51
|
Wang D, Hu G, Du Y, Zhang C, Lu Q, Lv N, Luo S. Aberrant activation of hedgehog signaling promotes cell proliferation via the transcriptional activation of forkhead Box M1 in colorectal cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:23. [PMID: 28148279 PMCID: PMC5288899 DOI: 10.1186/s13046-017-0491-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 01/10/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Recent evidence suggests that the aberrant activation of Hedgehog (Hh) signaling by Gli transcription factors is characteristic of a variety of aggressive human carcinomas, including colorectal cancer (CRC). Forkhead box M1 (FoxM1) controls the expression of a number of cell cycle regulatory proteins, and FoxM1 expression is elevated in a broad range of human malignancies, which suggests that it plays a crucial role in tumorigenesis. However, the mechanisms underlying FoxM1 expression are not fully understood. Here, we aim to further investigate the molecular mechanism by which Gli1 regulates FoxM1 in CRC. METHODS Western blotting and immunohistochemistry (IHC) were used to evaluate FoxM1 and Gli1 protein expression, respectively, in CRC tissues and matched adjacent normal mucosa. BrdU (5-bromo-2'-deoxyuridine) and clone formation assays were used to clarify the influence of FoxM1 on CRC cell growth and proliferation. Chromatin immunoprecipitation (ChIP) and luciferase experiments were performed to explore the potential mechanisms by which Gli1 regulates FoxM1. Additionally, the protein and mRNA expression levels of Gli1 and FoxM1 in six CRC cell lines were measured using Western blotting and real-time PCR. Finally, the effect of Hh signaling on the expression of FoxM1 was studied in cell biology experiments, and the effects of Hh signaling activation and FoxM1 inhibition on the distribution of CRC cells among cell cycle phases was assessed by flow cytometry. RESULTS Gli1 and FoxM1 were abnormally elevated in human CRC tissues compared with matched adjacent normal mucosa samples, and FoxM1 is a downstream target gene of the transcription factor Gli1 in CRC and promoted CRC cell growth and proliferation. Moreover, the aberrant activation of Hh signaling promoted CRC cell proliferation by directly binding to the promoter of FoxM1 and transactivating the activity of FoxM1 in CRC cells. CONCLUSION The dysregulation of the Hh-Gli1-FoxM1 axis is essential for the proliferation and growth of human CRC cells and offers a potent target for therapeutic intervention in CRC.
Collapse
Affiliation(s)
- DeJie Wang
- Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Guohui Hu
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.,Jiangxi Key Laboratory of Molecular Diagnosis and Precision Medicine, Nancahng, Jiangxi, 330006, China
| | - Ying Du
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.,Jiangxi Key Laboratory of Molecular Diagnosis and Precision Medicine, Nancahng, Jiangxi, 330006, China
| | - Cheng Zhang
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.,Jiangxi Key Laboratory of Molecular Diagnosis and Precision Medicine, Nancahng, Jiangxi, 330006, China
| | - Quqin Lu
- Department of Epidemiology & Biostatistics, School of Public Health, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Nonghua Lv
- Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi, 330006, China.
| | - Shiwen Luo
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China. .,Jiangxi Key Laboratory of Molecular Diagnosis and Precision Medicine, Nancahng, Jiangxi, 330006, China.
| |
Collapse
|
52
|
Abstract
Forkhead box (Fox) transcription factors are evolutionarily conserved in organisms ranging from yeast to humans. They regulate diverse biological processes both during development and throughout adult life. Mutations in many Fox genes are associated with human disease and, as such, various animal models have been generated to study the function of these transcription factors in mechanistic detail. In many cases, the absence of even a single Fox transcription factor is lethal. In this Primer, we provide an overview of the Fox family, highlighting several key Fox transcription factor families that are important for mammalian development.
Collapse
Affiliation(s)
- Maria L Golson
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
53
|
Pradhan A, Ustiyan V, Zhang Y, Kalin TV, Kalinichenko VV. Forkhead transcription factor FoxF1 interacts with Fanconi anemia protein complexes to promote DNA damage response. Oncotarget 2016; 7:1912-26. [PMID: 26625197 PMCID: PMC4811506 DOI: 10.18632/oncotarget.6422] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/15/2015] [Indexed: 12/19/2022] Open
Abstract
Forkhead box F1 (Foxf1) transcription factor is an important regulator of embryonic development but its role in tumor cells remains incompletely understood. While 16 proteins were characterized in Fanconi anemia (FA) core complex, its interactions with cellular transcriptional machinery remain poorly characterized. Here, we identified FoxF1 protein as a novel interacting partner of the FA complex proteins. Using multiple human and mouse tumor cell lines and Foxf1+/− mice we demonstrated that FoxF1 physically binds to and increases stability of FA proteins. FoxF1 co-localizes with FANCD2 in DNA repair foci in cultured cells and tumor tissues obtained from cisplatin-treated mice. In response to DNA damage, FoxF1-deficient tumor cells showed significantly reduced FANCD2 monoubiquitination and FANCM phosphorylation, resulting in impaired formation of DNA repair foci. FoxF1 knockdown caused chromosomal instability, nuclear abnormalities, and increased tumor cell death in response to DNA-damaging agents. Overexpression of FoxF1 in DNA-damaged cells improved stability of FA proteins, decreased chromosomal and nuclear aberrations, restored formation of DNA repair foci and prevented cell death after DNA damage. These findings demonstrate that FoxF1 is a key component of FA complexes and a critical mediator of DNA damage response in tumor cells.
Collapse
Affiliation(s)
- Arun Pradhan
- Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| | - Vladimir Ustiyan
- Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| | - Yufang Zhang
- Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| | - Tanya V Kalin
- Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| | - Vladimir V Kalinichenko
- Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| |
Collapse
|
54
|
Cao X, Ren K, Song Z, Li D, Quan M, Zheng Y, Cao J, Zeng W, Zou H. 7-Difluoromethoxyl-5,4′-di-n-octyl genistein inhibits the stem-like characteristics of gastric cancer stem-like cells and reverses the phenotype of epithelial-mesenchymal transition in gastric cancer cells. Oncol Rep 2016; 36:1157-65. [DOI: 10.3892/or.2016.4848] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/02/2016] [Indexed: 11/06/2022] Open
|
55
|
Ustiyan V, Zhang Y, Perl AKT, Whitsett JA, Kalin TV, Kalinichenko VV. β-catenin and Kras/Foxm1 signaling pathway are critical to restrict Sox9 in basal cells during pulmonary branching morphogenesis. Dev Dyn 2016; 245:590-604. [PMID: 26869074 DOI: 10.1002/dvdy.24393] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/01/2016] [Accepted: 02/06/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Lung morphogenesis is regulated by interactions between the canonical Wnt/β-catenin and Kras/ERK/Foxm1 signaling pathways that establish proximal-peripheral patterning of lung tubules. How these interactions influence the development of respiratory epithelial progenitors to acquire airway as compared to alveolar epithelial cell fate is unknown. During branching morphogenesis, SOX9 transcription factor is normally restricted from conducting airway epithelial cells and is highly expressed in peripheral, acinar progenitor cells that serve as precursors of alveolar type 2 (AT2) and AT1 cells as the lung matures. RESULTS To identify signaling pathways that determine proximal-peripheral cell fate decisions, we used the SFTPC gene promoter to delete or overexpress key members of Wnt/β-catenin and Kras/ERK/Foxm1 pathways in fetal respiratory epithelial progenitor cells. Activation of β-catenin enhanced SOX9 expression in peripheral epithelial progenitors, whereas deletion of β-catenin inhibited SOX9. Surprisingly, deletion of β-catenin caused accumulation of atypical SOX9-positive basal cells in conducting airways. Inhibition of Wnt/β-catenin signaling by Kras(G12D) or its downstream target Foxm1 stimulated SOX9 expression in basal cells. Genetic inactivation of Foxm1 from Kras(G12D) -expressing epithelial cells prevented the accumulation of SOX9-positive basal cells in developing airways. CONCLUSIONS Interactions between the Wnt/β-catenin and the Kras/ERK/Foxm1 pathways are essential to restrict SOX9 expression in basal cells. Developmental Dynamics 245:590-604, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vladimir Ustiyan
- Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, Ohio
| | - Yufang Zhang
- Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, Ohio
| | - Anne-Karina T Perl
- Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, Ohio
| | - Jeffrey A Whitsett
- Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, Ohio.,Division of Developmental Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, Ohio
| | - Tanya V Kalin
- Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, Ohio
| | - Vladimir V Kalinichenko
- Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, Ohio.,Division of Developmental Biology, Perinatal Institute of Cincinnati Children's Research Foundation, Cincinnati, Ohio
| |
Collapse
|
56
|
Fang B. RAS signaling and anti-RAS therapy: lessons learned from genetically engineered mouse models, human cancer cells, and patient-related studies. Acta Biochim Biophys Sin (Shanghai) 2016; 48:27-38. [PMID: 26350096 DOI: 10.1093/abbs/gmv090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/09/2015] [Indexed: 12/13/2022] Open
Abstract
Activating mutations of oncogenic RAS genes are frequently detected in human cancers. The studies in genetically engineered mouse models (GEMMs) reveal that Kras-activating mutations predispose mice to early onset tumors in the lung, pancreas, and gastrointestinal tract. Nevertheless, most of these tumors do not have metastatic phenotypes. Metastasis occurs when tumors acquire additional genetic changes in other cancer driver genes. Studies on clinical specimens also demonstrated that KRAS mutations are present in premalignant tissues and that most of KRAS mutant human cancers have co-mutations in other cancer driver genes, including TP53, STK11, CDKN2A, and KMT2C in lung cancer; APC, TP53, and PIK3CA in colon cancer; and TP53, CDKN2A, SMAD4, and MED12 in pancreatic cancer. Extensive efforts have been devoted to develop therapeutic agents that target enzymes involved in RAS posttranslational modifications, that inhibit downstream effectors of RAS signaling pathways, and that kill RAS mutant cancer cells through synthetic lethality. Recent clinical studies have revealed that sorafenib, a pan-RAF and VEGFR inhibitor, has impressive benefits for KRAS mutant lung cancer patients. Combination therapy of MEK inhibitors with either docetaxel, AKT inhibitors, or PI3K inhibitors also led to improved clinical responses in some KRAS mutant cancer patients. This review discusses knowledge gained from GEMMs, human cancer cells, and patient-related studies on RAS-mediated tumorigenesis and anti-RAS therapy. Emerging evidence demonstrates that RAS mutant cancers are heterogeneous because of the presence of different mutant alleles and/or co-mutations in other cancer driver genes. Effective subclassifications of RAS mutant cancers may be necessary to improve patients' outcomes through personalized precision medicine.
Collapse
Affiliation(s)
- Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
57
|
Modeling K-Ras-driven lung adenocarcinoma in mice: preclinical validation of therapeutic targets. J Mol Med (Berl) 2015; 94:121-35. [DOI: 10.1007/s00109-015-1360-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/22/2015] [Indexed: 01/10/2023]
|
58
|
Zheng Y, Guo J, Zhou J, Lu J, Chen Q, Zhang C, Qing C, Koeffler HP, Tong Y. FoxM1 transactivates PTTG1 and promotes colorectal cancer cell migration and invasion. BMC Med Genomics 2015; 8:49. [PMID: 26264222 PMCID: PMC4534164 DOI: 10.1186/s12920-015-0126-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 07/31/2015] [Indexed: 12/13/2022] Open
Abstract
Background Metastasis is the major cause of cancer-related death. Forkhead Box M1 (FoxM1) is a master regulator of tumor metastasis. This study aims to identify new FoxM1 targets in regulating tumor metastasis using bioinformatics tools as well as biological experiments. Methods Illumina microarray was used to profile WT and PTTG1 knockout HCT116 cells. R2 Genomics Analysis was used to identify PTTG1 as a potential FoxM1 targeted gene. Luciferase reporter array, EMSA and Chromatin Immunoprecipitation (ChIP) were used to determine the binding of FoxM1 to PTTG1 promoter. Boyden chamber assay was used to evaluate the effects of FoxM1-PTTG1 on cell migration and invasion. Splenic-injection induced liver metastasis model was used to evaluate the effects of FoxM1-PTTG1 on liver metastasis of colorectal cancer. Results Analyses of multiple microarray datasets derived from human colorectal cancer indicated that correlation levels of FoxM1 and pituitary tumor transforming gene (PTTG1) are highly concordant (R = 0.68 ~ 0.89, p = 2.1E-226 ~ 9.6E-86). FoxM1 over-expression increased and knock-down decreased PTTG1 expression. Luciferase reporter assay identified that the −600 to −300 bp region of PTTG1 promoter is important for FoxM1 to enhance PTTG1 promoter activity. EMSA and ChIP assays confirmed that FoxM1 directly binds to PTTG1 promoter at the −391 to −385 bp region in colorectal cancer cells. Boyden chamber assay indicated that both FoxM1 and PTTG1 regulate migration and invasion of HCT116 and SW620 colorectal cancer cells. Further in vivo assays indicated that PTTG1 knock out decreased the liver metastasis of FoxM1 over-expressing HCT116 cells. Microarray analyses identified 662 genes (FDR < 0.05) differentially expressed between WT and PTTG1−/− HCT116 cells. Among them, dickkopf homolog 1 (DKK1), a known WNT pathway inhibitor, was suppressed by PTTG1 and FoxM1. Conclusions PTTG1 is a FoxM1 targeted gene. FoxM1 binds to PTTG1 promoter to enhance PTTG1 transcription, and FoxM1-PTTG1 pathway promotes colorectal cancer migration and invasion. Electronic supplementary material The online version of this article (doi:10.1186/s12920-015-0126-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yun Zheng
- Department of Medicine, Cedars-Sinai Medical Center, UCLA School of Medicine, Room 3021, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA. .,Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Jinjun Guo
- Department of Medicine, Cedars-Sinai Medical Center, UCLA School of Medicine, Room 3021, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA. .,Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jin Zhou
- Division of Epidemiology and Biostatistics, College of Public Health, University of Arizona, Tucson, AZ, USA.
| | - Jinjian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Qi Chen
- Department of Medicine, Cedars-Sinai Medical Center, UCLA School of Medicine, Room 3021, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
| | - Cui Zhang
- Department of Pathology, Xinxiang Medical University, 601 East Jinsui Ave, Xinxiang, Henan, China.
| | - Chen Qing
- School of Pharmaceutical Science, Kunming Medical University, 1168 Western Chunrong Road,Yuhua Street, Chenggong New City, Kunming, China.
| | - H Philip Koeffler
- Department of Medicine, Cedars-Sinai Medical Center, UCLA School of Medicine, Room 3021, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
| | - Yunguang Tong
- Department of Medicine, Cedars-Sinai Medical Center, UCLA School of Medicine, Room 3021, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA. .,Department of Pathology, Xinxiang Medical University, 601 East Jinsui Ave, Xinxiang, Henan, China.
| |
Collapse
|
59
|
Kopanja D, Pandey A, Kiefer M, Wang Z, Chandan N, Carr JR, Franks R, Yu DY, Guzman G, Maker A, Raychaudhuri P. Essential roles of FoxM1 in Ras-induced liver cancer progression and in cancer cells with stem cell features. J Hepatol 2015; 63:429-436. [PMID: 25828473 PMCID: PMC4508215 DOI: 10.1016/j.jhep.2015.03.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 03/13/2015] [Accepted: 03/19/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Overexpression of FoxM1 correlates with poor prognosis in hepatocellular carcinoma (HCC). Moreover, the Ras-signaling pathway is found to be ubiquitously activated in HCC through epigenetic silencing of the Ras-regulators. We investigated the roles of FoxM1 in Ras-driven HCC, and on HCC cells with stem-like features. METHODS We employed a transgenic mouse model that expresses the oncogenic Ras in the liver. That strain was crossed with a strain that harbor floxed alleles of FoxM1 and the MxCre gene that allows conditional deletion of FoxM1. FoxM1 alleles were deleted after development of HCC, and the effects on the tumors were analyzed. Also, FoxM1 siRNA was used in human HCC cell lines to determine its role in the survival of the HCC cells with stem cell features. RESULTS Ras-driven tumors overexpress FoxM1. Deletion of FoxM1 inhibits HCC progression. There was increased accumulation of reactive oxygen species (ROS) in the FoxM1 deleted HCC cells. Moreover, FoxM1 deletion caused a disproportionate loss of the CD44+ and EpCAM+ HCC cells in the tumors. We show that FoxM1 directly activates expression of CD44 in human HCC cells. Moreover, the human HCC cells with stem cell features are addicted to FoxM1 for ROS-regulation and survival. CONCLUSION Our results provide genetic evidence for an essential role of FoxM1 in the progression of Ras-driven HCC. In addition, FoxM1 is required for the expression of CD44 in HCC cells. Moreover, FoxM1 plays a critical role in the survival of the HCC cells with stem cell features by regulating ROS.
Collapse
Affiliation(s)
- Dragana Kopanja
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900 S. Ashland Ave., Chicago, IL 60607, United States
| | - Akshay Pandey
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900 S. Ashland Ave., Chicago, IL 60607, United States
| | - Megan Kiefer
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900 S. Ashland Ave., Chicago, IL 60607, United States
| | - Zebin Wang
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900 S. Ashland Ave., Chicago, IL 60607, United States
| | - Neha Chandan
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900 S. Ashland Ave., Chicago, IL 60607, United States
| | - Janai R Carr
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900 S. Ashland Ave., Chicago, IL 60607, United States; Department of Medicine, University of California, San Francisco, CA, United States
| | - Roberta Franks
- Transgenic Production Facility, University of Illinois, College of Medicine, 909 S. Wolcott Ave, Chicago, IL 60612, United States
| | - Dae-Yeul Yu
- Laboratory of Human Genomics, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea
| | - Grace Guzman
- Department of Pathology, University of Illinois, College of Medicine, 840 S. Wood St, Chicago, IL 60612, United States
| | - Ajay Maker
- Department of Medicine, University of Illinois, College of Medicine, 909 S. Wolcott Ave, Chicago, IL 60612, United States
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois, College of Medicine, 900 S. Ashland Ave., Chicago, IL 60607, United States; Jesse Brown VA Medical Center, 820 S. Damen Ave., Chicago, IL 60612, United States.
| |
Collapse
|
60
|
Xia H, Ren X, Bolte CS, Ustiyan V, Zhang Y, Shah TA, Kalin TV, Whitsett JA, Kalinichenko VV. Foxm1 regulates resolution of hyperoxic lung injury in newborns. Am J Respir Cell Mol Biol 2015; 52:611-21. [PMID: 25275225 DOI: 10.1165/rcmb.2014-0091oc] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Current treatments for inflammation associated with bronchopulmonary dysplasia (BPD) fail to show clinical efficacy. Foxm1, a transcription factor of the Forkhead box family, is a critical mediator of lung development and carcinogenesis, but its role in BPD-associated pulmonary inflammation is unknown. Immunohistochemistry and RNA analysis were used to assess Foxm1 in lung tissue from hyperoxia-treated mice and patients with BPD. LysM-Cre/Foxm1(-/-) mice, in which Foxm1 was deleted from myeloid-derived inflammatory cells, including macrophages, monocytes, and neutrophils, were exposed to neonatal hyperoxia, causing lung injury and remodeling. Measurements of lung function and flow cytometry were used to evaluate the effects of Foxm1 deletion on pulmonary inflammation and repair. Increased Foxm1 expression was observed in pulmonary macrophages of hyperoxia-exposed mice and in lung tissue from patients with BPD. After hyperoxia, deletion of Foxm1 from the myeloid cell lineage decreased numbers of interstitial macrophages (CD45(+)CD11b(+)Ly6C(-)Ly6G(-)F4/80(+)CD68(-)) and impaired alveologenesis and lung function. The exaggerated BPD-like phenotype observed in hyperoxia-exposed LysM-Cre/Foxm1(-/-) mice was associated with increased expression of neutrophil-derived myeloperoxidase, proteinase 3, and cathepsin g, all of which are critical for lung remodeling and inflammation. Our data demonstrate that Foxm1 influences pulmonary inflammatory responses to hyperoxia, inhibiting neutrophil-derived enzymes and enhancing monocytic responses that limit alveolar injury and remodeling in neonatal lungs.
Collapse
|
61
|
VanArsdale T, Boshoff C, Arndt KT, Abraham RT. Molecular Pathways: Targeting the Cyclin D-CDK4/6 Axis for Cancer Treatment. Clin Cancer Res 2015; 21:2905-10. [PMID: 25941111 DOI: 10.1158/1078-0432.ccr-14-0816] [Citation(s) in RCA: 278] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 04/13/2015] [Indexed: 11/16/2022]
Abstract
Cancer cells bypass normal controls over mitotic cell-cycle progression to achieve a deregulated state of proliferation. The retinoblastoma tumor suppressor protein (pRb) governs a key cell-cycle checkpoint that normally prevents G1-phase cells from entering S-phase in the absence of appropriate mitogenic signals. Cancer cells frequently overcome pRb-dependent growth suppression via constitutive phosphorylation and inactivation of pRb function by cyclin-dependent kinase (CDK) 4 or CDK6 partnered with D-type cyclins. Three selective CDK4/6 inhibitors, palbociclib (Ibrance; Pfizer), ribociclib (Novartis), and abemaciclib (Lilly), are in various stages of development in a variety of pRb-positive tumor types, including breast cancer, melanoma, liposarcoma, and non-small cell lung cancer. The emerging, positive clinical data obtained to date finally validate the two decades-old hypothesis that the cyclin D-CDK4/6 pathway is a rational target for cancer therapy.
Collapse
Affiliation(s)
- Todd VanArsdale
- Oncology Research Unit, Pfizer Worldwide Research and Development, San Diego, California
| | | | - Kim T Arndt
- Oncology Research Unit, Pfizer Worldwide Research and Development, Pearl River, New York
| | - Robert T Abraham
- Oncology Research Unit, Pfizer Worldwide Research and Development, San Diego, California.
| |
Collapse
|
62
|
Valverde A, Peñarando J, Cañas A, López-Sánchez LM, Conde F, Hernández V, Peralbo E, López-Pedrera C, de la Haba-Rodríguez J, Aranda E, Rodríguez-Ariza A. Simultaneous inhibition of EGFR/VEGFR and cyclooxygenase-2 targets stemness-related pathways in colorectal cancer cells. PLoS One 2015; 10:e0131363. [PMID: 26107817 PMCID: PMC4479446 DOI: 10.1371/journal.pone.0131363] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 06/01/2015] [Indexed: 02/06/2023] Open
Abstract
Despite the demonstrated benefits of anti-EGFR/VEGF targeted therapies in metastatic colorectal cancer (mCRC), many patients initially respond, but then show evidence of disease progression. New therapeutic strategies are needed to make the action of available drugs more efficient. Our study aimed to explore whether simultaneous targeting of EGFR/VEGF and cyclooxygenase-2 (COX-2) may aid the treatment and management of mCRC patients. The dual tyrosine kinase inhibitor AEE788 and celecoxib were used to inhibit EGFR/VEGFR and COX-2, respectively, in colorectal cancer cells. COX-2 inhibition with celecoxib augmented the antitumoral and antiangiogenic efficacy of AEE788, as indicated by the inhibition of cell proliferation, induction of apoptosis and G1 cell cycle arrest, down-regulation of VEGF production by cancer cells and reduction of cell migration. These effects were related with a blockade in the EGFR/VEGFR signaling axis. Notably, the combined AEE788/celecoxib treatment prevented β-catenin nuclear accumulation in tumor cells. This effect was associated with a significant downregulation of FOXM1 protein levels and an impairment in the interaction of this transcription factor with β-catenin, which is required for its nuclear localization. Furthermore, the combined treatment also reduced the expression of the stem cell markers Oct 3/4, Nanog, Sox-2 and Snail in cancer cells, and contributed to the diminution of the CSC subpopulation, as indicated by colonosphere formation assays. In conclusion, the combined treatment of AEE788 and celecoxib not only demonstrated enhanced anti-tumoral efficacy in colorectal cancer cells, but also reduced colon CSCs subpopulation by targeting stemness-related pathways. Therefore, the simultaneous targeting of EGFR/VEGF and COX-2 may aid in blocking mCRC progression and improve the efficacy of existing therapies in colorectal cancer.
Collapse
Affiliation(s)
- Araceli Valverde
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Córdoba, Spain
- Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jon Peñarando
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Córdoba, Spain
- Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain
| | - Amanda Cañas
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Córdoba, Spain
- Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura M. López-Sánchez
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Córdoba, Spain
- Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Conde
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Córdoba, Spain
- Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain
| | - Vanessa Hernández
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Córdoba, Spain
- Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain
| | - Esther Peralbo
- Research Unit, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Córdoba, Spain
| | - Chary López-Pedrera
- Research Unit, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Córdoba, Spain
| | - Juan de la Haba-Rodríguez
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Córdoba, Spain
- Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain
| | - Enrique Aranda
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Córdoba, Spain
- Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Rodríguez-Ariza
- Oncology Department, Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, Córdoba, Spain
- Spanish Cancer Network (RTICC), Instituto de Salud Carlos III, Madrid, Spain
- * E-mail:
| |
Collapse
|
63
|
Kalinichenko VV, Kalin TV. Is there potential to target FOXM1 for 'undruggable' lung cancers? Expert Opin Ther Targets 2015; 19:865-7. [PMID: 25936405 DOI: 10.1517/14728222.2015.1042366] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Published studies with transgenic mice convincingly showed that Forkhead Box transcription factor M1 (FOXM1) transcription factor is an important component of the KRAS/ERK signaling pathway in respiratory epithelial cells. FOXM1 is required for oncogenic KRAS signaling in mouse lung cancer models and therefore, clear potential exists to target FOXM1 in human NSCLC driven by activated KRAS mutations. To date, several approaches to inhibit FOXM1 in cancer cells have been explored. These include siRNA/shRNA-mediated inhibition of Foxm1 mRNA, sequestration of FOXM1 protein in nucleoli using ARF peptide, inhibition of FOXM1 binding to its target promoter DNAs by the FDI-6 small-molecule compound and inhibition of proteasomes by thiazole antibiotics. Additional studies are needed to determine if inhibition of FOXM1 is beneficial for treatment of KRAS mutant NSCLCs in human patients and to develop effective delivery systems for FOXM1 inhibitors. If successful, additional strategies can be explored to screen for novel FOXM1 inhibitors, such as targeting FOXM1 nuclear localization, nuclear export or protein-protein interactions with activating kinases and co-activator proteins. Altogether, inhibition of FOXM1, either alone or in combination with other anticancer drugs, could be beneficial for treatment of KRAS mutant NSCLCs that are resistant to conventional chemotherapy.
Collapse
Affiliation(s)
- Vladimir V Kalinichenko
- Cincinnati Children's Hospital Medical Center, Division of Pulmonary Biology , 3333 Burnet Ave, MLC 7009, Cincinnati, OH 45229 , USA +1 513 636 4822 ; +1 513 636 2423 ;
| | | |
Collapse
|
64
|
Bolte C, Ren X, Tomley T, Ustiyan V, Pradhan A, Hoggatt A, Kalin TV, Herring BP, Kalinichenko VV. Forkhead box F2 regulation of platelet-derived growth factor and myocardin/serum response factor signaling is essential for intestinal development. J Biol Chem 2015; 290:7563-75. [PMID: 25631042 DOI: 10.1074/jbc.m114.609487] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Alterations in the forkhead box F2 gene expression have been reported in numerous pathologies, and Foxf2(-/-) mice are perinatal lethal with multiple malformations; however, molecular mechanisms pertaining to Foxf2 signaling are severely lacking. In this study, Foxf2 requirements in murine smooth muscle cells were examined using a conditional knock-out approach. We generated novel Foxf2-floxed mice, which we bred to smMHC-Cre-eGFP mice to generate a mouse line with Foxf2 deleted specifically from smooth muscle. These mice exhibited growth retardation due to reduced intestinal length as well as inflammation and remodeling of the small intestine. Colons of Tg(smMHC-Cre-eGFP(+/-));Foxf2(-/-) mice had expansion of the myenteric nerve plexus and increased proliferation of smooth muscle cells leading to thickening of the longitudinal smooth muscle layer. Foxf2 deficiency in colonic smooth muscle was associated with increased expression of Foxf1, PDGFa, PDGFb, PDGF receptor α, and myocardin. FOXF2 bound to promoter regions of these genes indicating direct transcriptional regulation. Foxf2 repressed Foxf1 promoter activity in co-transfection experiments. We also show that knockdown of Foxf2 in colonic smooth muscle cells in vitro and in transgenic mice increased myocardin/serum response factor signaling and increased expression of contractile proteins. Foxf2 attenuated myocardin/serum response factor signaling in smooth muscle cells through direct binding to the N-terminal region of myocardin. Our results indicate that Foxf2 signaling in smooth muscle cells is essential for intestinal development and serum response factor signaling.
Collapse
Affiliation(s)
- Craig Bolte
- From the Department of Pediatrics, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229 and
| | - Xiaomeng Ren
- From the Department of Pediatrics, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229 and
| | - Tatiana Tomley
- From the Department of Pediatrics, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229 and
| | - Vladimir Ustiyan
- From the Department of Pediatrics, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229 and
| | - Arun Pradhan
- From the Department of Pediatrics, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229 and
| | - April Hoggatt
- the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Tanya V Kalin
- From the Department of Pediatrics, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229 and
| | - B Paul Herring
- the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Vladimir V Kalinichenko
- From the Department of Pediatrics, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229 and
| |
Collapse
|
65
|
Zhao B, Barrera LA, Ersing I, Willox B, Schmidt SCS, Greenfeld H, Zhou H, Mollo SB, Shi TT, Takasaki K, Jiang S, Cahir-McFarland E, Kellis M, Bulyk ML, Kieff E, Gewurz BE. The NF-κB genomic landscape in lymphoblastoid B cells. Cell Rep 2014; 8:1595-606. [PMID: 25159142 DOI: 10.1016/j.celrep.2014.07.037] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/09/2014] [Accepted: 07/21/2014] [Indexed: 01/17/2023] Open
Abstract
The nuclear factor κB (NF-κΒ) subunits RelA, RelB, cRel, p50, and p52 are each critical for B cell development and function. To systematically characterize their responses to canonical and noncanonical NF-κB pathway activity, we performed chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-seq) analysis in lymphoblastoid B cell lines (LCLs). We found a complex NF-κB-binding landscape, which did not readily reflect the two NF-κB pathway paradigms. Instead, 10 subunit-binding patterns were observed at promoters and 11 at enhancers. Nearly one-third of NF-κB-binding sites lacked κB motifs and were instead enriched for alternative motifs. The oncogenic forkhead box protein FOXM1 co-occupied nearly half of NF-κB-binding sites and was identified in protein complexes with NF-κB on DNA. FOXM1 knockdown decreased NF-κB target gene expression and ultimately induced apoptosis, highlighting FOXM1 as a synthetic lethal target in B cell malignancy. These studies provide a resource for understanding mechanisms that underlie NF-κB nuclear activity and highlight opportunities for selective NF-κB blockade.
Collapse
Affiliation(s)
- Bo Zhao
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Luis A Barrera
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA; Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ina Ersing
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Bradford Willox
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Stefanie C S Schmidt
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Hannah Greenfeld
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Hufeng Zhou
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah B Mollo
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Tommy T Shi
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kaoru Takasaki
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Sizun Jiang
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ellen Cahir-McFarland
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA; Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Elliott Kieff
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin E Gewurz
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|