51
|
Tsubochi H, Minegishi K, Goto A, Nakamura R, Matsubara D, Dobashi Y. EphA2, a possible target of miR-200a, functions through the AKT2 pathway in human lung carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:2201-2210. [PMID: 32922621 PMCID: PMC7476936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
We previously reported that miR-200a was highly up-regulated in lung carcinoma, exhibiting a copy number increase (CNI) of the AKT2 gene (AKT2+ group) in defined subsets, i.e., adenocarcinoma and early stages of carcinoma (pStage I/II). In this study, we searched possible targets of miR-200a in these subsets by IHC analyses focusing on the expression of known target proteins of miR-200a: beta-catenin, EphA2, ZEB1, PTEN, and YAP-1, as well as E-cadherin, the expression of which is suppressed by ZEB1. Among those 6 proteins, when all 38 cases of surgically resected specimens were analyzed as a whole, IHC score of ZEB1 was inversely (ρ=-.417) and E-cadherin was positively (ρ=.345) correlated with miR-200a expression. However, only EphA2 was inversely correlated with the expression of miR-200a in adenocarcinoma (ρ=-.496) and in pStage I/II group (ρ=-.547), while no correlation was seen in non-adenocarcinoma, squamous cell carcinoma, or pStage III carcinoma. Furthermore, by comparison of 3 groups categorized according to the AKT gene increase, only EphA2 was down-regulated to a statistically significant level in the AKT2+ group in both adenocarcinoma (p=.0447) and pStage I/II carcinoma (p=.0458). These results suggest that in lung carcinomas, higher Akt activation caused by increased AKT2 gene copy number leads to the upregulation of miR-200a, which exerts its function as a suppressor of EphA2 in adenocarcinoma and the early stages of carcinomas.
Collapse
Affiliation(s)
- Hiroyoshi Tsubochi
- Department of Thoracic Surgery, Saitama Medical Center, Jichi Medical UniversityOmiya, Saitama, Japan
| | - Kentaro Minegishi
- Department of Thoracic Surgery, Saitama Medical Center, Jichi Medical UniversityOmiya, Saitama, Japan
| | - Akiteru Goto
- Department of Cellular and Organ Pathology, Akita University School of MedicineJapan
| | - Ritsuko Nakamura
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa UniversityKanazawa, Ishikawa, Japan
| | - Daisuke Matsubara
- Department of Integrative Pathology, Jichi Medical UniversityShimotsuke, Tochigi, Japan
| | - Yoh Dobashi
- Department of Pathology, Saitama Medical Center, Jichi Medical UniversityOmiya, Saitama, Japan
- Department of Pathology, International University of Health and Welfare HospitalNasushiobara, Tochigi, Japan
| |
Collapse
|
52
|
Hao Y, Li G. Role of EFNA1 in tumorigenesis and prospects for cancer therapy. Biomed Pharmacother 2020; 130:110567. [PMID: 32745910 DOI: 10.1016/j.biopha.2020.110567] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/14/2020] [Accepted: 07/26/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the major threats to human health. It is of vital importance to reveal the mechanisms of tumorigenesis, identify effective biomarkers and develop novel treatments to improve patient outcome. EFNA1 (ephrinA1) is a member of the EFN family, and it has been studied extensively since its discovery in 1990. Increasing evidence indicates that EFNA1 plays a pivotal role in the pathogenesis of tumors. We provide a detailed overview of the expression and prognostic value of EFNA1 in different types of human malignancies. We briefly discuss the mechanisms of EFNA1 induction in hypoxic environments and its pro-angiogenic function in different cancer cells. We describe the effects of EFNA1 on tumor growth, invasiveness and metastasis. We summarize recent advances in EFNA1-associated cancer therapeutics with emphasis on the prospect of novel anti-tumor methods based on EFNA1.
Collapse
Affiliation(s)
- Yongping Hao
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Liaoning, 110001, China.
| | - Guang Li
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Liaoning, 110001, China.
| |
Collapse
|
53
|
Feng J, Lu SS, Xiao T, Huang W, Yi H, Zhu W, Fan S, Feng XP, Li JY, Yu ZZ, Gao S, Nie GH, Tang YY, Xiao ZQ. ANXA1 Binds and Stabilizes EphA2 to Promote Nasopharyngeal Carcinoma Growth and Metastasis. Cancer Res 2020; 80:4386-4398. [PMID: 32737118 DOI: 10.1158/0008-5472.can-20-0560] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/16/2020] [Accepted: 07/28/2020] [Indexed: 11/16/2022]
Abstract
Overexpression of ANXA1 and EphA2 has been linked to various cancers and both proteins have attracted considerable attention for the development of new anticancer drugs. Here we report that ANXA1 competes with Cbl for binding EphA2 and increases its stability by inhibiting Cbl-mediated EphA2 ubiquitination and degradation in nasopharyngeal carcinoma (NPC). Binding of ANXA1 to EphA2 promoted NPC cell growth and metastasis in vitro and in vivo by elevating EphA2 levels and increasing activity of EphA2 oncogenic signaling (pS897-EphA2). Expression of ANXA1 and EphA2 was positively correlated and both were significantly higher in NPC tissues than in the normal nasopharyngeal epithelial tissues. Patients with high expression of both proteins presented poorer disease-free survival and overall survival relative to patients with high expression of one protein alone. Furthermore, amino acid residues 20-30aa and 28-30aa of the ANXA1 N-terminus bound EphA2. An 11 amino acid-long ANXA1-derived peptide (EYVQTVKSSKG) was developed on the basis of this N-terminal region, which disrupted the connection of ANXA1 with EphA2, successfully downregulating EphA2 expression and dramatically suppressing NPC cell oncogenicity in vitro and in mice. These findings suggest that ANXA1 promotes NPC growth and metastasis via binding and stabilization of EphA2 and present a strategy for targeting EphA2 degradation and treating NPC with a peptide. This therapeutic strategy may also be extended to other cancers with high expression of both proteins. SIGNIFICANCE: These findings show that EphA2 is a potential target for NPC therapeutics and an ANXA1-derived peptide suppresses NPC growth and metastasis. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/20/4386/F1.large.jpg.
Collapse
Affiliation(s)
- Juan Feng
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Shan-Shan Lu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Ta Xiao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Wei Huang
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Yi
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Songqing Fan
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Xue-Ping Feng
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Jiao-Yang Li
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Zheng-Zheng Yu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Guo-Hui Nie
- Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Yao-Yun Tang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Qiang Xiao
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China. .,Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
54
|
Orahoske CM, Li Y, Petty A, Salem FM, Hanna J, Zhang W, Su B, Wang B. Dimeric small molecule agonists of EphA2 receptor inhibit glioblastoma cell growth. Bioorg Med Chem 2020; 28:115656. [PMID: 32828423 DOI: 10.1016/j.bmc.2020.115656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 11/15/2022]
Abstract
EphA2 receptor kinase could become a novel target for anti-glioblastoma treatment. Doxazosin previously identified acts like the endogenous ligand of EphA2 and induces cell apoptosis. Through lead structure modification a derivative of Doxazosin possessing unique dimeric structure showed an improvement in the activity. In the current study, we expanded the dimeric scaffold by lead optimization to explore the chemical space of the conjoining moieties and a slight variation to the core structure. 27 new derivatives were synthesized and examined with EphA2 overexpressed and wild type glioblastoma cell lines for cell proliferation and EphA2 activation. Three new compounds 3d, 3e, and 7bg showed potent and selective activities against the growth of EphA2 overexpressed glioblastoma cells. Dimer 3d modification replaces the long alkyl chain with a short polyethylene glycol chain. Dimer 7bg has a relatively longer polyethylene glycol chain in comparison to compound 3d and the length is more similar to the lead compound. Whereas dimer 3e has a rigid aromatic linker exploring the chemical space. The diversity of the linkers in the active suggest additional hydrogen binding sites has a positive correlation to the activity. All three dimers showed selective activity in EphA2 overexpressed cells, indicating the activity is correlated to the EphA2 targeting effect.
Collapse
Affiliation(s)
- Cody M Orahoske
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH 44115, USA
| | - Yaxin Li
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH 44115, USA
| | - Aaron Petty
- Rammelkamp Center for Research and Department of Medicine, MetroHealth Campus, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Fatma M Salem
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH 44115, USA
| | - Jovana Hanna
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH 44115, USA
| | - Wenjing Zhang
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH 44115, USA
| | - Bin Su
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH 44115, USA.
| | - Bingcheng Wang
- Rammelkamp Center for Research and Department of Medicine, MetroHealth Campus, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
55
|
London M, Gallo E. Critical role of EphA3 in cancer and current state of EphA3 drug therapeutics. Mol Biol Rep 2020; 47:5523-5533. [PMID: 32621117 DOI: 10.1007/s11033-020-05571-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
Abstract
The erythropoietin-producing human hepatocellular (Eph) receptors are transmembrane glycoprotein members of the tyrosine kinase receptors family. The Ephs may bind to various ephrin ligands resulting in the phosphorylation of their tyrosine kinase domain and the activation of the Eph receptor. In this review we focus on EphA3, one receptor of the 14 different Ephs, as it carries out both redundant and restricted functions in the germline development of mammals and in the maintenance of various adult tissues. The loss of EphA3 regulation is correlated with various human malignancies, the most notable being cancer. This receptor is overexpressed and/or mutated in multiple tumors, and is also associated with poor prognosis and decreased survival in patients. Here we highlight the role of EphA3 in normal and malignant tissues that are specific to cancer; these include hematologic disorders, gastric cancer, glioblastoma multiforme, colorectal cancer, lung cancer, renal cell carcinoma, and prostate cancer. Moreover, various anticancer agents against EphA3 have been developed to either inhibit its kinase domain activity or to function as agonists. Thus, we examine the most potent small molecule drugs and mAb-based therapeutics against EphA3 that are currently in pre-clinical or clinical stages.
Collapse
Affiliation(s)
- Max London
- Department of Molecular Genetics, Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Eugenio Gallo
- Department of Molecular Genetics, Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada.
| |
Collapse
|
56
|
Baudet S, Bécret J, Nicol X. Approaches to Manipulate Ephrin-A:EphA Forward Signaling Pathway. Pharmaceuticals (Basel) 2020; 13:ph13070140. [PMID: 32629797 PMCID: PMC7407804 DOI: 10.3390/ph13070140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/19/2020] [Accepted: 06/28/2020] [Indexed: 02/07/2023] Open
Abstract
Erythropoietin-producing hepatocellular carcinoma A (EphA) receptors and their ephrin-A ligands are key players of developmental events shaping the mature organism. Their expression is mostly restricted to stem cell niches in adults but is reactivated in pathological conditions including lesions in the heart, lung, or nervous system. They are also often misregulated in tumors. A wide range of molecular tools enabling the manipulation of the ephrin-A:EphA system are available, ranging from small molecules to peptides and genetically-encoded strategies. Their mechanism is either direct, targeting EphA receptors, or indirect through the modification of intracellular downstream pathways. Approaches enabling manipulation of ephrin-A:EphA forward signaling for the dissection of its signaling cascade, the investigation of its physiological roles or the development of therapeutic strategies are summarized here.
Collapse
|
57
|
Pazopanib and Trametinib as a Synergistic Strategy against Osteosarcoma: Preclinical Activity and Molecular Insights. Cancers (Basel) 2020; 12:cancers12061519. [PMID: 32531992 PMCID: PMC7352822 DOI: 10.3390/cancers12061519] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 02/08/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) inhibitors’ activity in advanced osteosarcoma is significant but short-lived. To prevent or at least delay drug resistance, we explored a vertical inhibition by combining drugs acting at different levels of the RTK pathways (pazopanib + trametinib). We studied pazopanib + trametinib antitumor activity both in vitro and in vivo (MNNG-HOS and KHOS xenografts in NOD/SCID mice) investigating the molecular mechanisms and potential escapes. The involvement of MAPK-PI3K pathways was validated by Nanostring technology, western blot and by silencing/overexpression experiments. Pazopanib targets were expressed on seven osteosarcoma cell lines and their pathways were activated. Pazopanib + trametinib exhibited synergistic antitumor activity by inducing apoptosis and inhibiting ERK1/2 and Akt. In vivo antitumor activity was shown in osteosarcoma-bearing mice. The drug combination significantly down-modulated RTK Ephrin Type-A Receptor 2 (EphA2) and Interleukin-7 Receptor (IL-7R), whereas induced mitogen-activated protein-kinase kinase (MAPKK) MEK6. EphA2 silencing significantly reduced osteosarcoma cell proliferation and migration, while impeding MEK6 up-regulation in the treated cells significantly increased the antitumor effect of the studied drugs. Moreover, the up-regulation of MEK6 reduced combination activity. Pazopanib + trametinib demonstrated synergistic antitumor effects in osteosarcoma models through ERK and Akt inhibition and EphA2 and IL-7R down-modulation. MEK6 up-regulation might evoke escaping mechanism.
Collapse
|
58
|
HDAC7 promotes the oncogenicity of nasopharyngeal carcinoma cells by miR-4465-EphA2 signaling axis. Cell Death Dis 2020; 11:322. [PMID: 32376822 PMCID: PMC7203158 DOI: 10.1038/s41419-020-2521-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/29/2022]
Abstract
HDAC7 plays a crucial role in cancers, and is the main drug target of several HDAC inhibitors. However, the role and mechanism of HDAC7 in nasopharyngeal carcinoma (NPC) are still unclear. In this study, we observed that HDAC7 was significantly upregulated in the NPC tissues relative to normal nasopharyngeal mucosa (NNM) tissues, HDAC7 expression levels were positively correlated with NPC progression and negatively correlated with patient prognosis, and HDAC7 knockdown dramatically inhibited the in vitro proliferation, migration, and invasion of NPC cells, and the growth of NPC xenografts in mice, indicating the HDAC7 promotes the oncogenicity of NPC. Mechanistically, HDAC7 promoted the in vitro proliferation, migration, and invasion of NPC cells by upregulating EphA2, in which miR-4465 mediated HDAC7-regulating EphA2, a direct target gene of miR-4465. We further showed that miR-4465 was significantly downregulated in the NPC tissues relative to NNM tissues, and inhibited the in vitro proliferation, migration, and invasion of NPC cells by targeting EphA2 expression. Moreover, we observed that the expressions of HDAC7, miR-4465, and EphA2 in NPC tissues were correlated. The results suggest that HDAC7 promotes the oncogenicity of NPC by downregulating miR-4465 and subsequently upregulating EphA2, highlighting HDAC7 as a potential therapeutic target for NPC.
Collapse
|
59
|
Vreeken D, Bruikman CS, Cox SML, Zhang H, Lalai R, Koudijs A, van Zonneveld AJ, Hovingh GK, van Gils JM. EPH receptor B2 stimulates human monocyte adhesion and migration independently of its EphrinB ligands. J Leukoc Biol 2020; 108:999-1011. [PMID: 32337793 PMCID: PMC7496365 DOI: 10.1002/jlb.2a0320-283rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 12/17/2022] Open
Abstract
The molecular basis of atherosclerosis is not fully understood and mice studies have shown that Ephrins and EPH receptors play a role in the atherosclerotic process. We set out to assess the role for monocytic EPHB2 and its Ephrin ligands in human atherosclerosis and show a role for EPHB2 in monocyte functions independently of its EphrinB ligands. Immunohistochemical staining of human aortic sections at different stages of atherosclerosis showed that EPHB2 and its ligand EphrinB are expressed in atherosclerotic plaques and that expression proportionally increases with plaque severity. Functionally, stimulation with EPHB2 did not affect endothelial barrier function, nor did stimulation with EphrinB1 or EphrinB2 affect monocyte‐endothelial interactions. In contrast, reduced expression of EPHB2 in monocytes resulted in decreased monocyte adhesion to endothelial cells and a decrease in monocyte transmigration, mediated by an altered morphology and a decreased ability to phosphorylate FAK. Our results suggest that EPHB2 expression in monocytes results in monocyte accumulation by virtue of an increase of transendothelial migration, which can subsequently contribute to atherosclerotic plaque progression.
Collapse
Affiliation(s)
- Dianne Vreeken
- Department of Internal Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Caroline Suzanne Bruikman
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Stefan Martinus Leonardus Cox
- Department of Internal Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Huayu Zhang
- Department of Internal Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Reshma Lalai
- Department of Internal Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Angela Koudijs
- Department of Internal Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Anton Jan van Zonneveld
- Department of Internal Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Gerard Kornelis Hovingh
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Janine Maria van Gils
- Department of Internal Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
60
|
Affinito A, Quintavalle C, Esposito CL, Roscigno G, Giordano C, Nuzzo S, Ricci-Vitiani L, Scognamiglio I, Minic Z, Pallini R, Berezovski MV, de Francisis V, Condorelli G. Targeting Ephrin Receptor Tyrosine Kinase A2 with a Selective Aptamer for Glioblastoma Stem Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:176-185. [PMID: 32169805 PMCID: PMC7068199 DOI: 10.1016/j.omtn.2020.02.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/21/2020] [Accepted: 02/03/2020] [Indexed: 12/29/2022]
Abstract
Despite the benefits associated with radiotherapy and chemotherapy for glioblastoma (GBM) treatment, most patients experience a relapse following initial therapy. Recurrent or progressive GBM usually does not respond anymore to standard therapy, and this is associated with poor patient outcome. GBM stem cells (GSCs) are a subset of cells resistant to radiotherapy and chemotherapy and play a role in tumor recurrence. The targeting of GSCs and the identification of novel markers are crucial issues in the development of innovative strategies for GBM eradication. By differential cell SELEX (systematic evolution of ligands by exponential enrichment), we have recently described two RNA aptamers, that is, the 40L sequence and its truncated form A40s, able to bind the cell surface of human GSCs. Both aptamers were selective for stem-like growing GBM cells and are rapidly internalized into target cells. In this study, we demonstrate that their binding to cells is mediated by direct recognition of the ephrin type-A receptor 2 (EphA2). Functionally, the two aptamers were able to inhibit cell growth, stemness, and migration of GSCs. Furthermore, A40s was able to cross the blood-brain barrier (BBB) and was stable in serum in in vitro experiments. These results suggest that 40L and A40s represent innovative potential therapeutic tools for GBM.
Collapse
Affiliation(s)
- Alessandra Affinito
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Via Tommaso de Amicis 95, 80131 Naples, Italy; Percuros B.V., Enschede, the Netherlands
| | - Cristina Quintavalle
- Percuros B.V., Enschede, the Netherlands; IEOS, CNR, Via Tommaso de Amicis 95, 80131 Naples, Italy.
| | | | - Giuseppina Roscigno
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Via Tommaso de Amicis 95, 80131 Naples, Italy
| | - Catello Giordano
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Via Tommaso de Amicis 95, 80131 Naples, Italy
| | | | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Iolanda Scognamiglio
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Via Tommaso de Amicis 95, 80131 Naples, Italy
| | - Zoran Minic
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; John L. Holmes Mass Spectrometry Facility, Ottawa, ON K1N 6N5, Canada
| | - Roberto Pallini
- Institute of Neurosurgery, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Maxim V Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; John L. Holmes Mass Spectrometry Facility, Ottawa, ON K1N 6N5, Canada
| | | | - Gerolama Condorelli
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Via Tommaso de Amicis 95, 80131 Naples, Italy; IRCCS Neuromed-Istituto Neurologico Mediterraneo Pozzilli, Pozzilli, Italy.
| |
Collapse
|
61
|
Kluiver TA, Alieva M, van Vuurden DG, Wehrens EJ, Rios AC. Invaders Exposed: Understanding and Targeting Tumor Cell Invasion in Diffuse Intrinsic Pontine Glioma. Front Oncol 2020; 10:92. [PMID: 32117746 PMCID: PMC7020612 DOI: 10.3389/fonc.2020.00092] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/17/2020] [Indexed: 12/20/2022] Open
Abstract
Diffuse Intrinsic Pontine Glioma (DIPG) is a rare, highly aggressive pediatric brain tumor that originates in the pons. DIPG is untreatable and universally fatal, with a median life expectancy of less than a year. Resection is not an option, due to the anatomical location of the tumor, radiotherapy has limited effect and no chemotherapeutic or targeted treatment approach has proven to be successful. This poor prognosis is partly attributed to the tumor's highly infiltrative diffuse and invasive spread. Thus, targeting the invasive behavior of DIPG has the potential to be of therapeutic value. In order to target DIPG invasion successfully, detailed mechanistic knowledge on the underlying drivers is required. Here, we review both DIPG tumor cell's intrinsic molecular processes and extrinsic environmental factors contributing to DIPG invasion. Importantly, DIPG represents a heterogenous disease and through advances in whole-genome sequencing, different subtypes of disease based on underlying driver mutations are now being recognized. Recent evidence also demonstrates intra-tumor heterogeneity in terms of invasiveness and implies that highly infiltrative tumor subclones can enhance the migratory behavior of neighboring cells. This might partially be mediated by “tumor microtubes,” long membranous extensions through which tumor cells connect and communicate, as well as through the secretion of extracellular vesicles. Some of the described processes involved in invasion are already being targeted in clinical trials. However, more research into the mechanisms of DIPG invasion is urgently needed and might result in the development of an effective therapy for children suffering from this devastating disease. We discuss the implications of newly discovered invasive mechanisms for therapeutic targeting and the challenges therapy development face in light of disease in the developing brain.
Collapse
Affiliation(s)
- T A Kluiver
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Cancer Research, Oncode Institute, Hubrecht Institute, KNAW Utrecht, Utrecht, Netherlands.,Cancer Genomics Center, Utrecht, Netherlands
| | - M Alieva
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Cancer Research, Oncode Institute, Hubrecht Institute, KNAW Utrecht, Utrecht, Netherlands.,Cancer Genomics Center, Utrecht, Netherlands
| | - D G van Vuurden
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Ellen J Wehrens
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Cancer Research, Oncode Institute, Hubrecht Institute, KNAW Utrecht, Utrecht, Netherlands.,Cancer Genomics Center, Utrecht, Netherlands
| | - Anne C Rios
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Cancer Research, Oncode Institute, Hubrecht Institute, KNAW Utrecht, Utrecht, Netherlands.,Cancer Genomics Center, Utrecht, Netherlands
| |
Collapse
|
62
|
Sharma P, Sonawane P, Herpai D, D’Agostino R, Rossmeisl J, Tatter S, Debinski W. Multireceptor targeting of glioblastoma. Neurooncol Adv 2020; 2:vdaa107. [PMID: 33150335 PMCID: PMC7596893 DOI: 10.1093/noajnl/vdaa107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Treatment for glioblastoma (GBM) remains an unmet need in medicine. Novel therapies that address GBM complexity and heterogeneity in particular are warranted. To this end, we target 4 tumor-associated receptors at a time that span virtually all of the GBM microenvironment including bulk tumor cells, infiltrating tumor cells, neovasculature, and tumor-infiltrating cells with one pharmaceutical agent delivering a cytotoxic load. METHODS We engineered multivalent ligand-based vector proteins termed QUAD with an ability to bind to 4 of the following GBM-associated receptors: IL-13RA2, EphA2, EphA3, and EphB2. We conjugated QUAD with a modified bacterial toxin PE38QQR and tested it in vitro and in vivo. RESULTS The QUAD variants preserved functional characteristics of the respective ligands for the 4 receptors. The QUAD 3.0 variant conjugate was highly cytotoxic to GBM cells, but it was nontoxic in mice, and the conjugate exhibited strong antitumor effect in a dog with spontaneous GBM. CONCLUSION The QUAD addresses, to a large extent, the issues of intra- and intertumoral heterogeneity and, at the same time, it targets several pathophysiologically important tumor compartments in GBM through multiple receptors overexpressed in tumors allowing for what we call "molecular resection." QUAD-based targeted agents warrant further pre- and clinical development.
Collapse
Affiliation(s)
- Puja Sharma
- Brain Tumor Center of Excellence, Wake Forest Baptist Medical Center Comprehensive Cancer Center, Winston-Salem, North Carolina, USA
| | - Poonam Sonawane
- Brain Tumor Center of Excellence, Wake Forest Baptist Medical Center Comprehensive Cancer Center, Winston-Salem, North Carolina, USA
- Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Denise Herpai
- Brain Tumor Center of Excellence, Wake Forest Baptist Medical Center Comprehensive Cancer Center, Winston-Salem, North Carolina, USA
| | - Ralph D’Agostino
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - John Rossmeisl
- Neurology and Neurosurgery, Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - Stephen Tatter
- Brain Tumor Center of Excellence, Wake Forest Baptist Medical Center Comprehensive Cancer Center, Winston-Salem, North Carolina, USA
- Department of Neurosurgery, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA
| | - Waldemar Debinski
- Brain Tumor Center of Excellence, Wake Forest Baptist Medical Center Comprehensive Cancer Center, Winston-Salem, North Carolina, USA
| |
Collapse
|
63
|
Mitra D, Bhattacharyya S, Alam N, Sen S, Mitra S, Mandal S, Vignesh S, Majumder B, Murmu N. Phosphorylation of EphA2 receptor and vasculogenic mimicry is an indicator of poor prognosis in invasive carcinoma of the breast. Breast Cancer Res Treat 2019; 179:359-370. [PMID: 31686261 DOI: 10.1007/s10549-019-05482-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/23/2019] [Indexed: 01/06/2023]
Abstract
PURPOSE The occurrence of vasculogenic mimicry (VM) and EphA2-mediated tumour progression are associated with poor prognosis in various solid tumours. Here, we aimed to investigate the prognostic implications of VM and its association with phosphorylated EphA2 receptor in invasive carcinoma of the breast. METHODS The patients were stratified based on CD-31/PAS dual staining and subsequently the expression status of phospho-EphA2 (S897), FAK, phospho-ERK1/2 and Laminin 5Ƴ2 was analysed by immunohistochemistry. Survival of patients was correlated within the stratified cohort. RESULTS The pathologically defined VM phenotype and phospho-EphA2 (S897) expression status were significantly associated with lower disease-free survival (DFS) and overall survival (OS). Both the features were also found to be significantly associated with higher nodal status, poor Nottingham Prognostic Index (NPI) and were more prevalent in the triple-negative breast cancer (TNBC) group. Incidentally, there were no significant association between age of the patient, grade and size of the tumour with VM and phospho-EphA2 (S897). The effector molecules of phospho-EphA2 (S897) viz., Focal Adhesion Kinase (FAK), phospho-ERK1/2 and Laminin 5Ƴ2 were significantly upregulated in the VM-positive cohort. Survival analysis revealed that the VM and phospho-EphA2 (S897) dual-positive cohort had poorest DFS [mean time = 48.313 (39.992-56.633) months] and OS [mean time = 56.692 (49.055-64.328) months]. Individually, VM-positive [Hazard Ratio (HR) 6.005; 95% confidence interval (CI) 2.002-18.018; P = 0.001 for DFS and HR 11.654; 95% CI 3.195-42.508; P < 0.0001 for OS] and phospho-EphA2 (S897)-positive (HR 4.342; 95% CI 1.717-10.983; P = 0.002 for DFS and HR 5.853; 95% CI 1.663-20.602; P = 0.006 for OS) expression proved to be independent indicators of prognosis. CONCLUSION This study evaluated tumour dependency on oncogenic EphA2 receptor regulation and VM in invasive carcinoma of the breast and their prognostic significance. Significant correlations between VM, phospho-EphA2 and several clinicopathologic parameters of breast cancer were found. Subsequently, the occurrence of VM or phospho-EphA2 expression proved to be major contributors for poor prognosis in patients with breast cancer but their simultaneous expression failed to be an independent risk factor.
Collapse
Affiliation(s)
- Debarpan Mitra
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Sayantan Bhattacharyya
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Neyaz Alam
- Department of Surgical Oncology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Sagar Sen
- Department of Surgical Oncology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Saunak Mitra
- Department of Pathology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Syamsundar Mandal
- Department of Epidemiology and Biostatistics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700026, India
| | - Shivani Vignesh
- Department of Cancer Biology, Mitra Biotech, 7- Service Road, Pragathi Nagar, Electronic City, Bengaluru, 560100, India
| | - Biswanath Majumder
- Department of Molecular Pathology, Mitra Biotech, 7- Service Road, Pragathi Nagar, Electronic City, Bengaluru, 560100, India
- Department of Cancer Biology, Mitra Biotech, 7- Service Road, Pragathi Nagar, Electronic City, Bengaluru, 560100, India
| | - Nabendu Murmu
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700026, India.
| |
Collapse
|
64
|
Suo F, Zhong B, Lu F, Dong Z. The combined use of EphA2/MMP-2 expression and MRI findings contributes to the determination of cerebral glioma grade. Oncol Lett 2019; 18:5607-5613. [PMID: 31620202 DOI: 10.3892/ol.2019.10912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/14/2019] [Indexed: 12/31/2022] Open
Abstract
Glioma is the most aggressive brain tumor and is associated with a high mortality rate. The aim of the present study was to explore the association between matrix metalloproteinase 2 (MMP-2) and ephrin type-A receptor 2 (EphA2) expression in glioma cells, and to investigate the contribution of magnetic resonance imaging (MRI) in glioma classification. A total of 43 patients with pathologically confirmed glioma were divided into two groups as follows: Low-grade (grades I and II; n=21) and high-grade (grades IV and IV; n=22). Subsequently, immunohistochemistry staining was performed to detect the expression levels of MMP-2 and EphA2 in the low- and high-grade groups. MRI routine and enhanced scans were used to measure the peritumoral edema index (EI), tumor enhancement percentage (EP) and maximum tumor diameter. The results demonstrated that the proportion of MMP-2-positive patients in the high-grade group was 86.36% (19/22), which was significantly higher than that of the low-grade group (57.14%; 12/21) (P<0.05). Furthermore, the proportion of EphA2-positive patients in the high-grade group was 90.91% (20/22), significantly higher than that in the low-grade group (4.76%; 1/21) (P<0.01). In addition, the MRI results indicated that the EI, EP and maximum tumor diameter were significantly higher in the high-grade group compared with the low-grade group (P<0.01, P<0.01 and P<0.05, respectively). Finally, the expression levels of MMP-2 and EphA2 were significantly associated with the EI, EP and maximum tumor diameter (all P<0.05). In conclusion, the expression levels of MMP-2 and EphA2 were positively correlated with glioma invasion. The correlation between these expression levels and MRI assessment of the EI, EP and maximum tumor diameter indicated that the combination of these two methods may be used for the evaluation of the tumor grade and for further clinical treatment applications.
Collapse
Affiliation(s)
- Fangfang Suo
- Department of Radiology, Luoyang Central Hospital, Luoyang, Henan 471000, P.R. China
| | - Binfeng Zhong
- Department of Neurosurgery, Luoyang Central Hospital, Luoyang, Henan 471000, P.R. China
| | - Fangfang Lu
- Department of Radiology, Luoyang Central Hospital, Luoyang, Henan 471000, P.R. China
| | - Zhihui Dong
- Department of Radiology, Luoyang Central Hospital, Luoyang, Henan 471000, P.R. China
| |
Collapse
|
65
|
Pang B, Xu J, Hu J, Guo F, Wan L, Cheng M, Pang L. Single-cell RNA-seq reveals the invasive trajectory and molecular cascades underlying glioblastoma progression. Mol Oncol 2019; 13:2588-2603. [PMID: 31487431 PMCID: PMC6887585 DOI: 10.1002/1878-0261.12569] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/11/2019] [Accepted: 09/02/2019] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain tumor, in which GBM stem cells (GSCs) were identified to contribute to aggressive phenotypes and poor prognosis. Yet, how GSCs progress to invasive cells remains largely unexplored. Here, we revealed the cell subpopulations with distinct functional status and the existence of cells with high invasive potential within heterogeneous primary GBM tumors. We reconstructed a branched trajectory by pseudotemporal ordering of single tumor cells, in which the root showed GSC‐like phenotype while the end displayed high invasive activity. Thus, we further determined a path along which GSCs gradually transformed to invasive cells, called the ‘stem‐to‐invasion path’. Along this path, cells showed incremental expression of GBM invasion‐associated signatures and diminishing expression of GBM stem cell markers. These findings were validated in an independent single‐cell data set of GBM. Through analyzing the molecular cascades underlying the path, we identify crucial factors controlling the attainment of invasive potential of tumor cells, including transcription factors and long noncoding RNAs. Our work provides novel insights into GBM progression, especially the attainment of invasive potential in primary tumor cells, and supports the cancer stem cell model, with valuable implications for GBM therapy.
Collapse
Affiliation(s)
- Bo Pang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityChina
| | - Jinyuan Xu
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityChina
| | - Jing Hu
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityChina
| | - Fenghua Guo
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityChina
| | - Linyun Wan
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityChina
| | - Mingjiang Cheng
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityChina
| | - Lin Pang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityChina
| |
Collapse
|
66
|
Huang C, Yuan W, Lai C, Zhong S, Yang C, Wang R, Mao L, Chen Z, Chen Z. EphA2-to-YAP pathway drives gastric cancer growth and therapy resistance. Int J Cancer 2019; 146:1937-1949. [PMID: 31376289 DOI: 10.1002/ijc.32609] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 07/05/2019] [Accepted: 07/23/2019] [Indexed: 12/14/2022]
Abstract
Yes-associated protein (YAP) is a transcriptional coactivator that promotes cell proliferation, stem cell maintenance and tissue homeostasis. The YAP activity is primarily regulated through an inhibitory phosphorylation by the serine/threonine kinases of Hippo pathway. Here, we show that receptor tyrosine kinase (RTK) erythropoietin-producing hepatocellular receptor A2 (EphA2) interacts with and phosphorylates YAP protein, leading to stabilization, nuclear translocation and activation of YAP in gastric cancer (GC) cells. EphA2 induces chemotherapy-resistance by increasing YAP stability and nuclear YAP protein. Knockdown of YAP blocks EphA2-induced tumor growth in GC xenograft mouse models. Importantly, the coactivation of EphA2 and YAP is manifested in clinical human GC, and is related to GC recurrence. Thus, our results establish a novel EphA2-to-YAP pathway that drives GC growth, progression and therapy-resistance, targeting this pathway would be an efficient way for the treatment of GC, particularly chemotherapy-resistant GC.
Collapse
Affiliation(s)
- Changhao Huang
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Changsha, Hunan, China.,Hepatobiliary and Enteric Surgery Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weijie Yuan
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Changsha, Hunan, China
| | - Chen Lai
- The Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Changsha, Hunan, China.,Hepatobiliary and Enteric Surgery Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shangwei Zhong
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Changsha, Hunan, China
| | - Chen Yang
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Changsha, Hunan, China
| | - Ran Wang
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Changsha, Hunan, China
| | - Linfeng Mao
- The Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Changsha, Hunan, China.,Hepatobiliary and Enteric Surgery Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zihua Chen
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Changsha, Hunan, China.,Hepatobiliary and Enteric Surgery Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment & Standardization, Changsha, Hunan, China
| | - Zhikang Chen
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Hunan Provincial Key Lab of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Changsha, Hunan, China.,Hepatobiliary and Enteric Surgery Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment & Standardization, Changsha, Hunan, China
| |
Collapse
|
67
|
Meng Y, Shang F, Zhu Y. miR-124 participates in the proliferation and differentiation of brain glioma stem cells through regulating Nogo/NgR expression. Exp Ther Med 2019; 18:2783-2788. [PMID: 31572526 PMCID: PMC6755475 DOI: 10.3892/etm.2019.7914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/30/2019] [Indexed: 11/29/2022] Open
Abstract
The effect of miR-124 on the proliferation and differentiation of brain glioma stem cells and Nogo/NgR signaling pathway were investigated. miR-124 mimic, miR-124 inhibitor and miR-control expression vector were designed and produced to transfect U87 glioma stem cells. The results of transfection were tested via RT-qPCR and the expression of protein was detected by western blot analysis. Cell proliferation was detected by MTT proliferation and the proportion of CD133+ cells was detected by immunomagnetic beads to determine cell differentiation. The correlation between miR-124 and Nogo-A, and NgR protein expression was analyzed by Spearman correlation analysis. The relative expression of miR-124 in cells of miR-124 mimic group was significantly higher than that of miR-124 inhibitor and miR-control groups (P<0.05). The relative expression of Nogo-A and NgR protein in cells of the miR-124 mimic group was significantly lower than that of miR-124 inhibitor and miR-control groups (P<0.05). Absorbance values of the cells in the miR-124 mimic and miR-control groups were significantly lower than those in the miR-124 inhibitor group at each time point (P<0.05), while the values of the cells in the miR-124 mimic group were significantly lower than that in miR-control group (P<0.05). The level of CD133+ cells in miR-124 mimic group was significantly lower than that in miR-124 inhibitor and miR-control groups (P<0.05), while the level of CD133+ cells in miR-124 inhibitor group was higher than that in miR-control group (P<0.05). Correlation analysis revealed that there was a negative correlation between miR-124 and the expression of Nogo-A and NgR protein (P<0.05). miR-124 may participate in the differentiation of brain glioma stem cells through the Nogo/NgR pathway, which may bring a new direction for the clinical treatment of brain glioma.
Collapse
Affiliation(s)
- Yun Meng
- Department of Neurology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Art and Science, Xiangyang, Hubei 441021, P.R. China
| | - Furong Shang
- Department of Neurology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Art and Science, Xiangyang, Hubei 441021, P.R. China
| | - Yanliang Zhu
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Art and Science, Xiangyang, Hubei 441021, P.R. China
| |
Collapse
|
68
|
Teramoto K, Katoh H. The cystine/glutamate antiporter xCT is a key regulator of EphA2 S897 phosphorylation under glucose-limited conditions. Cell Signal 2019; 62:109329. [PMID: 31152846 DOI: 10.1016/j.cellsig.2019.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 01/06/2023]
Abstract
EphA2, which belongs to the Eph family of receptor tyrosine kinases, is overexpressed in a variety of human cancers. Serine 897 (S897) phosphorylation of EphA2 is known to promote cancer cell migration and proliferation in a ligand-independent manner. In this study, we show that glucose deprivation induces S897 phosphorylation of EphA2 in glioblastoma cells. The phosphorylation requires the activity of the cystine/glutamate antiporter xCT and reactive oxygen species (ROS)-dependent ERK and RSK activation. Furthermore, depletion of EphA2 in glioblastoma cells leads to decreased cell viability under glucose starvation. Our results suggest a role of EphA2 in glioblastoma cell viability under glucose-limited conditions.
Collapse
Affiliation(s)
- Koji Teramoto
- Laboratory of Molecular Neurobiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hironori Katoh
- Laboratory of Molecular Neurobiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
69
|
The Small Molecule Ephrin Receptor Inhibitor, GLPG1790, Reduces Renewal Capabilities of Cancer Stem Cells, Showing Anti-Tumour Efficacy on Preclinical Glioblastoma Models. Cancers (Basel) 2019; 11:cancers11030359. [PMID: 30871240 PMCID: PMC6468443 DOI: 10.3390/cancers11030359] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 02/08/2023] Open
Abstract
Therapies against glioblastoma (GBM) show a high percentage of failure associated with the survival of glioma stem cells (GSCs) that repopulate treated tumours. Forced differentiation of GSCs is a promising new approach in cancer treatment. Erythropoietin-producing hepatocellular (Eph) receptors drive tumourigenicity and stemness in GBM. We tested GLPG1790, a first small molecule with inhibition activity versus inhibitor of various Eph receptor kinases, in preclinical GBM models using in vitro and in vivo assays. GLPG1790 rapidly and persistently inhibited Ephrin-A1-mediated phosphorylation of Tyr588 and Ser897, completely blocking EphA2 receptor signalling. Similarly, this compound blocks the ephrin B2-mediated EphA3 and EphB4 tyrosine phosphorylation. This resulted in anti-glioma effects. GLPG1790 down-modulated the expression of mesenchymal markers CD44, Sox2, nestin, octamer-binding transcription factor 3/4 (Oct3/4), Nanog, CD90, and CD105, and up-regulated that of glial fibrillary acidic protein (GFAP) and pro-neural/neuronal markers, βIII tubulin, and neurofilaments. GLPG1790 reduced tumour growth in vivo. These effects were larger compared to radiation therapy (RT; U251 and T98G xenografts) and smaller than those of temozolomide (TMZ; U251 and U87MG cell models). By contrast, GLPG1790 showed effects that were higher than Radiotherapy (RT) and similar to Temozolomide (TMZ) in orthotopic U87MG and CSCs-5 models in terms of disease-free survival (DFS) and overall survival (OS). Further experiments were necessary to study possible interactions with radio- and chemotherapy. GLPG1790 demonstrated anti-tumor effects regulating both the differentiative status of Glioma Initiating Cells (GICs) and the quality of tumor microenvironment, translating into efficacy in aggressive GBM mouse models. Significant common molecular targets to radio and chemo therapy supported the combination use of GLPG1790 in ameliorative antiglioma therapy.
Collapse
|
70
|
Baharuddin WNA, Yusoff AAM, Abdullah JM, Osman ZF, Ahmad F. Roles of EphA2 Receptor in Angiogenesis Signaling Pathway of Glioblastoma Multiforme. Malays J Med Sci 2018; 25:22-27. [PMID: 30914876 PMCID: PMC6422564 DOI: 10.21315/mjms2018.25.6.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 05/31/2018] [Indexed: 01/09/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most common primary brain tumours in adults, accounting for almost 65% of all cases. Among solid tumours, GBM is characterised by strong angiogenesis, including the highest degree of vascular proliferation and endothelial cell hyperplasia. Despite numerous improvements in existing treatment approaches, the prognosis of GBM patients remains poor, with a mean survival of only 14.6 months. Growing evidence has shown significant overexpression of the ephrin type-A receptor 2 (EphA2) receptor in various malignancies, including GBM, as well as a correlation to poor prognoses. It is believed that EphA2 receptors play important roles in mediating GBM tumourigenesis, including invasion, metastasis, and angiogenesis. Despite the clinical and pathological importance of tumour-associated vasculature, the underlying mechanism involving EphA2 is poorly known. Here, we have summarised the current knowledge in the field regarding EphA2 receptors’ roles in the angiogenesis of GBM.
Collapse
Affiliation(s)
- Wan Noor Ainun Baharuddin
- Universiti Teknologi MARA, Shah Alam, 40450 Shah Alam, Selangor, Malaysia.,Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Abdul Aziz Mohamed Yusoff
- Universiti Teknologi MARA, Shah Alam, 40450 Shah Alam, Selangor, Malaysia.,Human Genome Centre, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Jafri Malin Abdullah
- Universiti Teknologi MARA, Shah Alam, 40450 Shah Alam, Selangor, Malaysia.,Centre for Neuroscience Service and Research, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Zul Faizuddin Osman
- School of Dental Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Farizan Ahmad
- Universiti Teknologi MARA, Shah Alam, 40450 Shah Alam, Selangor, Malaysia.,Human Genome Centre, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
71
|
Li JY, Xiao T, Yi HM, Yi H, Feng J, Zhu JF, Huang W, Lu SS, Zhou YH, Li XH, Xiao ZQ. S897 phosphorylation of EphA2 is indispensable for EphA2-dependent nasopharyngeal carcinoma cell invasion, metastasis and stem properties. Cancer Lett 2018; 444:162-174. [PMID: 30583071 DOI: 10.1016/j.canlet.2018.12.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/04/2018] [Accepted: 12/11/2018] [Indexed: 12/22/2022]
Abstract
Our phosphoproteomics identified that phosphorylation of EphA2 at serine 897 (pS897-EphA2) was significantly upregulated in the high metastatic nasopharyngeal carcinoma (NPC) cells relative to non-metastatic NPC cells. However, the role and underlying mechanism of pS897-EphA2 in cancer metastasis and stem properties maintenance remain poorly understood. In this study, we established NPC cell lines with stable expression of exogenous EphA2 and EphA2-S897A using endogenous EphA2 knockdown cells, and observed that pS897-EphA2 maintained EphA2-dependent NPC cell in vitro migration and invasion, in vivo metastasis and cancer stem properties. Using phospho-kinase antibody array to identify signaling downstream of pS897-EphA2, we found that AKT/Stat3 signaling mediated pS897-EphA2-promoting NPC cell invasion, metastasis and stem properties, and Sox-2 and c-Myc were the effectors of pS897-EphA2. Immunohistochemistry showed that pS897-EphA2 was positively correlated with NPC metastasis and negatively correlated with patient overall survival. Moreover, ERK/RSK signaling controlled serum-induced pS897-EphA2 in NPC cells. Collectively, our results demonstrate that pS897-EphA2 is indispensable for EphA2-dependent NPC cell invasion, metastasis and stem properties by activating AKT/Stat3/Sox-2 and c-Myc signaling pathway, suggesting that pS897-EphA2 can serve as a therapeutic target in NPC and perhaps in other cancers.
Collapse
Affiliation(s)
- Jiao-Yang Li
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ta Xiao
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, 210042, China
| | - Hong-Mei Yi
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hong Yi
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Juan Feng
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jin-Feng Zhu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Wei Huang
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shan-Shan Lu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yan-Hong Zhou
- Cancer Research Institute, Xiangya Medical School, Central South University, Changsha, Hunan, 410078, China
| | - Xin-Hui Li
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhi-Qiang Xiao
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
72
|
EPH receptor A2 governs a feedback loop that activates Wnt/β-catenin signaling in gastric cancer. Cell Death Dis 2018; 9:1146. [PMID: 30451837 PMCID: PMC6242896 DOI: 10.1038/s41419-018-1164-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/10/2018] [Accepted: 10/19/2018] [Indexed: 02/06/2023]
Abstract
The erythropoietin-producing hepatoma (EPH) receptor A2 (EphA2) belongs to the Eph family of receptor tyrosine kinases. EphA2 is highly correlated with the formation of many solid tumors and has been linked to the dysregulation of signaling pathways that promote tumor cell proliferation, migration, and invasion as well as angiogenesis. Deregulation of Wnt signaling is implicated in many forms of human disease including gastric cancer. We previously reported that EphA2 promotes the epithelial–mesenchymal transition through Wnt/β-catenin signaling in gastric cancer. Herein, we present a novel mechanism by which EphA2 regulates Wnt/β-catenin signaling. EphA2 acts as a receptor for Wnt ligands and recruits Axin1 to the plasma membrane by directly binding Dvl2. The EphA2-Dvl2/Axin1 interaction was enhanced by Wnt3a treatment, suggesting that EphA2 acts as a functional receptor for the Wnt/β-catenin pathway and plays a vital role in downstream signaling. We showed that Dvl2 mediates the EphA2-Axin1 interaction by binding to the tyrosine kinase domain of EphA2. We propose that EphA2/Dvl2/Axin1 forms a complex that destabilizes the β-catenin destruction complex and allows β-catenin to translocate to the nucleus and initiate the transcription of c-MYC, the primary Wnt signaling target gene. Intriguingly, c-MYC could bind directly to the EphA2 and Wnt1 promoter to enhance their transcription. The entire process formed an EphA2-mediated feed-forward loop. A small molecular inhibitor of EphA2 potently inhibited the proliferation of gastric cancer in vitro and in vivo, including gastric cancer patient–derived xenografts. Thus, our data identify EphA2 as an excellent candidate for gastric cancer therapy.
Collapse
|
73
|
Testa U, Castelli G, Pelosi E. Genetic Abnormalities, Clonal Evolution, and Cancer Stem Cells of Brain Tumors. Med Sci (Basel) 2018; 6:E85. [PMID: 30279357 PMCID: PMC6313628 DOI: 10.3390/medsci6040085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023] Open
Abstract
Brain tumors are highly heterogeneous and have been classified by the World Health Organization in various histological and molecular subtypes. Gliomas have been classified as ranging from low-grade astrocytomas and oligodendrogliomas to high-grade astrocytomas or glioblastomas. These tumors are characterized by a peculiar pattern of genetic alterations. Pediatric high-grade gliomas are histologically indistinguishable from adult glioblastomas, but they are considered distinct from adult glioblastomas because they possess a different spectrum of driver mutations (genes encoding histones H3.3 and H3.1). Medulloblastomas, the most frequent pediatric brain tumors, are considered to be of embryonic derivation and are currently subdivided into distinct subgroups depending on histological features and genetic profiling. There is emerging evidence that brain tumors are maintained by a special neural or glial stem cell-like population that self-renews and gives rise to differentiated progeny. In many instances, the prognosis of the majority of brain tumors remains negative and there is hope that the new acquisition of information on the molecular and cellular bases of these tumors will be translated in the development of new, more active treatments.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, 00161 Rome, Italy.
| |
Collapse
|
74
|
Lv P, Wang W, Cao Z, Zhao D, Zhao G, Li D, Qi L, Xu J. Fsk and IBMX inhibit proliferation and proapoptotic of glioma stem cells via activation of cAMP signaling pathway. J Cell Biochem 2018; 120:321-331. [PMID: 30171713 DOI: 10.1002/jcb.27364] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 06/26/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVE We aimed to find out the underlying mechanism of forskolin (Fsk) and 3-isobutyl-1-methylxanthine (IBMX) on glioma stem cells (GSCs). METHODS The expression of cAMP-related protein CREB and pCREB as well as apoptosis-related proteins were detected through Western blot analysis. The level of proliferation and growth rate of human GSCs was measured through thiazolyl blue tetrazolium bromide assay and stem cells forming sphere assay. The apoptosis-related gene expression was measured through reverse transcription-polymerase chain reaction. RESULTS cAMP signaling pathway was activated in GSCs with Fsk-IBMX administration. Fsk-IBMX could inhibit the proliferation as well as invasion and promote the apoptosis of U87 cells. Besides, U0126 could inhibit MAPK signaling pathway to increase the sensitivity of GSCs to cAMP signaling pathway. As a result, Fsk-IBMX combined with U0126 had more negative effect on GSCs. CONCLUSIONS The relationship of cAMP and MAPK signaling pathway in GSCs may provide a potential therapeutic strategy in glioma.
Collapse
Affiliation(s)
- Peng Lv
- Department of Pathophysiology, Jilin Medical University, Jilin, China
| | - Weiyao Wang
- Department of Pathophysiology, Jilin Medical University, Jilin, China
| | - Zhiyou Cao
- 465 Hospital, Jilin Medical University, Jilin, China
| | - Donghai Zhao
- Department of Pathology, Jilin Medical University, Jilin, China
| | - Guifang Zhao
- Department of Pathology, Jilin Medical University, Jilin, China
| | - Dailin Li
- Institute of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin, China
| | - Ling Qi
- Department of Pathophysiology, Jilin Medical University, Jilin, China
| | - Junjie Xu
- School of Basic Medicine Sciences, Jilin Medical University, Jilin, China
| |
Collapse
|
75
|
de Gooijer MC, Guillén Navarro M, Bernards R, Wurdinger T, van Tellingen O. An Experimenter's Guide to Glioblastoma Invasion Pathways. Trends Mol Med 2018; 24:763-780. [PMID: 30072121 DOI: 10.1016/j.molmed.2018.07.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/03/2018] [Accepted: 07/06/2018] [Indexed: 12/25/2022]
Abstract
Glioblastoma is a highly aggressive brain tumor that is characterized by its unparalleled invasiveness. Invasive glioblastoma cells not only escape surgery and focal therapies but also are more resistant to current radio- and chemo-therapeutic approaches. Thus, any curative therapy for this deadly disease likely should include treatment strategies that interfere with glioblastoma invasiveness. Understanding glioblastoma invasion mechanisms is therefore critical. We discuss the strengths and weaknesses of various glioblastoma invasion models and conclude that robust experimental evidence has been obtained for a pro-invasive role of Ephrin receptors, Rho GTPases, and casein kinase 2 (CK2). Extensive interplay occurs between these proteins, suggesting the existence of a glioblastoma invasion signaling network that comprises several targets for therapy.
Collapse
Affiliation(s)
- Mark C de Gooijer
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; These authors contributed equally to this work
| | - Miriam Guillén Navarro
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; These authors contributed equally to this work
| | - Rene Bernards
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Thomas Wurdinger
- Department of Neurosurgery, VU University Medical Center, Cancer Center Amsterdam, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Olaf van Tellingen
- Division of Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
76
|
Viewing the Eph receptors with a focus on breast cancer heterogeneity. Cancer Lett 2018; 434:160-171. [PMID: 30055288 DOI: 10.1016/j.canlet.2018.07.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 02/07/2023]
Abstract
Aberrant expression of different family members of the Eph/ephrin system, which comprises the Eph receptors (Ephs) and their ligands (ephrins), has been implicated in various malignancies including breast cancer. The latter presents as a heterogeneous disease with diverse molecular, morphologic and clinical behavior signatures. This review reflects the existing Eph/ephrin literature while focusing on breast cancer heterogeneity. Hormone positive, HER2 positive and triple negative breast cancer (TNBC) cell lines, xenografts/mutant animal models and patient samples are examined separately as, in humans, they represent entities with differences in prognosis and treatment. EphA2, EphB4 and EphB6 are the members most extensively studied in breast cancer. Existing research points to the potential use of various Eph/ephrin members as biomarkers for assessing prognosis and selecting the most suitable therapeutic strategies in variable clinical scenarios, also for overcoming drug resistance, in the era of breast cancer heterogeneity.
Collapse
|
77
|
Qazi MA, Vora P, Venugopal C, Adams J, Singh M, Hu A, Gorelik M, Subapanditha MK, Savage N, Yang J, Chokshi C, London M, Gont A, Bobrowski D, Grinshtein N, Brown KR, Murty NK, Nilvebrant J, Kaplan D, Moffat J, Sidhu S, Singh SK. Cotargeting Ephrin Receptor Tyrosine Kinases A2 and A3 in Cancer Stem Cells Reduces Growth of Recurrent Glioblastoma. Cancer Res 2018; 78:5023-5037. [PMID: 29945963 DOI: 10.1158/0008-5472.can-18-0267] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/14/2018] [Accepted: 06/22/2018] [Indexed: 11/16/2022]
Abstract
Glioblastoma (GBM) carries a dismal prognosis and inevitably relapses despite aggressive therapy. Many members of the Eph receptor tyrosine kinase (EphR) family are expressed by GBM stem cells (GSC), which have been implicated in resistance to GBM therapy. In this study, we identify several EphRs that mark a therapeutically targetable GSC population in treatment-refractory, recurrent GBM (rGBM). Using a highly specific EphR antibody panel and CyTOF (cytometry by time-of-flight), we characterized the expression of all 14 EphR in primary and recurrent patient-derived GSCs to identify putative rGBM-specific EphR. EPHA2 and EPHA3 coexpression marked a highly tumorigenic cell population in rGBM that was enriched in GSC marker expression. Knockdown of EPHA2 and EPHA3 together led to increased expression of differentiation marker GFAP and blocked clonogenic and tumorigenic potential, promoting significantly higher survival in vivo Treatment of rGBM with a bispecific antibody against EPHA2/A3 reduced clonogenicity in vitro and tumorigenic potential of xenografted recurrent GBM in vivo via downregulation of AKT and ERK and increased cellular differentiation. In conclusion, we show that EPHA2 and EPHA3 together mark a GSC population in rGBM and that strategic cotargeting of EPHA2 and EPHA3 presents a novel and rational therapeutic approach for rGBM.Significance: Treatment of rGBM with a novel bispecific antibody against EPHA2 and EPHA3 reduces tumor burden, paving the way for the development of therapeutic approaches against biologically relevant targets in rGBM. Cancer Res; 78(17); 5023-37. ©2018 AACR.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/genetics
- Carcinogenesis/genetics
- Cell Differentiation/genetics
- Cell Line, Tumor
- Drug Resistance, Neoplasm/genetics
- Ephrin-A2/antagonists & inhibitors
- Ephrin-A2/genetics
- Gene Expression Regulation, Neoplastic/genetics
- Gene Knockdown Techniques
- Glioblastoma/drug therapy
- Glioblastoma/genetics
- Glioblastoma/pathology
- Glioblastoma/radiotherapy
- Humans
- Mice
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/radiotherapy
- Neoplastic Stem Cells/pathology
- Prognosis
- Radiation
- Receptor Protein-Tyrosine Kinases/antagonists & inhibitors
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor, EphA3
- Receptors, Eph Family/antagonists & inhibitors
- Receptors, Eph Family/genetics
- Temozolomide/pharmacology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Maleeha A Qazi
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario Canada
| | - Parvez Vora
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario Canada
| | - Chitra Venugopal
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario Canada
| | - Jarrett Adams
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Mohini Singh
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario Canada
| | - Amy Hu
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Maryna Gorelik
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Minomi K Subapanditha
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario Canada
| | - Neil Savage
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario Canada
| | - Jiahe Yang
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Chirayu Chokshi
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario Canada
| | - Max London
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Alexander Gont
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - David Bobrowski
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario Canada
| | | | - Kevin R Brown
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Naresh K Murty
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Johan Nilvebrant
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - David Kaplan
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jason Moffat
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Sachdev Sidhu
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Sheila K Singh
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario Canada.
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
78
|
Hong HN, Won YJ, Shim JH, Kim HJ, Han SH, Kim BS, Kim HS. Cancer-associated fibroblasts promote gastric tumorigenesis through EphA2 activation in a ligand-independent manner. J Cancer Res Clin Oncol 2018; 144:1649-1663. [PMID: 29948146 DOI: 10.1007/s00432-018-2683-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/05/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE Under physiologic conditions, the binding of erythropoietin-producing hepatocellular (Eph) A2 receptor and its ligand ephrinA1 results in decreased EphA2 level and tumor suppression. However, EphA2 and ephrinA1 are highly expressed in human cancers including gastric adenocarcinoma. In this study, we tested our hypothesis that cancer-associated fibroblasts (CAFs) promote gastric tumorigenesis through EphA2 signaling in a ligand-independent manner. METHODS Expression of EphA2 protein in primary tumor tissues of 91 patients who underwent curative surgery for gastric adenocarcinoma was evaluated by immunohistochemistry and western blotting. Conditioned medium of cancer-associated fibroblasts (CAF-CM) was used to evaluate the tumorigenic effect of CAFs on gastric cancer cell lines. Epithelial-mesenchymal transition (EMT), cell proliferation, migration, and invasion were assessed. EphrinA1-Fc ligand was used to determine the suppressor role of EphA2 receptor-ligand binding. RESULTS CAF-CM-induced EMT and promoted cancer cell motility even without cell-cell interaction. Treatment with a selective EphA2 inhibitor (ALW-II-41-27) or EphA2-targeted siRNA markedly reduced CAF-CM-induced gastric tumorigenesis. EphrinA1-Fc ligand treatment showing ligand-dependent tumor suppression diminished the EphA2 expression and EMT progression. In contrast, ephrinA1-targeted siRNA did not significantly affect CAF-CM-mediated increases in EphA2 expression and EMT progression. Treatment with VEGF showed effects like CAF-CM in terms of EphA2 activation and EMT progression. CONCLUSION CAFs may contribute to gastric tumorigenesis by activating EphA2 signaling pathway in a ligand-independent manner. Our results suggest that ligand-independent activation of EphA2 was triggered by VEGF released from CAF-CM. Our result may partially explain why ligand-dependent tumor suppressor roles of EphA2 are not evident in gastric cancer despite the prominent level of ephrinA1.
Collapse
Affiliation(s)
- Hea Nam Hong
- Department of Anatomy, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - You Jin Won
- Department of Anatomy, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Ju Hee Shim
- Department of Anatomy, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Hyun Ji Kim
- Department of Anatomy, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Seung Hee Han
- Department of Anatomy, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Byung Sik Kim
- Department of Gastric Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Hee Sung Kim
- Department of Gastric Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
79
|
Zhou Y, Sakurai H. Emerging and Diverse Functions of the EphA2 Noncanonical Pathway in Cancer Progression. Biol Pharm Bull 2018; 40:1616-1624. [PMID: 28966234 DOI: 10.1248/bpb.b17-00446] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Erythropoietin-producing hepatocellular receptor A2 (EphA2) receptor tyrosine kinase controls multiple physiological processes to maintain homeostasis in normal cells. In many types of solid tumors, it has been reported that EphA2 is overexpressed and plays a critical role in oncogenic signaling. However, in recent years, the opposing functions of EphA2 have been explained by the canonical and noncanonical signaling pathways. Ligand- and tyrosine kinase-dependent EphA2 activation (the canonical pathway) inhibits cancer cell proliferation and motility. In contrast, ligand- and tyrosine kinase-independent EphA2 signaling (the noncanonical pathway) promotes tumor survival and metastasis and controls acquired drug resistance and maintenance of cancer stem cell-like properties. Evidence has accumulated showing that the EphA2 noncanonical pathway is mainly regulated by inflammatory cytokines and growth factors via phosphorylation at Ser-897 in the intracellular C-tail region via some serine/threonine kinases, including p90 ribosomal S6 kinase. In this review, we focus on the regulation of Ser-897 phosphorylation and its functional importance in tumor malignancy and discuss future therapeutic targeting.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama.,The MOE Key Laboratory for Standardization of Chinese Medicines and the Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine
| | - Hiroaki Sakurai
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
80
|
Festuccia C, Gravina GL, Giorgio C, Mancini A, Pellegrini C, Colapietro A, Delle Monache S, Maturo MG, Sferra R, Chiodelli P, Rusnati M, Cantoni A, Castelli R, Vacondio F, Lodola A, Tognolini M. UniPR1331, a small molecule targeting Eph/ephrin interaction, prolongs survival in glioblastoma and potentiates the effect of antiangiogenic therapy in mice. Oncotarget 2018; 9:24347-24363. [PMID: 29849945 PMCID: PMC5966254 DOI: 10.18632/oncotarget.25272] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 04/07/2018] [Indexed: 01/06/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant brain tumor, showing high resistance to standard therapeutic approaches that combine surgery, radiotherapy, and chemotherapy. As opposed to healthy tissues, EphA2 has been found highly expressed in specimens of glioblastoma, and increased expression of EphA2 has been shown to correlate with poor survival rates. Accordingly, agents blocking Eph receptor activity could represent a new therapeutic approach. Herein, we demonstrate that UniPR1331, a pan Eph receptor antagonist, possesses significant in vivo anti-angiogenic and anti-vasculogenic properties which lead to a significant anti-tumor activity in xenograft and orthotopic models of GBM. UniPR1331 halved the final volume of tumors when tested in xenografts (p<0.01) and enhanced the disease-free survival of treated animals in the orthotopic models of GBM both by using U87MG cells (40 vs 24 days of control, p<0.05) or TPC8 cells (52 vs 16 days, p<0.01). Further, the association of UniPR1331 with the anti-VEGF antibody Bevacizumab significantly increased the efficacy of both monotherapies in all tested models. Overall, our data promote UniPR1331 as a novel tool for tackling GBM.
Collapse
Affiliation(s)
- Claudio Festuccia
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Carmine Giorgio
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Andrea Mancini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Cristina Pellegrini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Alessandro Colapietro
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Maria Giovanna Maturo
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Roberta Sferra
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Paola Chiodelli
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Annamaria Cantoni
- Department of Veterinary Sciences, University of Parma, 43100, Parma, Italy
| | - Riccardo Castelli
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Federica Vacondio
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Alessio Lodola
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | | |
Collapse
|
81
|
Shi H, Yu F, Mao Y, Ju Q, Wu Y, Bai W, Wang P, Xu R, Jiang M, Shi J. EphA2 chimeric antigen receptor-modified T cells for the immunotherapy of esophageal squamous cell carcinoma. J Thorac Dis 2018; 10:2779-2788. [PMID: 29997940 DOI: 10.21037/jtd.2018.04.91] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background It is urgent to explore an effective potential therapeutic strategy for ESCC. In recent years, cell-based cancer immunotherapy has become a potentially close for carcinoma therapy. Chimeric antigen receptor (CAR) T cell technology is a kind of adoptive cell therapy technique which has been developed rapidly. We sought to obtain EphA2.CAR-T cell and revealed the ability of EphA2.CAR-T cells to kill esophageal squamous cell carcinoma (ESCC) cells in vitro. Methods Firstly, the expression and location of EphA2 in ESCC tissues and cells was tested by immunohistochemistry staining and Western blot. Secondly, the second generation of EphA2.CAR was constructed via molecular biology technology, and transduced into T cells to obtain the EphA2.CAR-T cell. The transduction efficacies were assessed using flow cytometry (FCM). Thirdly, the effect of cell killing of EphA2.CAR-T cell on ESCC cells in vitro was detected by co-culture experiments. The productions of cytokines (TNF-α and IFN-γ) by EphA2.CAR-T cell after co-culture with ESCC cells were analyzed by ELISA assay. Results The expression of EphA2 was significantly upregulated in ESCC tissues and cells (P<0.05). EphA2 was expressed on the membrane of ESCC cells, so it could be served as tumor-associated surface antigens (TAA) of CAR for ESCC treatment. The EphA2.CAR-T cell was obtained successfully, and its' transduction efficacies was 61.4% by FCM. The ability of cell killing of EphA2.CAR-T cell was better than that of T cells (P<0.01), and demonstrated a dose-dependent cell killing. The results of ELISA assay showed that the levels of TNF-α and IFN-γ in EphA2.CAR-T cells were notably raised compared with T cells (P<0.05). Conclusions We firstly constructed the second generation of EphA2.CAR and established EphA2.CAR-T cells. The EphA2.CAR-T cells showed a dose-dependent cell killing of ESCC cells, and promoted the production of cytokines in vitro. These findings open a new way for treatment of ESCC by immunotherapy in the future.
Collapse
Affiliation(s)
- Hui Shi
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Feng Yu
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yinting Mao
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Qianqian Ju
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yingcheng Wu
- Medical College, Nantong University, Nantong 226001, China
| | - Wen Bai
- Medical College, Nantong University, Nantong 226001, China
| | - Peiwen Wang
- Medical College, Nantong University, Nantong 226001, China
| | - Ran Xu
- Medical College, Nantong University, Nantong 226001, China
| | - Maorong Jiang
- Laboratory Animals Center, Nantong University, Nantong 226001, China
| | - Jiahai Shi
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| |
Collapse
|
82
|
Ventrella R, Kaplan N, Hoover P, Perez White BE, Lavker RM, Getsios S. EphA2 Transmembrane Domain Is Uniquely Required for Keratinocyte Migration by Regulating Ephrin-A1 Levels. J Invest Dermatol 2018; 138:2133-2143. [PMID: 29705292 DOI: 10.1016/j.jid.2018.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/19/2022]
Abstract
EphA2 receptor tyrosine kinase is activated by ephrin-A1 ligand, which harbors a glycosylphosphatidylinositol anchor that enhances lipid raft localization. Although EphA2 and ephrin-A1 modulate keratinocyte migration and differentiation, the ability of this cell-cell communication complex to localize to different membrane regions in keratinocytes remains unknown. Using a combination of biochemical and imaging approaches, we provide evidence that ephrin-A1 and a ligand-activated form of EphA2 partition outside of lipid raft domains in response to calcium-mediated cell-cell contact stabilization in normal human epidermal keratinocytes. EphA2 transmembrane domain swapping with a shorter and molecularly distinct transmembrane domain of EphA1 resulted in decreased localization of this receptor tyrosine kinase at cell-cell junctions and increased expression of ephrin-A1, which is a negative regulator of keratinocyte migration. Accordingly, altered EphA2 membrane distribution at cell-cell contacts limited the ability of keratinocytes to seal linear scratch wounds in vitro in an ephrin-A1-dependent manner. Collectively, these studies highlight a key role for the EphA2 transmembrane domain in receptor-ligand membrane distribution at cell-cell contacts that modulates ephrin-A1 levels to allow for efficient keratinocyte migration with relevance for cutaneous wound healing.
Collapse
Affiliation(s)
- Rosa Ventrella
- Department of Dermatology, 303 East Chicago Avenue, Ward 9, Northwestern University, Chicago, Illinois, USA
| | - Nihal Kaplan
- Department of Dermatology, 303 East Chicago Avenue, Ward 9, Northwestern University, Chicago, Illinois, USA
| | - Paul Hoover
- Department of Dermatology, 303 East Chicago Avenue, Ward 9, Northwestern University, Chicago, Illinois, USA
| | - Bethany E Perez White
- Department of Dermatology, 303 East Chicago Avenue, Ward 9, Northwestern University, Chicago, Illinois, USA
| | - Robert M Lavker
- Department of Dermatology, 303 East Chicago Avenue, Ward 9, Northwestern University, Chicago, Illinois, USA
| | - Spiro Getsios
- Department of Dermatology, 303 East Chicago Avenue, Ward 9, Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
83
|
Li C, Zheng J, Chen S, Huang B, Li G, Feng Z, Wang J, Xu S. RRM2 promotes the progression of human glioblastoma. J Cell Physiol 2018; 233:6759-6767. [PMID: 29667764 DOI: 10.1002/jcp.26529] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/30/2018] [Indexed: 12/12/2022]
Abstract
Glioblastoma pathogenesis is related to multiple processes that affected by dozens of regulatory factors, but the potential underlying factors regulating glioblastoma progression remains unclear. The goal of this research was to determine how the ribonucleotide reductase M2 subunit (RRM2) influenced proliferation, invasion, migration, and apoptosis of human glioblastoma cells. The level of proliferation of human glioblastoma cells was measured through CCK8, colony formation assay and immunofluorescence stains. Flow cytometry (FCM), wound healing, and transwell assays were conducted to detect cell apoptosis, migration, and invasion. Apoptotic level of cells and invasion-related expression of protein were measured by Western blot. Xenograft tumor model was established to confirm effect of RRM2 on the proliferation of human glioblastoma cells in vivo. Silencing RRM2 inhibited proliferation, invasion, and migration of glioblastoma cells whereas enhanced apoptosis rate. Overexpressing RRM2 promoted proliferation, migration and invasion but suppressed apoptosis. In vivo, Overexpressing RRM2 accelerated the tumor growth in glioblastoma cells. The present study illustrated that RRM2 was overexpressed in human glioblastoma cells. RRM2 promoted proliferation, migration, and invasion but inhibited apoptosis of human glioblastoma cells.
Collapse
Affiliation(s)
- Chao Li
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Jingfang Zheng
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Si Chen
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Guosheng Li
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | | | - Jiwei Wang
- Shandong University, Jinan, Shandong, China
| | - Shujun Xu
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
84
|
Kou CTJ, Kandpal RP. Differential Expression Patterns of Eph Receptors and Ephrin Ligands in Human Cancers. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7390104. [PMID: 29682554 PMCID: PMC5851329 DOI: 10.1155/2018/7390104] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/11/2018] [Accepted: 01/22/2018] [Indexed: 12/20/2022]
Abstract
Eph receptors constitute the largest family of receptor tyrosine kinases, which are activated by ephrin ligands that either are anchored to the membrane or contain a transmembrane domain. These molecules play important roles in the development of multicellular organisms, and the physiological functions of these receptor-ligand pairs have been extensively documented in axon guidance, neuronal development, vascular patterning, and inflammation during tissue injury. The recognition that aberrant regulation and expression of these molecules lead to alterations in proliferative, migratory, and invasive potential of a variety of human cancers has made them potential targets for cancer therapeutics. We present here the involvement of Eph receptors and ephrin ligands in lung carcinoma, breast carcinoma, prostate carcinoma, colorectal carcinoma, glioblastoma, and medulloblastoma. The aberrations in their abundances are described in the context of multiple signaling pathways, and differential expression is suggested as the mechanism underlying tumorigenesis.
Collapse
Affiliation(s)
- Chung-Ting Jimmy Kou
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Raj P. Kandpal
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
85
|
Rinkenbaugh AL, Cogswell PC, Calamini B, Dunn DE, Persson AI, Weiss WA, Lo DC, Baldwin AS. IKK/NF-κB signaling contributes to glioblastoma stem cell maintenance. Oncotarget 2018; 7:69173-69187. [PMID: 27732951 PMCID: PMC5342468 DOI: 10.18632/oncotarget.12507] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 09/24/2016] [Indexed: 01/09/2023] Open
Abstract
Glioblastoma multiforme (GBM) carries a poor prognosis and continues to lack effective treatments. Glioblastoma stem cells (GSCs) drive tumor formation, invasion, and drug resistance and, as such, are the focus of studies to identify new therapies for disease control. Here, we identify the involvement of IKK and NF-κB signaling in the maintenance of GSCs. Inhibition of this pathway impairs self-renewal as analyzed in tumorsphere formation and GBM expansion as analyzed in brain slice culture. Interestingly, both the canonical and non-canonical branches of the NF-κB pathway are shown to contribute to this phenotype. One source of NF-κB activation in GBM involves the TGF-β/TAK1 signaling axis. Together, our results demonstrate a role for the NF-κB pathway in GSCs and provide a mechanistic basis for its potential as a therapeutic target in glioblastoma.
Collapse
Affiliation(s)
- Amanda L Rinkenbaugh
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Patricia C Cogswell
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.,Chordoma Foundation, Durham, NC, USA
| | - Barbara Calamini
- Center for Drug Discovery and Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Denise E Dunn
- Center for Drug Discovery and Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Anders I Persson
- Helen Diller Family Comprehensive Cancer Center and Department of Neurology, University of California, San Francisco, CA, USA.,Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, CA, USA
| | - William A Weiss
- Helen Diller Family Comprehensive Cancer Center and Department of Neurology, University of California, San Francisco, CA, USA.,Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, CA, USA
| | - Donald C Lo
- Center for Drug Discovery and Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Albert S Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
86
|
Efazat G, Novak M, Kaminskyy VO, De Petris L, Kanter L, Juntti T, Bergman P, Zhivotovsky B, Lewensohn R, Hååg P, Viktorsson K. Ephrin B3 interacts with multiple EphA receptors and drives migration and invasion in non-small cell lung cancer. Oncotarget 2018; 7:60332-60347. [PMID: 27533087 PMCID: PMC5312387 DOI: 10.18632/oncotarget.11219] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 07/16/2016] [Indexed: 02/07/2023] Open
Abstract
Ephrin receptors (Ephs) are reported to control metastatic signaling of non-small cell lung cancer (NSCLC) and other tumors. Here we show for the first time that blocking expression of the Eph ligand Ephrin B3 inhibits NSCLC cell migration and invasion. We demonstrate that Ephrin B3 directly binds the EphAs EphA2, EphA3, EphA4, and EphA5. EphA2 Ser897 was previously shown to drive migration propensity of tumor cells and our study reveals that EphA2 stays phosphorylated on Ser897 in the Ephrin B3/EphA2 complex in NSCLC cells of different histology. Moreover, we report that within such Ephrin B3/EphA2 complex both Akt Ser 129 and p38MAPK are found indicating a potential to drive migration/proliferation. We also found the EMT marker E-cadherin expression to be maintained or increased upon Ephrin B3 blockade in NSCLC cells. Expression of Ephrin B3 was furthermore analyzed in a cohort of NSCLC stage IA-IB cases (n=200) alongside EphA2 and Ephrin A1. We found that Ephrin B3 was concomitantly expressed with EphA2 and Ephrin A1 with higher Ephrin B3 levels found in non-squamous than in squamous tumors, whereas EphA2 was higher expressed in well-differentiated than in low-differentiated tumors. In the entire NSCLC cohort, Ephrin B3 expression was not linked to patient survival, whereas a high EphA2 expression was associated with improved survival (p=0.03). In conclusion, we show that blocking Ephrin B3 expression inhibits NSCLC proliferation-, migration- and invasion capacity which calls for further studies on interference with Ephrin B3 as a possible therapeutic avenue in this tumor malignancy.
Collapse
Affiliation(s)
- Ghazal Efazat
- Karolinska Biomics Center, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Metka Novak
- Karolinska Biomics Center, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Vitaliy O Kaminskyy
- Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Luigi De Petris
- Karolinska Biomics Center, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Lena Kanter
- Karolinska Biomics Center, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Therese Juntti
- Karolinska Biomics Center, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Per Bergman
- Department of Molecular Medicine and Surgery (MMK), Thoracic Surgery, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Boris Zhivotovsky
- Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Rolf Lewensohn
- Karolinska Biomics Center, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Petra Hååg
- Karolinska Biomics Center, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Kristina Viktorsson
- Karolinska Biomics Center, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| |
Collapse
|
87
|
Esaki N, Ohkawa Y, Hashimoto N, Tsuda Y, Ohmi Y, Bhuiyan RH, Kotani N, Honke K, Enomoto A, Takahashi M, Furukawa K, Furukawa K. ASC amino acid transporter 2, defined by enzyme-mediated activation of radical sources, enhances malignancy of GD2-positive small-cell lung cancer. Cancer Sci 2018; 109:141-153. [PMID: 29151270 PMCID: PMC5765286 DOI: 10.1111/cas.13448] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 10/31/2017] [Accepted: 11/12/2017] [Indexed: 12/20/2022] Open
Abstract
Ganglioside GD2 is specifically expressed in small‐cell lung cancer (SCLC) cells, leading to enhancement of malignant phenotypes, such as cell proliferation and migration. However, how GD2 promotes malignant phenotypes in SCLC cells is not well known. In this study, to reveal the mechanisms by which GD2 increases malignant phenotypes in SCLC cells, we used enzyme‐mediated activation of radical sources combined with mass spectrometry in GD2+SCLC cells. Consequently, we identified ASC amino acid transporter 2 (ASCT2), a major glutamine transporter, which coordinately works with GD2. We showed that ASCT2 was highly expressed in glycolipid‐enriched microdomain/rafts in GD2+SCLC cells, and colocalized with GD2 in both proximity ligation assay and immunocytostaining, and bound with GD2 in immunoprecipitation/TLC immunostaining. Malignant phenotypes of GD2+SCLC cells were enhanced by glutamine uptake, and were suppressed by L‐γ‐glutamyl‐p‐nitroanilide, a specific inhibitor of ASCT2, through reduced phosphorylation of p70 S6K1 and S6. These results suggested that ASCT2 enhances glutamine uptake in glycolipid‐enriched microdomain/rafts in GD2+SCLC cells, leading to the enhancement of cell proliferation and migration through increased phosphorylation of the mTOR complex 1 signaling axis.
Collapse
Affiliation(s)
- Nobutoshi Esaki
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan.,Departments of Biochemistry 2, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Ohkawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Noboru Hashimoto
- Departments of Biochemistry 2, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuhsuke Tsuda
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan.,Departments of Biochemistry 2, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuhsuke Ohmi
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Robiul H Bhuiyan
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Norihiro Kotani
- Department of Biochemistry, Saitama Medical University, Moroyama, Japan
| | - Koichi Honke
- Department of Biochemistry, Kochi University School of Medicine, Kochi, Japan
| | - Atsushi Enomoto
- Departments of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahide Takahashi
- Departments of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keiko Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Koichi Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| |
Collapse
|
88
|
Tanabe S, Aoyagi K, Yokozaki H, Sasaki H. Molecular pathway network of EFNA1 in cancer and mesenchymal stem cells. ACTA ACUST UNITED AC 2018. [DOI: 10.3934/celltissue.2018.2.58] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
89
|
Ahmadi-Beni R, Khoshnevisan A. An overview of crucial genes involved in stemness of glioblastoma multiforme. NEUROCHEM J+ 2017. [DOI: 10.1134/s181971241704002x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
90
|
Daoud A, Gopal U, Kaur J, Isaacs JS. Molecular and functional crosstalk between extracellular Hsp90 and ephrin A1 signaling. Oncotarget 2017; 8:106807-106819. [PMID: 29290990 PMCID: PMC5739775 DOI: 10.18632/oncotarget.22370] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/30/2017] [Indexed: 12/28/2022] Open
Abstract
The Eph receptor tyrosine kinase family member EphA2 plays a pivotal role in modulating cytoskeletal dynamics to control cancer cell motility and invasion. EphA2 is frequently upregulated in diverse solid tumors and has emerged as a viable druggable target. We previously reported that extracellular Hsp90 (eHsp90), a known pro-motility and invasive factor, collaborates with EphA2 to regulate tumor invasion in the absence of its cognate ephrin ligand. Here, we aimed to further define the molecular and functional relationship between EphA2 and eHsp90. Ligand dependent ephrin A1 signaling promotes RhoA activation and altered cell morphology to favor transient cell rounding, retraction, and diminished adhesion. Exposure of EphA2-expressing cancer cells to ligand herein revealed a unique role for eHsp90 as an effector of cytoskeletal remodeling. Notably, blockade of eHsp90 via either neutralizing antibodies or administration of cell-impermeable Hsp90-targeted small molecules significantly attenuated ligand dependent cell rounding in diverse tumor types. Although eHsp90 blockade did not appear to influence receptor internalization, downstream signaling events were augmented. In particular, eHsp90 activated a Src-RhoA axis to enhance ligand dependent cell rounding, retraction, and ECM detachment. Moreover, eHsp90 signaling via this axis stimulated activation of the myosin pathway, culminating in formation of an EphA2-myosin complex. Inhibition of either eHsp90 or Src was sufficient to impair ephrin A1 mediated Rho activation, activation of myosin intermediates, and EphA2-myosin complex formation. Collectively, our data support a paradigm whereby eHsp90 and EphA2 exhibit molecular crosstalk and functional cooperation within a ligand dependent context to orchestrate cytoskeletal events controlling cell morphology and attachment.
Collapse
Affiliation(s)
- Abdelkader Daoud
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, SC, 29412, Charleston, USA
| | - Udhayakumar Gopal
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, SC, 29412, Charleston, USA.,Current address: Department of Pathology, Duke University School of Medicine, NC, 27708, Durham, USA
| | - Jasmine Kaur
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, SC, 29412, Charleston, USA
| | - Jennifer S Isaacs
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, SC, 29412, Charleston, USA
| |
Collapse
|
91
|
Wang Z, Xu X, Liu N, Cheng Y, Jin W, Zhang P, Wang X, Yang H, Liu H, Tu Y. SOX9-PDK1 axis is essential for glioma stem cell self-renewal and temozolomide resistance. Oncotarget 2017; 9:192-204. [PMID: 29416606 PMCID: PMC5787456 DOI: 10.18632/oncotarget.22773] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/15/2017] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive brain tumor with limited therapeutic options. Glioma stem cell (GSC) is thought to be greatly responsible for glioma tumor progression and drug resistance. But the molecular mechanisms of GSC deriving recurrence and drug resistance are still unclear. SOX9 (sex-determining region Y (SRY)-box9 protein), a transcription factor expressed in most solid tumors, is reported as a key regulator involved in maintaining cancer hallmarks including the GSCs state. Previously, we have observed that silencing of SOX9 suppressed glioma cells proliferation both in vitro and in vivo. Here, we found that SOX9 was essential for GSC self-renewal. Silencing of SOX9 down-regulated a broad range of stem cell markers and inhibited glioma cell colony and sphere formation. We identified pyruvate dehydrogenase kinase 1 (PDK1) as a target gene of SOX9 using microarray analyses. PDK1 inactivation greatly inhibited glioma cell colony and sphere formation and sensitized glioma spheres to temozolomide (TMZ) toxicity. In addition, SOX9-shRNA and PDK1 inhibitor could greatly sensitize GSC to TMZ in vivo. Taken together, our data reveals that SOX9-PDK1 axis is a key regulator of GSC self-renewal and GSC temozolomide resistance. These findings may provide help for future human GBM therapy.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical, University, Xi'an 710038, China.,Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiao Tong University, Xi'an 710049, China
| | - Xiaoshan Xu
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical, University, Xi'an 710038, China
| | - Nan Liu
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical, University, Xi'an 710038, China
| | - Yingduan Cheng
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical, University, Xi'an 710038, China.,Department of Research, Cipher Ground, North Brunswick, NJ 08902, USA
| | - Weilin Jin
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pengxing Zhang
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical, University, Xi'an 710038, China
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hongwei Yang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hui Liu
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical, University, Xi'an 710038, China
| | - Yanyang Tu
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical, University, Xi'an 710038, China.,Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
92
|
Petty A, Idippily N, Bobba V, Geldenhuys WJ, Zhong B, Su B, Wang B. Design and synthesis of small molecule agonists of EphA2 receptor. Eur J Med Chem 2017; 143:1261-1276. [PMID: 29128116 DOI: 10.1016/j.ejmech.2017.10.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 10/09/2017] [Accepted: 10/09/2017] [Indexed: 12/30/2022]
Abstract
Ligand-independent activation of EphA2 receptor kinase promotes cancer metastasis and invasion. Activating EphA2 receptor tyrosine kinase with small molecule agonist is a novel strategy to treat EphA2 overexpressing cancer. In this study, we performed a lead optimization of a small molecule Doxazosin that was identified as an EphA2 receptor agonist. 33 new analogs were developed and evaluated; a structure-activity relationship was summarized based on the EphA2 activation of these derivatives. Two new derivative compounds 24 and 27 showed much improved activity compared to Doxazosin. Compound 24 possesses a bulky amide moiety, and compound 27 has a dimeric structure that is very different to the parental compound. Compound 27 with a twelve-carbon linker of the dimer activated the kinase and induced receptor internalization and cell death with the best potency. Another dimer with a six-carbon linker has significantly reduced potency compared to the dimer with a longer linker, suggesting that the length of the linker is critical for the activity of the dimeric agonist. To explore the receptor binding characteristics of the new molecules, we applied a docking study to examine how the small molecule binds to the EphA2 receptor. The results reveal that compounds 24 and 27 form more hydrogen bonds to EphA2 than Doxazosin, suggesting that they may have higher binding affinity to the receptor.
Collapse
Affiliation(s)
- Aaron Petty
- Rammelkamp Center for Research and Department of Medicine, MetroHealth Campus, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Nethrie Idippily
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH, 44115, USA
| | - Viharika Bobba
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH, 44115, USA
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, Robert C. Byrd Health Sciences Center, West Virginia University, USA
| | - Bo Zhong
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH, 44115, USA
| | - Bin Su
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences & Health Professions, Cleveland State University, 2121 Euclid Ave., Cleveland, OH, 44115, USA.
| | - Bingcheng Wang
- Rammelkamp Center for Research and Department of Medicine, MetroHealth Campus, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
93
|
Graves PR, Din SU, Ashamalla M, Ashamalla H, Gilbert TSK, Graves LM. Ionizing radiation induces EphA2 S897 phosphorylation in a MEK/ERK/RSK-dependent manner. Int J Radiat Biol 2017; 93:929-936. [PMID: 28705041 DOI: 10.1080/09553002.2017.1355580] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE The EphA2 tyrosine kinase is frequently overexpressed in human tumors that are also treated with radiation. However, few studies have examined the effect of radiation on the EphA2 receptor itself. The purpose of this project was to investigate the impact of radiation on EphA2 to better understand mechanisms of radioresistance. MATERIALS AND METHODS Cell lines were exposed to X-rays and assayed for changes in EphA2 protein levels and phosphorylation over time by Western blotting. HEK293 cells stably expressing wild-type EphA2 or the S897A mutant were analyzed for cell survival from X-rays. RESULTS Treatment of different cancer cell lines with 2 Gy of X-rays induced the phosphorylation of EphA2 on S897 but no changes were found in EphA2 total levels or its tyrosine phosphorylation. Radiation-induced S897 phosphorylation was unaffected by an AKT inhibitor but blocked by a MEK or RSK inhibitor. HEK293 cells expressing the EphA2 S897A mutant had a nearly 2-fold lower level of cell survival from X-rays than cells expressing wild-type EphA2. CONCLUSIONS These findings show that radiation induces S897 EphA2 phosphorylation, an event associated with increased cell survival. Therefore, targeting pathways that mediate EphA2 S897 phosphorylation may be a beneficial strategy to reduce radioresistance.
Collapse
Affiliation(s)
- Paul R Graves
- a Department of Radiation Oncology , New York-Presbyterian Brooklyn Methodist Hospital , Brooklyn , NY , USA
| | - Shaun U Din
- a Department of Radiation Oncology , New York-Presbyterian Brooklyn Methodist Hospital , Brooklyn , NY , USA
| | - Mark Ashamalla
- a Department of Radiation Oncology , New York-Presbyterian Brooklyn Methodist Hospital , Brooklyn , NY , USA
| | - Hani Ashamalla
- a Department of Radiation Oncology , New York-Presbyterian Brooklyn Methodist Hospital , Brooklyn , NY , USA
| | - Thomas S K Gilbert
- b Department of Pharmacology , University of North Carolina , Chapel Hill , NC , USA
| | - Lee M Graves
- b Department of Pharmacology , University of North Carolina , Chapel Hill , NC , USA
| |
Collapse
|
94
|
Recapitulating in vivo-like plasticity of glioma cell invasion along blood vessels and in astrocyte-rich stroma. Histochem Cell Biol 2017; 148:395-406. [PMID: 28825130 PMCID: PMC5602046 DOI: 10.1007/s00418-017-1604-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2017] [Indexed: 01/22/2023]
Abstract
Diffuse invasion of glioma cells into the brain parenchyma leads to nonresectable brain tumors and poor prognosis of glioma disease. In vivo, glioma cells can adopt a range of invasion strategies and routes, by moving as single cells, collective strands and multicellular networks along perivascular, perineuronal and interstitial guidance cues. Current in vitro assays to probe glioma cell invasion, however, are limited in recapitulating the modes and adaptability of glioma invasion observed in brain parenchyma, including collective behaviours. To mimic in vivo-like glioma cell invasion in vitro, we here applied three tissue-inspired 3D environments combining multicellular glioma spheroids and reconstituted microanatomic features of vascular and interstitial brain structures. Radial migration from multicellular glioma spheroids of human cell lines and patient-derived xenograft cells was monitored using (1) reconstituted basement membrane/hyaluronan interfaces representing the space along brain vessels; (2) 3D scaffolds generated by multi-layered mouse astrocytes to reflect brain interstitium; and (3) freshly isolated mouse brain slice culture ex vivo. The invasion patterns in vitro were validated using histological analysis of brain sections from glioblastoma patients and glioma xenografts infiltrating the mouse brain. Each 3D assay recapitulated distinct aspects of major glioma invasion patterns identified in mouse xenografts and patient brain samples, including individually migrating cells, collective strands extending along blood vessels, and multicellular networks of interconnected glioma cells infiltrating the neuropil. In conjunction, these organotypic assays enable a range of invasion modes used by glioma cells and will be applicable for mechanistic analysis and targeting of glioma cell dissemination.
Collapse
|
95
|
Targeting Eph/ephrin system in cancer therapy. Eur J Med Chem 2017; 142:152-162. [PMID: 28780190 DOI: 10.1016/j.ejmech.2017.07.029] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/12/2017] [Accepted: 07/16/2017] [Indexed: 12/19/2022]
Abstract
It is well established that the Eph/ephrin system plays a central role in the embryonic development, with minor implications in the physiology of the adult. However, it is overexpressed and deregulated in a variety of tumors, with a primary involvement in tumorigenesis, tumor angiogenesis, metastasis development, and cancer stem cell regeneration. Targeting the Eph/ephrin system with biologicals, including antibodies and recombinant proteins, reduces tumor growth in animal models of hematological malignancies, breast, prostate, colon, head and neck cancers and glioblastoma. Currently, some of these biopharmaceutical agents are under investigations in phase I or phase II clinical trials. Peptides and small molecules targeting protein-protein-interaction (PPI) are in the late preclinical phase where they are showing promising activity in models of glioblastoma, ovarian and lung cancer. The present review summarizes the most critical findings proposing the Eph/ephrin signaling system as a new target in molecularly targeted oncology.
Collapse
|
96
|
Kuramitsu S, Yamamichi A, Ohka F, Motomura K, Hara M, Natsume A. Adoptive immunotherapy for the treatment of glioblastoma: progress and possibilities. Immunotherapy 2017; 8:1393-1404. [PMID: 28000534 DOI: 10.2217/imt-2016-0076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Patients with glioblastoma have a very poor prognosis. Adoptive cellular therapy (ACT) is defined as the collection of circulating or tumor-infiltrating lymphocytes, their selection, modification, expansion and activation, and their re-administration to patients in order to induce antitumor activity. Although various ACTs have been attempted, most failed to improve the outcome. Immune checkpoint blockade antibodies and T cell engineering with tumor-specific chimeric antigen receptors suggest the emergence of a new era of immunotherapy. Here, we summarize approaches with ACTs using genetically modified T cells, which have been improved by enhancing their antitumor activity, and discuss strategies to develop these therapies. The mechanisms by which gliomas modulate and evade the immune system are also discussed.
Collapse
Affiliation(s)
- Shunichiro Kuramitsu
- Department of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan
| | - Akane Yamamichi
- Department of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan
| | - Fumiharu Ohka
- Department of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan
| | - Kazuya Motomura
- Department of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan
| | - Masahito Hara
- Department of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan
| | - Atsushi Natsume
- Department of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
97
|
Koo T, Cho BJ, Kim DH, Park JM, Choi EJ, Kim HH, Lee DJ, Kim IA. MicroRNA-200c increases radiosensitivity of human cancer cells with activated EGFR-associated signaling. Oncotarget 2017; 8:65457-65468. [PMID: 29029445 PMCID: PMC5630345 DOI: 10.18632/oncotarget.18924] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 02/06/2017] [Indexed: 01/06/2023] Open
Abstract
MicroRNA-200c (miR-200c) recently was found to have tumor-suppressive properties by inhibiting the epithelial-mesenchymal transition (EMT) in several cancers. miR-200c also interacts with various cellular signaling molecules and regulates many important signaling pathways. In this study, we investigated the radiosensitizing effect of miR-200c and its mechanism in a panel of human cancer cell lines. Malignant glioma (U251, T98G), breast cancer (MDA-MB-468), and lung carcinoma (A549) cells were transfected with control pre-microRNA, pre-miR-200c, or anti-miR-200c. Then, RT-PCR, clonogenic assays, immunoblotting, and immunocytochemisty were performed. To predict the potential targets of miR-200c, microRNA databases were used for bioinformatics analysis. Ectopic overexpression of miR-200c downregulated p-EGFR and p-AKT and increased the radiosensitivity of U251, T98G, A549, and MDA-MB-468 cells. In contrast, miR-200c inhibition upregulated p-EGFR and p-AKT, and decreased radiation-induced cell killing. miR-200c led to persistent γH2AX focus formation and downregulated pDNA-PKc expression. Autophagy and apoptosis were major modes of cell death. Bioinformatics analysis predicted that miR-200c may be associated with EGFR, AKT2, MAPK1, VEGFA, and HIF1AN. We also confirmed that miR-200c downregulated the expression of VEGF, HIF-1α, and MMP2 in U251 and A549 cells. In these cells, overexpressing miR-200c inhibited invasion, migration, and vascular tube formation. These phenotypic changes were associated with E-cadherin and EphA2 downregulation and N-cadherin upregulation. miR-200c showed no observable cytotoxic effect on normal human fibroblasts and astrocytes. Taken together, our data suggest that miR-200c is an attractive target for improving the efficacy of radiotherapy via a unique modulation of the complex regulatory network controlling cancer pro-survival signaling and EMT.
Collapse
Affiliation(s)
- Taeryool Koo
- Department of Radiation Oncology, Graduate School of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Bong Jun Cho
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Dan Hyo Kim
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ji Min Park
- Department of Radiation Oncology, Graduate School of Medicine, Seoul National University, Seoul, Republic of Korea.,Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Eun Jung Choi
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hans H Kim
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - David J Lee
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - In Ah Kim
- Department of Radiation Oncology, Graduate School of Medicine, Seoul National University, Seoul, Republic of Korea.,Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.,Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
98
|
Shi Y, Ping YF, Zhou W, He ZC, Chen C, Bian BSJ, Zhang L, Chen L, Lan X, Zhang XC, Zhou K, Liu Q, Long H, Fu TW, Zhang XN, Cao MF, Huang Z, Fang X, Wang X, Feng H, Yao XH, Yu SC, Cui YH, Zhang X, Rich JN, Bao S, Bian XW. Tumour-associated macrophages secrete pleiotrophin to promote PTPRZ1 signalling in glioblastoma stem cells for tumour growth. Nat Commun 2017; 8:15080. [PMID: 28569747 PMCID: PMC5461490 DOI: 10.1038/ncomms15080] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 02/28/2017] [Indexed: 12/19/2022] Open
Abstract
Intense infiltration of tumour-associated macrophages (TAMs) facilitates malignant growth of glioblastoma (GBM), but the underlying mechanisms remain undefined. Herein, we report that TAMs secrete abundant pleiotrophin (PTN) to stimulate glioma stem cells (GSCs) through its receptor PTPRZ1 thus promoting GBM malignant growth through PTN–PTPRZ1 paracrine signalling. PTN expression correlates with infiltration of CD11b+/CD163+ TAMs and poor prognosis of GBM patients. Co-implantation of M2-like macrophages (MLCs) promoted GSC-driven tumour growth, but silencing PTN expression in MLCs mitigated their pro-tumorigenic activity. The PTN receptor PTPRZ1 is preferentially expressed in GSCs and also predicts GBM poor prognosis. Disrupting PTPRZ1 abrogated GSC maintenance and tumorigenic potential. Moreover, blocking the PTN–PTPRZ1 signalling by shRNA or anti-PTPRZ1 antibody potently suppressed GBM tumour growth and prolonged animal survival. Our study uncovered a critical molecular crosstalk between TAMs and GSCs through the PTN–PTPRZ1 paracrine signalling to support GBM malignant growth, indicating that targeting this signalling axis may have therapeutic potential. Tumour-associated macrophages (TAMs) facilitate malignant growth of glioblastoma (GBM). Here, the authors show that TAMs support glioma stem cell renewal via paracrine signalling to the pleiotrophin receptor PTPRZ1 and that blocking this axis results in increased survival of tumour-bearing animals.
Collapse
Affiliation(s)
- Yu Shi
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China.,The Key Laboratory of Tumour Immunopathology, The Ministry of Education of China, Chongqing 400038, China
| | - Yi-Fang Ping
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China.,The Key Laboratory of Tumour Immunopathology, The Ministry of Education of China, Chongqing 400038, China
| | - Wenchao Zhou
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Zhi-Cheng He
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China.,The Key Laboratory of Tumour Immunopathology, The Ministry of Education of China, Chongqing 400038, China
| | - Cong Chen
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China.,The Key Laboratory of Tumour Immunopathology, The Ministry of Education of China, Chongqing 400038, China.,Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Bai-Shi-Jiao Bian
- Department of Ophthalmology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Lin Zhang
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Lu Chen
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China.,The Key Laboratory of Tumour Immunopathology, The Ministry of Education of China, Chongqing 400038, China
| | - Xun Lan
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Xian-Chao Zhang
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China.,The Key Laboratory of Tumour Immunopathology, The Ministry of Education of China, Chongqing 400038, China
| | - Kai Zhou
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China.,The Key Laboratory of Tumour Immunopathology, The Ministry of Education of China, Chongqing 400038, China
| | - Qing Liu
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China.,The Key Laboratory of Tumour Immunopathology, The Ministry of Education of China, Chongqing 400038, China
| | - Hua Long
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China.,The Key Laboratory of Tumour Immunopathology, The Ministry of Education of China, Chongqing 400038, China
| | - Ti-Wei Fu
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China.,The Key Laboratory of Tumour Immunopathology, The Ministry of Education of China, Chongqing 400038, China
| | - Xiao-Ning Zhang
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China.,The Key Laboratory of Tumour Immunopathology, The Ministry of Education of China, Chongqing 400038, China
| | - Mian-Fu Cao
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China.,The Key Laboratory of Tumour Immunopathology, The Ministry of Education of China, Chongqing 400038, China
| | - Zhi Huang
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Xiaoguang Fang
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Xiuxing Wang
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Xiao-Hong Yao
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China.,The Key Laboratory of Tumour Immunopathology, The Ministry of Education of China, Chongqing 400038, China
| | - Shi-Cang Yu
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China.,The Key Laboratory of Tumour Immunopathology, The Ministry of Education of China, Chongqing 400038, China
| | - You-Hong Cui
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China.,The Key Laboratory of Tumour Immunopathology, The Ministry of Education of China, Chongqing 400038, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China.,The Key Laboratory of Tumour Immunopathology, The Ministry of Education of China, Chongqing 400038, China
| | - Jeremy N Rich
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Shideng Bao
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China.,The Key Laboratory of Tumour Immunopathology, The Ministry of Education of China, Chongqing 400038, China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510095, China
| |
Collapse
|
99
|
Cuyàs E, Queralt B, Martin-Castillo B, Bosch-Barrera J, Menendez JA. EphA2 receptor activation with ephrin-A1 ligand restores cetuximab efficacy in NRAS-mutant colorectal cancer cells. Oncol Rep 2017; 38:263-270. [DOI: 10.3892/or.2017.5682] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022] Open
|
100
|
Nagaraja S, Vitanza NA, Woo PJ, Taylor KR, Liu F, Zhang L, Li M, Meng W, Ponnuswami A, Sun W, Ma J, Hulleman E, Swigut T, Wysocka J, Tang Y, Monje M. Transcriptional Dependencies in Diffuse Intrinsic Pontine Glioma. Cancer Cell 2017; 31:635-652.e6. [PMID: 28434841 PMCID: PMC5462626 DOI: 10.1016/j.ccell.2017.03.011] [Citation(s) in RCA: 270] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/27/2016] [Accepted: 03/22/2017] [Indexed: 12/12/2022]
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a fatal pediatric cancer with limited therapeutic options. The majority of cases of DIPG exhibit a mutation in histone-3 (H3K27M) that results in oncogenic transcriptional aberrancies. We show here that DIPG is vulnerable to transcriptional disruption using bromodomain inhibition or CDK7 blockade. Targeting oncogenic transcription through either of these methods synergizes with HDAC inhibition, and DIPG cells resistant to HDAC inhibitor therapy retain sensitivity to CDK7 blockade. Identification of super-enhancers in DIPG provides insights toward the cell of origin, highlighting oligodendroglial lineage genes, and reveals unexpected mechanisms mediating tumor viability and invasion, including potassium channel function and EPH receptor signaling. The findings presented demonstrate transcriptional vulnerabilities and elucidate previously unknown mechanisms of DIPG pathobiology.
Collapse
Affiliation(s)
- Surya Nagaraja
- Department of Neurology, Stanford University, Palo Alto, CA 94305, USA
| | | | - Pamelyn J Woo
- Department of Neurology, Stanford University, Palo Alto, CA 94305, USA
| | - Kathryn R Taylor
- Department of Neurology, Stanford University, Palo Alto, CA 94305, USA
| | - Fang Liu
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, P.R. China
| | - Lei Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, P.R. China
| | - Meng Li
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, P.R. China
| | - Wei Meng
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Anitha Ponnuswami
- Department of Neurology, Stanford University, Palo Alto, CA 94305, USA
| | - Wenchao Sun
- Department of Neurology, Stanford University, Palo Alto, CA 94305, USA
| | - Jie Ma
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Esther Hulleman
- Department of Pediatric Oncology, VU University Medical Center, 1081 HV Amsterdam, the Netherlands
| | - Tomek Swigut
- Department of Chemical and Systems Biology, Stanford University, Palo Alto, CA 94305, USA
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University, Palo Alto, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Palo Alto, California 94305, USA; Department of Developmental Biology, Stanford University, Palo Alto, California 94305, USA; Howard Hughes Medical Institute, Stanford School of Medicine, Stanford University, Palo Alto, California 94305, USA
| | - Yujie Tang
- Department of Neurology, Stanford University, Palo Alto, CA 94305, USA; Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, P.R. China; Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China.
| | - Michelle Monje
- Department of Neurology, Stanford University, Palo Alto, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Palo Alto, California 94305, USA.
| |
Collapse
|