negative nasopharyngeal carcinoma (NPC) cells. In this follow-up study, we aimed to expand our understanding of the modulation of SOCE by LMP1 and test the possibility that blockage of LMP1-modulated SOCE affects the LMP1-promoted metastatic potential. Here we showed that suppressions of the LMP1-boosted SOCE blunted the LMP1-promoted cell migration, VEGF-mediated angiogenesis and permeabilization in vitro. Blockage of SOCE inhibited vasculature-invasion of circulating cells and distant metastatic colonization in vivo. Notably, utilizing VEGFR2-EGFP-tag zebrafish we revealed that the LMP1-expressing cells arrested in a small-caliber vessel mobilized surrounding endothelial cells to facilitate vasculature-invasion. Thus, the LMP1-boosted SOCE promotes metastatic potential of NPC cells by solidifying their collaborations with the nearby non-cancer cells through the manipulation of oncogenic Ca(2+) signaling. Our study highlights the advantage of using both conventional mammal and transgenic zebrafish for developing a novel therapeutic strategy targeting the multiple steps of invasion-metastasis cascade.
Collapse
Affiliation(s)
- Jiazhang Wei
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 431-3192, Japan; Department of Otolaryngology-Head and Neck Oncology, The People's Hospital of Guangxi Zhuang Autonomous Region, 6 Taoyuan Road, Nanning 530021, China.
| | - Jinyan Zhang
- Medical Photonics Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 431-3192, Japan; Department of Chemotherapy, Affiliated Cancer Hospital of Guangxi Medical University, 71 Hedi Road, Nanning 530021, China
| | - Yongfeng Si
- Department of Otolaryngology-Head and Neck Oncology, The People's Hospital of Guangxi Zhuang Autonomous Region, 6 Taoyuan Road, Nanning 530021, China
| | - Masamitsu Kanada
- Department of Pediatrics, Stanford University School of Medicine, Clark Center E150, 318 Campus Drive, Stanford, CA 94305, USA
| | - Zhe Zhang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Susumu Terakawa
- Medical Photonics Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 431-3192, Japan
| | - Hiroshi Watanabe
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 431-3192, Japan
| |
Collapse
|
73
|
Cal S, López-Otín C. ADAMTS proteases and cancer. Matrix Biol 2015; 44-46:77-85. [PMID: 25636539 DOI: 10.1016/j.matbio.2015.01.013] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 01/19/2015] [Accepted: 01/19/2015] [Indexed: 11/17/2022]
Abstract
ADAMTSs (A disintegrin and metalloprotease domains with thrombospondins motifs) are complex extracellular proteases that have been related to both oncogenic and tumor-protective functions. These enzymes can be secreted by cancer and stromal cells and may contribute to modify the tumor microenvironment by multiple mechanisms. Thus, ADAMTSs can cleave or interact with a wide range of extracellular matrix components or regulatory factors, and therefore affect cell adhesion, migration, proliferation and angiogenesis. The balance of protumor versus antitumor effects of ADAMTSs may depend on the nature of their substrates or interacting-partners upon secretion from the cell. Moreover, different ADAMTS genes have been found overexpressed, mutated or epigenetically silenced in tumors from different origins, suggesting the direct impact of these metalloproteases in cancer development. However, despite the important advances on the tumor biology of ADAMTSs in recent years, more mechanistic and functional studies are necessary to fully understand how these proteases can influence tumor microenvironment to potentiate cancer growth or to induce tumor regression. This review outlines current and emerging connections between ADAMTSs and cancer.
Collapse
Affiliation(s)
- Santiago Cal
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias, IUOPA, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain.
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias, IUOPA, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| |
Collapse
|
74
|
Abstract
Epigenetic changes frequently occur in human gastric cancer. Gene promoter region hypermethylation, genomic global hypomethylation, histone modifications, and alterations of noncoding RNAs are major epigenetic changes in gastric cancer. As a key risk factor of gastric cancer, H. pylori infection is an independent predictive indicator of gene methylation. A growing number of epigenetic studies in gastric cancer have provided lots of potential diagnostic and prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Mingzhou Guo
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853, China,
| | | |
Collapse
|
75
|
Li L, Zhang Y, Fan Y, Sun K, Su X, Du Z, Tsao SW, Loh TKS, Sun H, Chan ATC, Zeng YX, Chan WY, Chan FK, Tao Q. Characterization of the nasopharyngeal carcinoma methylome identifies aberrant disruption of key signaling pathways and methylated tumor suppressor genes. Epigenomics 2014; 7:155-73. [PMID: 25479246 DOI: 10.2217/epi.14.79] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIMS Nasopharyngeal carcinoma (NPC) is a common tumor consistently associated with Epstein-Barr virus infection and prevalent in South China, including Hong Kong, and southeast Asia. Current genomic sequencing studies found only rare mutations in NPC, indicating its critical epigenetic etiology, while no epigenome exists for NPC as yet. MATERIALS & METHODS We profiled the methylomes of NPC cell lines and primary tumors, together with normal nasopharyngeal epithelial cells, using methylated DNA immunoprecipitation (MeDIP). RESULTS We observed extensive, genome-wide methylation of cellular genes. Epigenetic disruption of Wnt, MAPK, TGF-β and Hedgehog signaling pathways was detected. Methylation of Wnt signaling regulators (SFRP1, 2, 4 and 5, DACT2, DKK2 and DKK3) was frequently detected in tumor and nasal swab samples from NPC patients. Functional studies showed that these genes are bona fide tumor-suppressor genes for NPC. CONCLUSION The NPC methylome shows a special high-degree CpG methylation epigenotype, similar to the Epstein-Barr virus-infected gastric cancer, indicating a critical epigenetic etiology for NPC pathogenesis.
Collapse
Affiliation(s)
- Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Pinheiro DDR, Ferreira WAS, Barros MBL, Araújo MD, Rodrigues-Antunes S, Borges BDN. Perspectives on new biomarkers in gastric cancer: Diagnostic and prognostic applications. World J Gastroenterol 2014; 20:11574-11585. [PMID: 25206265 PMCID: PMC4155351 DOI: 10.3748/wjg.v20.i33.11574] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 03/14/2014] [Accepted: 05/05/2014] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is considered one of the most deadly tumors worldwide. Even with the decline in its incidence, the mortality rate of this disease has remained high, mainly due to its late diagnosis and to the lack of precise prognostic markers. The main purpose of this review is to present genetic, epigenetic and proteomic molecular markers that may be used in a diagnostic and prognostic manner and to discuss the pros and cons of each type of marker for improving clinical practice. In this sense, we observed that the use of genetic markers, especially mutations and polymorphisms, should be carefully considered, as they are strongly affected by ethnicity. Proteomic-based markers show promise, but the higher costs of the associated techniques continue to make this approach expensive for routine use. Alternatively, epigenetic markers appear to be very promising, as they can be detected in bodily fluids as well as tissues. However, such markers must be used carefully because epigenetic changes may occur due to environmental factors and aging. Despite the advances in technology and its access, to date, there are few defined biomarkers of prognostic and diagnostic use for gastric tumors. Therefore, the use of a panel of several approaches (genetic, epigenetic and proteomic) should be considered the best alternative for clinical practice.
Collapse
|
77
|
Anand A, Sharma K, Chen W, Sharma NK. Using current data to define new approach in age related macular degeneration: need to accelerate translational research. Curr Genomics 2014; 15:266-77. [PMID: 25132797 PMCID: PMC4133950 DOI: 10.2174/1389202915666140516204512] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 05/16/2014] [Accepted: 05/16/2014] [Indexed: 11/22/2022] Open
Abstract
Age related macular degeneration (AMD) is one of the major retinal degenerative disease of ageing whose complex genetic basis remains undeciphered. The involvement of various other factors like mitochondrial genes, cytoskeletal proteins and the role of epigenetics has been described in this review. Several population based AMD genetic studies have been carried out worldwide. Despite the increased publication of reports, clinical translation still eludes this davastating disease. We suggest models to address roadblocks in clinical translation hoping that these would be beneficial to drive AMD research towards innovative biomarkers and therapeutics Therefore, addressing the need large autopsy studies and combining it with efficient use of bioinformatic tools, statistical modeling and probing SNP-biomarker association are key to time bound resolution of this disease.
Collapse
Affiliation(s)
- Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Kaushal Sharma
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Wei Chen
- Division of Pulmonary Medicine, Allergy and Immunology, University of Pittsburgh, Pittsburgh, PA 15224 USA
| | - Neel Kamal Sharma
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, Bethesda, USA
| |
Collapse
|
78
|
Li DX, Cai HY, Wang X, Feng YL, Cai SW. Promoter methylation of Raf kinase inhibitory protein: A significant prognostic indicator for patients with gastric adenocarcinoma. Exp Ther Med 2014; 8:844-850. [PMID: 25120612 PMCID: PMC4113522 DOI: 10.3892/etm.2014.1833] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 06/20/2014] [Indexed: 12/23/2022] Open
Abstract
DNA methylation has an important role in the development of carcinomas. As a metastasis suppressor gene, Raf kinase inhibitory protein (RKIP) suppresses tumor cell invasion and metastasis. In the present study, the associations between RKIP protein expression and promoter methylation with clinicopathological parameters, prognosis and survival rates in gastric adenocarcinoma were investigated. RKIP protein expression and promoter methylation were measured in 135 cases of surgically resected gastric adenocarcinoma specimens and corresponding normal tissues using immunohistochemistry and methylation-specific polymerase chain reaction, respectively. Kaplan-Meier analyses were performed to analyze the patient survival rate. Prognostic factors were determined using multivariate Cox analysis. RKIP promoter methylation was detected in 48.9% of gastric carcinoma tissues and 5.17% of adjacent tissues (P<0.05). RKIP protein expression was detected in 43.0% of gastric carcinoma tissues and 91.1% of adjacent tissues (P<0.05). The protein expression levels and promoter methylation of RKIP were shown to correlate with pathological staging, Union for International Cancer Control-stage, tumor differentiation and lymph node metastasis (P<0.05). In addition, the protein expression of RKIP in gastric carcinomas was demonstrated to be associated with promoter methylation of RKIP. Survival analysis of gastric carcinoma patients revealed that promoter methylation in RKIP-positive tumors correlated with a significantly shorter survival time when compared with RKIP-negative tumors (P=0.0002, using the log-rank test). Using multivariate Cox analysis, promoter methylation of RKIP was shown to be an independent prognostic factor (P=0.033). These results indicated that abnormal promoter methylation of RKIP may be one cause of downregulated RKIP expression. Downregulation of RKIP expression was shown to correlate with the incidence and development of gastric carcinomas. Thus, abnormal promoter methylation of RKIP may be a valuable biomarker for estimating gastric carcinoma prognosis.
Collapse
Affiliation(s)
- Dong-Xia Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Hai-Yang Cai
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xia Wang
- The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Yan-Ling Feng
- Department of Pathology, Public Health Clinical Center of Fudan University, Shanghai 201508, P.R. China
| | - Song-Wang Cai
- Department of Cardiothoracic Surgery, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
79
|
Zhang Y, Zhan Y, Zhang D, Dai B, Ma W, Qi J, Liu R, He L. Eupolyphaga sinensis walker displays inhibition on hepatocellular carcinoma through regulating cell growth and metastasis signaling. Sci Rep 2014; 4:5518. [PMID: 24980220 PMCID: PMC4076680 DOI: 10.1038/srep05518] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/13/2014] [Indexed: 11/09/2022] Open
Abstract
Tumor growth and metastasis are responsible for most cancer patients' deaths. Here, we report that eupolyphaga sinensis walker has an essential role in resisting hepatocellular carcinoma growth and metastasis. Compared with proliferation, colony formation, transwell assay and transplantable tumor in nude mouse in vitro and vivo, eupolyphaga sinensis walker extract (ESWE) showed good inhibition on the SMMC-7721 cell growth and metastasis. Using genome-wide microarray analysis, we found the down-regulated growth and metastasis factors, and selected down-regulated genes were confirmed by real-time PCR. Knockdown of a checkpoint PKCβ by siRNA significantly attenuated tumor inhibition and metastasis effects of ESWE. Moreover, our results indicate ESWE inhibits HCC growth by not only downregulating the signaling of PKCβ, Akt, m-TOR, Erk1/2, MEK-2, Raf and JNK-1, but also increasing cyclin D1 protein levels and decreasing amount of cyclin E, cyclin B1 and cdc2 of the cycle proteins. At the same time, ESWE reduced MMP2, MMP9 and CXCR4, PLG, NFκB and P53 activities. Overall, our studies demonstrate that ESWE is a key factor in growth and metastasis signaling inhibitor targeting the PKC, AKT, MAPK signaling and related metastasis signaling, having potential in cancer therapy.
Collapse
Affiliation(s)
- Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| | - Yingzhuan Zhan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| | - Dongdong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| | - Bingling Dai
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| | - Weina Ma
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| | - Junpeng Qi
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| | - Rui Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| | - Langchong He
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| |
Collapse
|
80
|
Kang C, Song JJ, Lee J, Kim MY. Epigenetics: An emerging player in gastric cancer. World J Gastroenterol 2014; 20:6433-6447. [PMID: 24914365 PMCID: PMC4047329 DOI: 10.3748/wjg.v20.i21.6433] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 01/21/2014] [Accepted: 02/20/2014] [Indexed: 02/06/2023] Open
Abstract
Cancers, like other diseases, arise from gene mutations and/or altered gene expression, which eventually cause dysregulation of numerous proteins and noncoding RNAs. Changes in gene expression, i.e., upregulation of oncogenes and/or downregulation of tumor suppressor genes, can be generated not only by genetic and environmental factors but also by epigenetic factors, which are inheritable but nongenetic modifications of cellular chromosome components. Identification of the factors that contribute to individual cancers is a prerequisite to a full understanding of cancer mechanisms and the development of customized cancer therapies. The search for genetic and environmental factors has a long history in cancer research, but epigenetic factors only recently began to be associated with cancer formation, progression, and metastasis. Epigenetic alterations of chromatin include DNA methylation and histone modifications, which can affect gene-expression profiles. Recent studies have revealed diverse mechanisms by which chromatin modifiers, including writers, erasers and readers of the aforementioned modifications, contribute to the formation and progression of cancer. Furthermore, functional RNAs, such as microRNAs and long noncoding RNAs, have also been identified as key players in these processes. This review highlights recent findings concerning the epigenetic alterations associated with cancers, especially gastric cancer.
Collapse
|
81
|
Yao J, Zhou B, Zhang J, Geng P, Liu K, Zhu Y, Zhu W. A new tumor suppressor LncRNA ADAMTS9-AS2 is regulated by DNMT1 and inhibits migration of glioma cells. Tumour Biol 2014; 35:7935-44. [PMID: 24833086 DOI: 10.1007/s13277-014-1949-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 04/06/2014] [Indexed: 12/27/2022] Open
Abstract
Growing number of long noncoding RNAs (lncRNAs) are emerging as new modulators in cancer origination and progression. A lncRNA, ADAM metallopeptidase with thrombospondin type 1 motif, 9 (ADAMTS9) antisense RNA 2 (ADAMTS9-AS2), with unknown function, is the antisense transcript of tumor suppressor ADAMTS9. In the present study, we investigated the expression pattern and functional role of ADAMTS9-AS2 in glioma by using real-time PCR and gain-/loss-of-function studies. The results showed that the ADAMTS9-AS2 expression was significantly downregulated in tumor tissues compared with normal tissues and reversely associated with tumor grade and prognosis. Multivariate analysis of the prognosis factors showed that low ADAMTS9-AS2 expression was a significant independent predictor of poor survival in glioma. Overexpression of ADAMTS9-AS2 resulted in significant inhibition of cell migration in glioma, whereas knockdown of ADAMTS9-AS2 showed the opposite effect. We also found that ADAMTS9-AS2 expression was negatively correlated with DNA methyltransferase-1 (DNMT1). In addition, DNMT1 knockdown led to remarkable enhancement of ADAMTS9-AS2 expression. By 5-aza-dC treatment, the ADAMTS9-AS2 expression was also reactivated. The results suggested that ADAMTS9-AS2 is a novel tumor suppressor modulated by DNMT1 in glioma. LncRNA ADAMTS9-AS2 may serve as a potential biomarker and therapeutic target for glioma.
Collapse
Affiliation(s)
- Jie Yao
- Cancer Center, Chinese PLA General Hospital and Chinese PLA Medical School, Beijing, 100048, China
| | | | | | | | | | | | | |
Collapse
|
82
|
Dubail J, Aramaki-Hattori N, Bader HL, Nelson CM, Katebi N, Matuska B, Olsen BR, Apte SS. A new Adamts9 conditional mouse allele identifies its non-redundant role in interdigital web regression. Genesis 2014; 52:702-12. [PMID: 24753090 DOI: 10.1002/dvg.22784] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 04/16/2014] [Accepted: 04/17/2014] [Indexed: 01/08/2023]
Abstract
ADAMTS9 is the most conserved member of a large family of secreted metalloproteases having diverse functions. Adamts9 null mice die before gastrulation, precluding investigations of its roles later in embryogenesis, in adult mice or disease models. We therefore generated a floxed Adamts9 allele to bypass embryonic lethality. In this mutant, unidirectional loxP sites flank exons 5-8, which encode the catalytic domain, including the protease active site. Mice homozygous for the floxed allele were viable, lacked an overt phenotype, and were fertile. Conversely, mice homozygous for a germ-line deletion produced from the floxed allele by Cre-lox recombination did not survive past gastrulation. Hemizygosity of the deleted Adamts9 in combination with mutant Adamts20 led to cleft palate and severe white spotting as previously described. Previously, Adamts9 haploinsufficiency combined with either Adamts20 or Adamts5 nullizygosity suggested a cooperative role in interdigital web regression, but the outcome of deletion of Adamts9 alone remained unknown. Here, Adamts9 was conditionally deleted in limb mesoderm using Prx1-Cre mice. Unlike other ADAMTS single knockouts, limb-specific Adamts9 deletion resulted in soft-tissue syndactyly (STS) with 100% penetrance and concurrent deletion of Adamts5 increased the severity of STS. Thus, Adamts9 has both non-redundant and cooperative roles in ensuring interdigital web regression. This new allele will be useful for investigating other biological functions of ADAMTS9.
Collapse
Affiliation(s)
- Johanne Dubail
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Epigenetic biomarkers: potential applications in gastrointestinal cancers. ISRN GASTROENTEROLOGY 2014; 2014:464015. [PMID: 24729878 PMCID: PMC3963109 DOI: 10.1155/2014/464015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 01/25/2014] [Indexed: 12/14/2022]
Abstract
Genetics and epigenetics coregulate the cancer initiation and progression. Epigenetic mechanisms include DNA methylation, histone modification, chromatin remodeling, and noncoding RNAs. Aberrant epigenetic modifications play a fundamental role in the formation of gastrointestinal cancers. Advances in epigenetics offer a better understanding of the carcinogenesis and provide new insights into the discovery of biomarkers for diagnosis, and prognosis prediction of human cancers. This review aims to overview the epigenetic aberrance and the clinical applications as biomarkers in gastrointestinal cancers mainly gastric cancer and colorectal cancer.
Collapse
|
84
|
Liu WB, Han F, Du XH, Jiang X, Li YH, Liu Y, Chen HQ, Ao L, Cui ZH, Cao J, Liu JY. Epigenetic silencing of Aristaless-like homeobox-4, a potential tumor suppressor gene associated with lung cancer. Int J Cancer 2013; 134:1311-22. [PMID: 24037716 DOI: 10.1002/ijc.28472] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 08/19/2013] [Accepted: 08/22/2013] [Indexed: 01/10/2023]
Abstract
Using genome-wide methylation screening, we found Aristaless-like homeobox-4 (ALX4) preferentially methylated in lung cancer. ALX4 is a putative transcription factor that belongs to the family of paired-class homeoproteins involved in epithelial development. However, the role of ALX4 in tumorigenesis remains largely unclear. Here, we analyzed its epigenetic regulation, biological functions and related molecular mechanisms in lung cancer. CpG island methylation and expression of ALX4 were evaluated by methylation-specific polymerase chain reaction (PCR), bisulfite genomic sequencing, reverse-transcription PCR and Western blotting. ALX4 functions were determined by cell viability, colony formation, flow cytometry and in vivo tumorigenicity assays. ALX4 hypermethylation was detected in 55% (54/98) of primary lung cancers compared to none (0/20) of the normal lung tissue samples tested (p < 0.01). ALX4 was readily expressed in normal lung tissues with an unmethylated status, but downregulated or silenced in 90% (9/10) of lung cancer cell lines with a hypermethylation status. Demethylation experiments further confirmed that loss of ALX4 expression was regulated by CpG island hypermethylation. Re-expression of ALX4 in lung cancer cell lines suppressed cell viability, colony formation and migration, whereas it induced apoptosis and G1/S arrest and restrained the tumorigenicity in nude mice. These effects were associated with upregulation of proapoptotic proteins caspase-7, -8 and -9, and downregulation of Bcl-2. On the other hand, knockdown of ALX4 expression by siRNA increased cell viability and proliferation, whereas it inhibited apoptosis and cell cycle arrest. In conclusion, our results suggest that ALX4 is a novel putative tumor suppressor with epigenetic silencing in lung carcinogenesis.
Collapse
Affiliation(s)
- Wen-Bin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China; Key Laboratory of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Liu WB, Jiang X, Han F, Li YH, Chen HQ, Liu Y, Cao J, Liu JY. LHX6 acts as a novel potential tumour suppressor with epigenetic inactivation in lung cancer. Cell Death Dis 2013; 4:e882. [PMID: 24157876 PMCID: PMC3824675 DOI: 10.1038/cddis.2013.366] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/07/2013] [Accepted: 08/07/2013] [Indexed: 12/23/2022]
Abstract
LIM homeobox domain 6 (LHX6) is a putative transcriptional regulator that controls the differentiation and development of neural and lymphoid cells. However, the function of LHX6 in cancer development remains largely unclear. Recently, we found that LHX6 is hypermethylated in lung cancer. In this study, we analysed its epigenetic regulation, biological functions, and related molecular mechanisms in lung cancer. Methylation status was evaluated by methylation-specific PCR and bisulfite genomic sequencing. LHX6 mRNA levels were measured in relation to the methylation status. The effects of LHX6 expression on tumourigenesis were studied in vitro and in vivo. LHX6 was readily expressed in normal lung tissues without methylation, but was downregulated or silenced in lung cancer cell lines and tissues with hypermethylation status. Treatment of lung cancer cells with the demethylating agent 5-aza-2′-deoxycytidine restored LHX6 expression. Moreover, LHX6 hypermethylation was detected in 56% (52/93) of primary lung cancers compared with none (0/20) of the tested normal lung tissues. In lung cancer cell lines 95D and H358, forced expression of LHX6 suppressed cell viability, colony formation, and migration, induced apoptosis and G1/S arrest, and inhibited their tumorigenicity in nude mice. On the other hand, knockdown of LHX6 expression by RNA interference increased cell proliferation and inhibited apoptosis and cell cycle arrest. These effects were associated with upregulation of p21 and p53, and downregulation of Bcl-2, cyclinD1, c-myc, CD44, and MMP7. In conclusion, our results suggest that LHX6 is a putative tumour suppressor gene with epigenetic silencing in lung cancer.
Collapse
Affiliation(s)
- W-b Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Abstract
Gastric carcinogenesis is a complex and multifactorial process, in which infection with Helicobacter pylori plays a major role. Additionally, environmental factors as well as genetic susceptibility factors are significant players in gastric cancer (GC) etiology. Gastric cancer development results from the accumulation of multiple genetic and epigenetic changes during the lifetime of the cancer patient that will activate oncogenic and/or inactivate tumor-suppressor pathways. Numerous studies published last year provided new insights into the molecular phenotypes of GC, which will be the main focus of this review. This article also reviews the recent findings on GC tumor-suppressor genes, including putative novel genes. The understanding of the basic mechanisms that underlie gastric carcinogenesis will be of utmost importance for developing strategies of screening, early detection, and treatment of the disease, as most GC patients present with late-stage disease and have poor overall survival.
Collapse
Affiliation(s)
- Ceu Figueiredo
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal; Department of Pathology and Oncology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | | | | |
Collapse
|
87
|
Uppal DS, Powell SM. Genetics/genomics/proteomics of gastric adenocarcinoma. Gastroenterol Clin North Am 2013; 42:241-60. [PMID: 23639639 DOI: 10.1016/j.gtc.2013.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hereditary diffuse gastric cancer can be caused by epithelial cadherin mutations for which genetic testing is available. Inherited cancer predisposition syndromes including Lynch, Li-Fraumeni, and Peutz-Jeghers syndromes, can be associated with gastric cancer. Chromosomal and microsatellite instability occur in gastric cancers. Several consistent genetic and molecular alterations including chromosomal instability, microsatellite instability, and epigenetic alterations have been identified in gastric cancers. Biomarkers and molecular profiles are being discovered with potential for diagnostic, prognostic, and treatment guidance implications.
Collapse
Affiliation(s)
- Dushant S Uppal
- Division of Gastroenterology/Hepatology, Department of Medicine, University of Virginia, Charlottesville, VA 22908-0708, USA
| | | |
Collapse
|
88
|
Kumar S, Rao N, Ge R. Emerging Roles of ADAMTSs in Angiogenesis and Cancer. Cancers (Basel) 2012; 4:1252-99. [PMID: 24213506 PMCID: PMC3712723 DOI: 10.3390/cancers4041252] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 11/21/2012] [Accepted: 11/23/2012] [Indexed: 12/18/2022] Open
Abstract
A Disintegrin-like And Metalloproteinase with ThromboSpondin motifs—ADAMTSs—are a multi-domain, secreted, extracellular zinc metalloproteinase family with 19 members in humans. These extracellular metalloproteinases are known to cleave a wide range of substrates in the extracellular matrix. They have been implicated in various physiological processes, such as extracellular matrix turnover, melanoblast development, interdigital web regression, blood coagulation, ovulation, etc. ADAMTSs are also critical in pathological processes such as arthritis, atherosclerosis, cancer, angiogenesis, wound healing, etc. In the past few years, there has been an explosion of reports concerning the role of ADAMTS family members in angiogenesis and cancer. To date, 10 out of the 19 members have been demonstrated to be involved in regulating angiogenesis and/or cancer. The mechanism involved in their regulation of angiogenesis or cancer differs among different members. Both angiogenesis-dependent and -independent regulation of cancer have been reported. This review summarizes our current understanding on the roles of ADAMTS in angiogenesis and cancer and highlights their implications in cancer therapeutic development.
Collapse
Affiliation(s)
- Saran Kumar
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| | | | | |
Collapse
|