51
|
Liu F, Zhao Y, Lu J, Chen S, Zhang X, Mao W. Hyperoside inhibits proinflammatory cytokines in human lung epithelial cells infected with Mycoplasma pneumoniae. Mol Cell Biochem 2018; 453:179-186. [PMID: 30350306 DOI: 10.1007/s11010-018-3443-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022]
Abstract
Mycoplasma pneumoniae pneumonia (MPP) is the most common respiratory infection in young children and its incidence has increased worldwide. In this study, high expression of chemokine ligand 5 (CCL5) was observed in the serum of MPP patients, and its expression was positively correlated to DNA of M. pneumoniae (MP-DNA). In vitro, M. pneumoniae (MP) infection to A549 cells induced the expression of CCL5, chemokines receptor 4 (CCR4), nuclear factor-κB (NF-κB) nuclear protein, and phosphorylation of NF-κB-p65 (p-NF-κB-p65), whereas NF-κB cytoplasmic protein was decreased. On the contrary, treatment of hyperoside counteracted the induction of MP infection and promoted the proliferation of MP-infected A549 cells. Similarly, MP-induced IL-8 and TNF-α production was also markedly reduced by hyperoside. And CCR4 inhibitor AZD2098 had a better effect than hyperoside. In addition, CCL5 recombinant protein inhibited the effect of hyperoside to promote IL-8 and TNF-α production and CCR4 expression. These results indicated that CCL5 may be involved in the progression of MPP, and hyperoside was beneficial for MPP probably through CCL5-CCR4 interactions, which may provide a potential effective therapy for MPP.
Collapse
Affiliation(s)
- Fang Liu
- Department of Pediatrics, The Affiliated East Hospital of Tongji University, Shanghai, 200123, People's Republic of China
| | - YuHua Zhao
- Department of Pediatrics, The Affiliated East Hospital of Tongji University, Shanghai, 200123, People's Republic of China
| | - JieMin Lu
- Department of Pediatrics, The Affiliated East Hospital of Tongji University, Shanghai, 200123, People's Republic of China
| | - ShuangHui Chen
- Department of Pediatrics, The Affiliated East Hospital of Tongji University, Shanghai, 200123, People's Republic of China
| | - XinGuang Zhang
- Department of Pediatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, 200071, People's Republic of China
| | - WenWei Mao
- School of Pharmacy, Shanghai Jiaotong University, NO. 800, DongChuan Road, MinHang District, Shanghai, 200240, China.
| |
Collapse
|
52
|
Hou Y. MiR-506 inhibits cell proliferation, invasion, migration and epithelial-to-mesenchymal transition through targeting RWDD4 in human bladder cancer. Oncol Lett 2018; 17:73-78. [PMID: 30655740 DOI: 10.3892/ol.2018.9594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/12/2018] [Indexed: 12/26/2022] Open
Abstract
MicroRNA (MiR)-506 serves a vital role in several types of cancer. However, the role of miR-506 in bladder cancer (BCa) progression remains to be investigated. The present study demonstrated that miR-506 expression was downregulated in BCa tissues and cell lines. Meanwhile, overexpression of miR-506 inhibited cell proliferation, migration and invasion. Additionally, upregulated miR-506 increased E-cadherin, and reduced N-cadherin and Vimentin expression levels, as markers of epithelial-to-mesenchymal transition. RWD domain containing 4 (RWDD4) was revealed to be a miR506 target in BCa cells, and the downregulation of RWDD4 was found to suppress BCa cell proliferation, migration and invasion. In summary, miR-506 may suppress the aggressive properties of human BCa cells by targeting RWDD4, and thus may be a novel therapeutic target in human BCa.
Collapse
Affiliation(s)
- Yi Hou
- Department of Urology, The Fourth People's Hospital of Shenyang, Shenyang, Liaoning 110031, P.R. China
| |
Collapse
|
53
|
Huang RZ, Jin L, Wang CG, Xu XJ, Du Y, Liao N, Ji M, Liao ZX, Wang HS. A pentacyclic triterpene derivative possessing polyhydroxyl ring A suppresses growth of HeLa cells by reactive oxygen species-dependent NF-κB pathway. Eur J Pharmacol 2018; 838:157-169. [PMID: 30153443 DOI: 10.1016/j.ejphar.2018.08.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 08/21/2018] [Accepted: 08/24/2018] [Indexed: 12/21/2022]
Abstract
Pentacyclic triterpene derivatives possessing polyhydroxyl ring A exhibit many important pharmacological activities. (1β, 2α, 3β, 19β, 23)-1,2,3,19,23-pentahydroxyolean-12-en-28-oic acid (5), a new bioactive phytochemical with tetra-hydroxyl ring A isolated from Euphorbia sieboldiana in our laboratory, showed potential inhibition effects against several cancer cells previously. This study was performed to investigate the underlying mechanisms of action for its antitumor activity. The results showed that compound 5 inhibited dose-/time-dependently cell growth with low toxicity to normal cells and induced apoptosis in cervical cancer cells. Also, compound 5 inhibited the growth and proliferation of HeLa cells and resulted in G1 phase arrest. Furthermore, exposure of cells to compound 5 caused inactivation of the TNF-α-TAK1-IKK-NF-κB axis and inhibition of TNF-α-stimulated NF-κB activity, followed by down-regulation of NF-κB target genes involved in cell apoptosis (Bcl-2) and in the cell cycle and growth (Cyclin D, c-Myc). Additionally, compound 5 significantly suppressed the migration of HeLa cells. In addition, exposure of HeLa cells to compound 5 decreased the activity of NF-κB through the generation of reactive oxygen species (ROS). Collectively, these results suggested that compound 5 exerted potent anticancer effects on HeLa cells in vitro through targeting the ROS-dependent NF-κB signaling cascade and this compound may be a promising anticancer agent for cancer treatment.
Collapse
Affiliation(s)
- Ri-Zhen Huang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Le Jin
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Chun-Gu Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, PR China
| | - Xiao-Jing Xu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Ying Du
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Na Liao
- Department of Pharmacy, College of Medicine, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Min Ji
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhi-Xin Liao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| | - Heng-Shan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
54
|
Multipronged activity of combinatorial miR-143 and miR-506 inhibits Lung Cancer cell cycle progression and angiogenesis in vitro. Sci Rep 2018; 8:10495. [PMID: 30002440 PMCID: PMC6043488 DOI: 10.1038/s41598-018-28872-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/02/2018] [Indexed: 01/04/2023] Open
Abstract
Lung cancer (LC) is the leading cause of cancer-related deaths. Downregulation of CDK1, 4 and 6, key regulators of cell cycle progression, correlates with decreased LC cell proliferation. Enforced expression of miRNAs (miRs) is a promising approach to regulate genes. Here, we study the combinatorial treatment of miR-143 and miR-506 to target the CDK1, 4/6 genes, respectively. We analyzed the differential expression of CDK genes by qPCR, and western blot, and evaluated changes in the cell cycle distribution upon combinatorial treatment. We used an antibody microarray analysis to evaluate protein expression, focusing on the cell cycle pathway, and performed RNA-sequencing for pathway analysis. The combinatorial miR treatment significantly downregulated CDK1, 4 and 6 expression, and induced a shift of the cell cycle populations, indicating a G1 and G2 cell cycle block. The two miRs induces strong cytotoxic activity, with potential synergism, and a significant Caspase 3/7 activation. We identified a strong inhibition of tube formation in the presence or absence VEGF in an in vitro angiogenesis model. Together with the pathways analysis of the RNA-sequencing data, our findings establish the combinatorial miR transfection as a viable strategy for lung cancer treatment that merits further investigation.
Collapse
|
55
|
Chang JC, Go S, Verhoeven AJ, Beuers U, Oude Elferink RP. Role of the bicarbonate-responsive soluble adenylyl cyclase in cholangiocyte apoptosis in primary biliary cholangitis; a new hypothesis. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1232-1239. [DOI: 10.1016/j.bbadis.2017.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 02/08/2023]
|
56
|
Roles of NF-κB Signaling in the Regulation of miRNAs Impacting on Inflammation in Cancer. Biomedicines 2018; 6:biomedicines6020040. [PMID: 29601548 PMCID: PMC6027290 DOI: 10.3390/biomedicines6020040] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022] Open
Abstract
The NF-κB family of transcription factors regulate the expression of genes encoding proteins and microRNAs (miRNA, miR) precursors that may either positively or negatively regulate a variety of biological processes such as cell cycle progression, cell survival, and cell differentiation. The NF-κB-miRNA transcriptional regulatory network has been implicated in the regulation of proinflammatory, immune, and stress-like responses. Gene regulation by miRNAs has emerged as an additional epigenetic mechanism at the post-transcriptional level. The expression of miRNAs can be regulated by specific transcription factors (TFs), including the NF-κB TF family, and vice versa. The interplay between TFs and miRNAs creates positive or negative feedback loops and also regulatory networks, which can control cell fate. In the current review, we discuss the impact of NF-κB-miRNA interplay and feedback loops and networks impacting on inflammation in cancer. We provide several paradigms of specific NF-κB-miRNA networks that can regulate inflammation linked to cancer. For example, the NF-κB-miR-146 and NF-κB-miR-155 networks fine-tune the activity, intensity, and duration of inflammation, while the NF-κB-miR-21 and NF-κB-miR-181b-1 amplifying loops link inflammation to cancer; and p53- or NF-κB-regulated miRNAs interconnect these pathways and may shift the balance to cancer development or tumor suppression. The availability of genomic data may be useful to verify and find novel interactions, and provide a catalogue of 162 miRNAs targeting and 40 miRNAs possibly regulated by NF-κB. We propose that studying active TF-miRNA transcriptional regulatory networks such as NF-κB-miRNA networks in specific cancer types can contribute to our further understanding of the regulatory interplay between inflammation and cancer, and also perhaps lead to the development of pharmacologically novel therapeutic approaches to combat cancer.
Collapse
|
57
|
Li J, Ju J, Ni B, Wang H. The emerging role of miR-506 in cancer. Oncotarget 2018; 7:62778-62788. [PMID: 27542202 PMCID: PMC5308765 DOI: 10.18632/oncotarget.11294] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/10/2016] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression. They are involved in almost all biological processes, and many have been identified as potential oncogenes or tumor suppressor genes. miR-506 was recently discovered to play pivotal roles in regulating cell proliferation, differentiation, migration and invasion. Dysregulation of miR-506 has been demonstrated in multiple types of cancers; however, whether it functions as an oncogene or a tumor suppressor seems to be context-dependent. Altered miR-506 expression in cancer is caused by promoter methylation and changes in upstream transcription factors. In this review, we summarize the current understanding of the diverse roles and underlying mechanisms of miR-506 and its involvement in cancer, and suggest the potential therapeutic strategy based on miR-506.
Collapse
Affiliation(s)
- Jian Li
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| | - Jingfang Ju
- Translational Research Laboratory, Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Bing Ni
- Department of Pathophysiology and High Altitude Pathology, Third Military Medical University, Chongqing, PR China
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| |
Collapse
|
58
|
Hyaluronic acid-grafted PLGA nanoparticles for the sustained delivery of berberine chloride for an efficient suppression of Ehrlich ascites tumors. Drug Deliv Transl Res 2018; 8:565-579. [DOI: 10.1007/s13346-018-0485-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
59
|
Lan J, Huang Z, Han J, Shao J, Huang C. Redox regulation of microRNAs in cancer. Cancer Lett 2018; 418:250-259. [PMID: 29330105 DOI: 10.1016/j.canlet.2018.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/22/2017] [Accepted: 01/05/2018] [Indexed: 02/05/2023]
Abstract
Dysregulation of microRNAs (miRNAs) has long been implicated in tumorigenesis, whereas the underlying mechanisms remain largely unknown. Oxidative stress is a hallmark of cancer that involved in multiple pathophysiological processes, including the aberrant regulation of miRNAs. Compelling evidences have implied complicated interplay between reactive oxygen species (ROS) and miRNAs. Indeed, ROS induces carcinogenesis through either reducing or increasing the miRNA level, leading to the activation of oncogenes or silence of tumor suppressors, respectively. In turn, miRNAs target ROS productive genes or antioxidant responsive elements to affect cellular redox balance, which contributes to establishing a microenvironment favoring cancer cell growth and metastasis. Both miRNAs and ROS have been identified as potential biomarkers and therapeutic targets in human malignancies, and comprehensive understanding of the molecular events herein will facilitate the development of novel cancer therapeutic strategies.
Collapse
Affiliation(s)
- Jiang Lan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Jichun Shao
- Department of Urology, Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, Sichuan, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China.
| |
Collapse
|
60
|
Linarin suppresses glioma through inhibition of NF-κB/p65 and up-regulating p53 expression in vitro and in vivo. Biomed Pharmacother 2017; 95:363-374. [DOI: 10.1016/j.biopha.2017.08.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/24/2017] [Accepted: 08/04/2017] [Indexed: 01/16/2023] Open
|
61
|
Liu K, Chen W, Lei S, Xiong L, Zhao H, Liang D, Lei Z, Zhou N, Yao H, Liang Y. Wild-type and mutant p53 differentially modulate miR-124/iASPP feedback following pohotodynamic therapy in human colon cancer cell line. Cell Death Dis 2017; 8:e3096. [PMID: 29022915 PMCID: PMC5682646 DOI: 10.1038/cddis.2017.477] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/18/2017] [Accepted: 08/04/2017] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) is a most common digestive system malignant tumor. p53 mutation has essential role in cancers and is frequently observed in CRC and presents a huge challenge. p53 mutation has been reported to attenuate the inhibitory effect of photofrin-based photodynamic therapy (PDT). p53 mutation-induced gain of function brings up the dysfunction of carcinogenic factors, including miRNAs. Our research found that PDT suppressed CRC cell viability, reduced the tumor size and prolonged the survival time, all of which could be attenuated by p53 mutation or deletion. After p53 mutation or deletion, several miRNA expression levels were downregulated, among which miR-124 was the most strongly downregulated, whereas iASPP expression was upregulated. p53 binds to the promoter of miR-124 to promote its expression and then inhibited iASPP expression, so as to amplify the inhibitory effect of PDT on wild-type p53 cells. In p53-mutant or -deleted cells, this binding no longer worked to promote miR-124 expression, and iASPP expression increased, finally resulted in promoted CRC cell viability upon PDT. The interactive modulation among miR and iASPP in p53-mutant or -deleted cells may serve as a crucial pathway, which mediates therapy resistance when p53 is mutated or deleted, in the process of PDT treatment of CRC.
Collapse
Affiliation(s)
- Kuijie Liu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Weidong Chen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Sanlin Lei
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Li Xiong
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Hua Zhao
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Dong Liang
- The People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou 450003, China
| | - Zhendong Lei
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Nanjiang Zhou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Hongliang Yao
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Ying Liang
- Department of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| |
Collapse
|
62
|
Geng YD, Zhang C, Lei JL, Yu P, Xia YZ, Zhang H, Yang L, Kong LY. Walsuronoid B induces mitochondrial and lysosomal dysfunction leading to apoptotic rather than autophagic cell death via ROS/p53 signaling pathways in liver cancer. Biochem Pharmacol 2017; 142:71-86. [PMID: 28673807 DOI: 10.1016/j.bcp.2017.06.134] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/29/2017] [Indexed: 12/19/2022]
Abstract
Walsuronoid B is a limonoid compound extracted from Walsura robusta. Previous studies have shown that limonoid compounds possess anti-cancer potential, although the molecular mechanism of this activity remains elusive. In this study, we demonstrated for the first time that walsuronoid B inhibited cell proliferation in several human cancer lines. Liver cancer cells (HepG2 and Bel-7402) were chosen for their high sensitivity to walsuronoid B. Walsuronoid B induced cell death through G2/M phase arrest and apoptosis and induced the accumulation of autophagosomes through the suppression of mTOR signaling, which serves as a cell survival mechanism and prevents cell death. We further examined the molecular mechanisms and found that walsuronoid B-induced dysfunction of the mitochondria and lysosomes rather than the endoplasmic reticulum contributed to its cell death effect. Walsuronoid B enhanced the generation of hydrogen peroxide, nitric oxide and superoxide anion radical, resulting in elevated levels of reactive oxygen species (ROS). In addition, ROS induced by walsuronoid B upregulated p53 levels; conversely, p53 stimulated ROS. These results suggested that ROS and p53 reciprocally promoted each other's production and cooperated to induce liver cancer cell death. We found that the induction of ROS and p53 significantly triggered G2/M phase arrest and mitochondrial and lysosomal apoptosis. Finally, walsuronoid B suppressed tumor growth in vivo with few side effects. In summary, our findings demonstrated that walsuronoid B caused G2/M phase arrest and induced mitochondrial and lysosomal apoptosis through the ROS/p53 signaling pathway in human liver cancer cells in vitro and in vivo.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/isolation & purification
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
- Apoptosis/drug effects
- Autophagy/drug effects
- Bridged-Ring Compounds/isolation & purification
- Bridged-Ring Compounds/pharmacology
- Bridged-Ring Compounds/therapeutic use
- Cell Cycle Checkpoints/drug effects
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Dose-Response Relationship, Drug
- Hep G2 Cells
- Humans
- Limonins/isolation & purification
- Limonins/pharmacology
- Limonins/therapeutic use
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Lysosomes/metabolism
- Lysosomes/physiology
- Meliaceae/chemistry
- Membrane Potential, Mitochondrial/drug effects
- Mice, Inbred BALB C
- Mice, Nude
- Reactive Oxygen Species/metabolism
- Signal Transduction
- Tumor Suppressor Protein p53/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ya-di Geng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Chao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jian-Li Lei
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Pei Yu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuan-Zheng Xia
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
63
|
Zhao G, Jiang K, Wu H, Qiu C, Deng G, Peng X. Polydatin reduces Staphylococcus aureus lipoteichoic acid-induced injury by attenuating reactive oxygen species generation and TLR2-NFκB signalling. J Cell Mol Med 2017; 21:2796-2808. [PMID: 28524642 PMCID: PMC5661256 DOI: 10.1111/jcmm.13194] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/13/2017] [Indexed: 12/18/2022] Open
Abstract
Staphylococcus aureus (S. aureus) causes severe inflammation in various infectious diseases, leading to high mortality. The clinical application of antibiotics has gained a significant curative effect. However, it has led to the emergence of various resistant bacteria. Therefore, in this study, we investigated the protective effect of polydatin (PD), a traditional Chinese medicine extract, on S. aureus lipoteichoic acid (LTA)-induced injury in vitro and in vivo. First, a significant improvement in the pathological conditions of PD in vivo was observed, suggesting that PD had a certain protective effect on LTA-induced injury in a mouse model. To further explore the underlying mechanisms of this protective effect of PD, LTA-induced murine macrophages were used in this study. The results have shown that PD could reduce the NF-κB p65, and IκBα phosphorylation levels increased by LTA, resulting in a decrease in the transcription of pro-inflammatory factors, such as TNF-α, IL-1β and IL-6. However, LTA can not only activate NF-κB through the recognition of TLR2 but also increase the level of intracellular reactive oxygen species (ROS), thereby activating NF-κB signalling. We also detected high levels of ROS that activate caspases 9 and 3 to induce apoptosis. In addition, using a specific NF-κB inhibitor that could attenuate apoptosis, namely NF-κB p65, acted as a pro-apoptotic transcription factor in LTA-induced murine macrophages. However, PD could inhibit the generation of ROS and NF-κB p65 activation, suggesting that PD suppressed LTA-induced injury by attenuating ROS generation and TLR2-NFκB signalling.
Collapse
Affiliation(s)
- Gan Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Haichong Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changwei Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
64
|
Guo S, Yang P, Jiang X, Li X, Wang Y, Zhang X, Sun B, Zhang Y, Jia Y. Genetic and epigenetic silencing of mircoRNA-506-3p enhances COTL1 oncogene expression to foster non-small lung cancer progression. Oncotarget 2017; 8:644-657. [PMID: 27893417 PMCID: PMC5352185 DOI: 10.18632/oncotarget.13501] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/14/2016] [Indexed: 12/22/2022] Open
Abstract
Although previous studies suggested that microRNA-506-3p (miR-506-3p) was frequently downregulated, and functioned as a tumor suppressor in several cancers, the biological role and intrinsic regulatory mechanisms of miR-506-3p in non-small cell lung cancer (NSCLC) remain elusive. The present study found miR-506-3p expression was downregulated in advanced NSCLC tissues and cell lines. The expression of miR-506-3p in NSCLC was inversely correlated with larger tumor size, advanced TNM stage and lymph node metastasis. In addition, we also found patients with lower expression of miR-506-3p had a poor prognosis than those patients with higher expression of miR-506-3p. Function studies demonstrated that aberrant miR-506-3p expression modulates tumor cell growth, cell mobility, cell migration and invasion in vitro and in vivo. Mechanistic investigations manifested that coactosin-like protein 1 (COTL1) was a direct downstream target of miR-506-3p. Knockdown of COTL1 mimicked the tumor-suppressive effects of miR-506-3p overexpression in A549 cells, whereas COTL1 overexpression enhanced the tumorigenic function in HCC827 cells. Importantly, we also found GATA3 transcriptionally actives miR-506-3p expression, and the long non-coding RNA urothelial carcinoma-associated 1 (UCA1) exerts oncogenic function in NSCLC by competitively 'sponging' miRNA-506. Together, our combined results elucidated genetic and epigenetic silencing of miR-506-3p enhances COTL1 oncogene expression to foster NSCLC progression.
Collapse
Affiliation(s)
- Shanqi Guo
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Peiying Yang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xingkang Jiang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaojiang Li
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuanyuan Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Binxu Sun
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yao Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
65
|
Li D, Cao Y, Li J, Xu J, Liu Q, Sun X. miR-506 suppresses neuroblastoma metastasis by targeting ROCK1. Oncol Lett 2016; 13:417-422. [PMID: 28123576 DOI: 10.3892/ol.2016.5442] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 01/28/2016] [Indexed: 12/29/2022] Open
Abstract
Neuroblastoma is a complex form of cancer with highly heterogeneous clinical behavior that arises during childhood from precursor cells of the sympathetic nervous system. In patients with neuroblastoma, mortality often occurs as a result of metastasis. The disease predominantly spreads to bone marrow, with a survival rate of ~40%. The current study demonstrates that microRNA (miR)-506 directly targets and downregulates Rho-associated, coiled-coil containing protein kinase 1 (ROCK1) in transforming growth factor (TGF)-β non-canonical pathways. It may be concluded that ROCK1 contributes to the invasion and migration of neuroblastoma cells by directly downregulating miR-506; thus, leading to the upregulation of ROCK1, which promotes cell invasion and migration. The present results provide a novel understanding of how miR-506 directly regulates TGF-β non-canonical signaling.
Collapse
Affiliation(s)
- Dianguo Li
- Department of Pediatric Surgery, Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yanhua Cao
- Department of Pediatrics, General Hospital of Jinan Command, Jinan, Shandong 250031, P.R. China
| | - Jinliang Li
- Department of Pediatric Surgery, Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Jialong Xu
- Department of Pediatric Surgery, Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Qian Liu
- Department of Pediatric Surgery, Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xiaogang Sun
- Department of Pediatric Surgery, Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
66
|
Li J, Wu H, Li W, Yin L, Guo S, Xu X, Ouyang Y, Zhao Z, Liu S, Tian Y, Tian Z, Ju J, Ni B, Wang H. Downregulated miR-506 expression facilitates pancreatic cancer progression and chemoresistance via SPHK1/Akt/NF-κB signaling. Oncogene 2016; 35:5501-5514. [PMID: 27065335 PMCID: PMC5078861 DOI: 10.1038/onc.2016.90] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 01/27/2016] [Accepted: 02/19/2016] [Indexed: 02/06/2023]
Abstract
The aberrant expression of microRNAs (miRNAs) has emerged as an important hallmark of cancer. However, the molecular mechanisms underlying the changes in miRNA expression remain unclear. In this study, we discovered a novel epigenetic mechanism of miR-506 regulation and investigated its functional significance in pancreatic cancer. Sequencing analysis revealed that the miR-506 promoter is highly methylated in pancreatic cancer tissues compared with non-cancerous tissues. Reduced miR-506 expression was significantly associated with clinical stage, pathologic tumor status, distant metastasis and decreased survival of pancreatic cancer patients. miR-506 inhibited cell proliferation, induced cell cycle arrest at the G1/S transition and enhanced apoptosis and chemosensitivity of pancreatic cancer cells. Furthermore, we identified sphingosine kinase 1 (SPHK1) as a novel target of miR-506, the expression of which inhibited the SPHK1/Akt/NF-κB signaling pathway, which is activated in pancreatic cancer. High SPHK1 expression was significantly associated with poor survival in a large cohort of pancreatic cancer specimens. Our data suggest that miR-506 acts as a tumor suppressor miRNA and is epigenetically silenced in pancreatic cancer. The newly identified miR-506/SPHK1 axis represents a novel therapeutic strategy for future pancreatic cancer treatment.
Collapse
Affiliation(s)
- J Li
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - H Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - W Li
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - L Yin
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - S Guo
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - X Xu
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Y Ouyang
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Z Zhao
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - S Liu
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Y Tian
- Institute of Immunology PLA, Third Military Medical University, Chongqing, China
| | - Z Tian
- Institute of Immunology PLA, Third Military Medical University, Chongqing, China
| | - J Ju
- Translational Research Laboratory, Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - B Ni
- Institute of Immunology PLA, Third Military Medical University, Chongqing, China
- Department of Pathophysiology and High Altitude Pathology, Third Military Medical University, Chongqing, China
| | - H Wang
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
67
|
Li SP, Su HX, Zhao D, Guan QL. Plasma miRNA-506 as a Prognostic Biomarker for Esophageal Squamous Cell Carcinoma. Med Sci Monit 2016; 22:2195-201. [PMID: 27345473 PMCID: PMC4927144 DOI: 10.12659/msm.899377] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background MicroRNAs (miRNAs) are responsible for regulating proliferation, differentiation, apoptosis, invasion, and metastasis in tumor cells. miRNA-506 is abnormally expressed in multiple tumors, indicating that it might be oncogenic or tumor-suppressive. However, little is known about the association between miRNA-506 expression and esophageal squamous cell carcinoma (ESCC). Material/Methods We examined the expression of miRNA-506 in the plasma of ESCC patients using quantitative real-time polymerase chain reaction (qRT-PCR) to determine the association between miRNA-506 expression and clinicopathological features of ESCC. ROC curves were produced for ESCC diagnosis by plasma miRNA-506 and the area under curve was calculated to explore its diagnostic value. Results Average miRNA-506 expression levels were remarkably higher in the plasma of ESCC patients than in healthy volunteers (P<0.001). The expression of miRNA-506 in the plasma was closely associated with lymph node status (P=0.004), TNM stage (P=0.031), and tumor length (P<0.001). According to ROC curves, the area under the curve for plasma miRNA-506 was 0.835, indicating statistical significance for ESCC diagnosis by plasma miRNA-506 (P<0.001). Kaplan-Meier analysis showed that patients with high miRNA-506 expression had significantly shorter survival time than those with low miRNA-506 expression. Cox regression analysis demonstrated that T stage, N stage, tumor length, and miRNA-506 expression levels were significantly correlated with prognosis in ESCC patients. Conclusions miRNA-506 can serve as an important molecular marker for diagnosis and prognostic prediction of ESCC.
Collapse
Affiliation(s)
- Shu-Ping Li
- Department of Radiation Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China (mainland)
| | - Hong-Xin Su
- Department of Radiation Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China (mainland)
| | - Da Zhao
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China (mainland)
| | - Quan-Lin Guan
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China (mainland)
| |
Collapse
|
68
|
A dual-targeting drug co-delivery system for tumor chemo- and gene combined therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 64:208-218. [PMID: 27127046 DOI: 10.1016/j.msec.2016.03.083] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/17/2016] [Accepted: 03/23/2016] [Indexed: 11/21/2022]
Abstract
Regulation of gene expression using p53 is a promising strategy for treatment of numerous cancers, and chemotherapeutic drug dichloroacetate (DCA) induces apoptosis and growth inhibition in tumor, without apparent toxicity in normal tissues. Combining DCA and p53 gene could be an effective way to treat tumors. The progress towards broad applications of DCA/p53 combination requires the development of safe and efficient vectors that target to specific cells. In this study, we developed a DSPE-PEG-AA (1,2-distearoryl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol-2000)] ammonium salt-anisamide) modified reconstituted high-density lipoprotein-based DCA/p53-loaded nanoparticles (DSPE-PEG-AA/rHDL/DCA-PEI/p53 complexes), which was fabricated as a drug/gene dual-targeting co-delivery system for potential cancer therapy. Here, DCA-PEI was utilized to effectively condense the p53 plasmid, to incorporate the plasmid into rHDL and to act as an antitumor drug to inhibit tumor cell growth. The DSPE-PEG-AA/rHDL/DCA-PEI/p53 complexes exhibited desirable and homogenous particle size, neutral surface charge and low cytotoxicity for normal cells in vitro. The results of confocal laser scanning microscopy (CLSM) and flow cytometry confirmed that the scavenger receptor class B type I (SR-BI) and sigma receptor mediated dual-targeting function of the complexes inducing efficient cytoplasmic drug delivery and gene transfection in human lung adenocarcinoma cell line A549. And in vivo investigation on nude mice bearing A549 tumor xenografts revealed that DSPE-PEG-AA/rHDL/DCA-PEI/p53 complexes possessed specific tumor targeting and strong antitumor activity. The work described here demonstrated that the DSPE-PEG-AA/rHDL/DCA-PEI/p53 complexes might offer a promising tool for effective cancer therapy.
Collapse
|
69
|
ZHOU LIRONG, DI QINGGUO, SUN BAOHUA, WANG XIAOSHENG, LI MIN, SHI JIAN. MicroRNA-194 restrains the cell progression of non-small cell lung cancer by targeting human nuclear distribution protein C. Oncol Rep 2016; 35:3435-44. [DOI: 10.3892/or.2016.4708] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/07/2016] [Indexed: 11/06/2022] Open
|
70
|
Liu Y, Zhao R, Wang H, Luo Y, Wang X, Niu W, Zhou Y, Wen Q, Fan S, Li X, Xiong W, Ma J, Li X, Tan M, Li G, Zhou M. miR-141 is involved in BRD7-mediated cell proliferation and tumor formation through suppression of the PTEN/AKT pathway in nasopharyngeal carcinoma. Cell Death Dis 2016; 7:e2156. [PMID: 27010857 PMCID: PMC4823963 DOI: 10.1038/cddis.2016.64] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 02/24/2016] [Accepted: 02/24/2016] [Indexed: 12/21/2022]
Abstract
Bromodomain containing 7 (BRD7) was identified as a nuclear transcriptional regulatory factor. BRD7 functions as a tumor suppressor in multiple cancers, including nasopharyngeal carcinoma (NPC). In this study, we reported a novel mechanism of BRD7 in NPC progression. We demonstrated that the expression of miR-141 was remarkably increased in NPC tissues and was negatively correlated with the expression of BRD7 and the survival rate of NPC patients. Decreased expression levels of miR-141, including the primary, the precursor and the mature forms of miR-141, were found in BRD7-overexpressing HEK293, 5-8F and HNE1 cells compared the control cells, while there was no obvious effect on the expression levels of the two critical enzymes Drosha and Dicer. BRD7 can negatively regulate the promoter activity of miR-141, while no obvious binding site of BRD7 was found in the potential promoter region of miR-141. Moreover, ectopic expression of miR-141 can significantly promote cell proliferation and inhibit apoptosis in NPC, and rescuing the expression of miR-141 in BRD7-overexpressing NPC cells could partially reverse the tumor suppressive effect of BRD7 on cell proliferation and tumor growth in vitro and in vivo. Furthermore, the activation of the PTEN/AKT pathway mediated by the overexpression of BRD7 could be inhibited by rescuing the expression of miR-141, which accordingly results in the partial restoration of cell proliferation and tumor growth. Our findings demonstrate that the BRD7/miR-141/PTEN/AKT axis has critical roles in the progression of NPC and provide some promising targets for the diagnosis and treatment of NPC.
Collapse
Affiliation(s)
- Y Liu
- Hunan Cancer Hospital and The Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, PR China
| | - R Zhao
- Hunan Cancer Hospital and The Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, PR China
| | - H Wang
- Hunan Cancer Hospital and The Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, PR China
| | - Y Luo
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, PR China
| | - X Wang
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, PR China
| | - W Niu
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, PR China
| | - Y Zhou
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, PR China
| | - Q Wen
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - S Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - X Li
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, PR China
| | - W Xiong
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, PR China
| | - J Ma
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, PR China
| | - X Li
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, PR China
| | - M Tan
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - G Li
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, PR China
| | - M Zhou
- Hunan Cancer Hospital and The Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, PR China
| |
Collapse
|
71
|
Abstract
Since both reactive oxygen species (ROS) production and microRNAs expression signature have been associated with tumor development, progression, metastasis and therapeutic response, it is important to understand the crosstalk between ROS and microRNAs. Indeed, growing evidence suggests a reciprocal connection between ROS signaling and microRNAs pathway, resulting in diverse biological effects in cancer cells. In this mini review, we discussed the ROS-responsive microRNAs that have implications in cancer and the possible mechanisms in which ROS regulate microRNAs. We also highlighted the microRNAs which are able to modify cellular ROS homeostasis during tumorigenesis, their biological targets and subsequent functions. As the use of antioxidants is limited due to the diverse or even opposing roles of ROS signaling in cancer, the discovery of ROS-responsive microRNAs provides a potential new strategy to specifically overcome ROS-mediated tumor progression or benefit from ROS-induced apoptosis.
Collapse
Affiliation(s)
- Jun He
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, USA
| | - Bing-Hua Jiang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, USA
| |
Collapse
|
72
|
Garajová I, Funel N, Fiorentino M, Agostini V, Ferracin M, Negrini M, Frassineti GL, Gavelli G, Frampton AE, Biasco G, Giovannetti E. MicroRNA profiling of primary pulmonary enteric adenocarcinoma in members from the same family reveals some similarities to pancreatic adenocarcinoma-a step towards personalized therapy. Clin Epigenetics 2015; 7:129. [PMID: 26677401 PMCID: PMC4681170 DOI: 10.1186/s13148-015-0162-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/07/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Primary pulmonary enteric adenocarcinoma (PEAC) is defined as a pulmonary adenocarcinoma with a predominant component of intestinal differentiation and tumor cells positive for at least one intestinal marker. The aim of the present study was the molecular and histological characterization of a PEAC from a patient with two other family members affected by similar lung tumors, which has never been reported before. FINDINGS We evaluated the molecular characteristics of the proband's PEAC by using a previously validated 47-microRNA (miRNA) cancer-specific array and a predictive method to estimate tissue-of-origin probabilities. Immunohistochemical (IHC) staining for thyroid transcription factor (TTF-1), napsin A, caudal-related homeobox 2 (CDX2), cytokeratins, and mucins, as well as mutational analyses for epidermal growth factor receptor (EGFR), Kirsten rat sarcoma viral oncogene homolog (KRAS), and anaplastic lymphoma kinase (ALK) were performed on formalin-fixed, paraffin-embedded (FFPE) tissues. The occurrence of PEAC in two family members was associated with similar clinicopathological features (age at diagnosis, smoking habit, tumor localization, multiple colonic polyps), histologic findings (TTF-1 negativity and CDX2 positivity), and genetic findings (KRAS (Gly12Asp) mutation, but no EGFR/ALK aberrations). miRNA profiling revealed similarities with non-small cell lung cancer (NSCLC; 75.98 %) and some overlap with pancreatic ductal adenocarcinoma (PDAC; 23.34 %), but not with colorectal cancer (CRC; less than 0.5 %). Notably, these PEACs share key PDAC-associated miRNAs associated with tumor aggressiveness (miR-31*/-126*/-506/-508-3p/-514). CONCLUSIONS We describe for the first time PEAC in members from the same family, associated with similar clinical and genetic features. miRNA profiling of the PEAC resembled a NSCLC signature, with partial overlap to a PDAC pattern. This could explain its aggressive behavior and therefore help to guide future tailored-therapeutic approaches.
Collapse
Affiliation(s)
- Ingrid Garajová
- />Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, CCA room 1.52, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- />Department of Experimental, Diagnostic and Speciality Medicine, Sant’Orsola-Malpighi Hospital, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Niccola Funel
- />Division of General and Transplant Surgery, Pisa University Hospital, Via Paradisa 2, 56124 Pisa, Italy
- />Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, Lungarno Pacinotti 43, 56126 Pisa, Italy
| | - Michelangelo Fiorentino
- />Department of Pathology, F. Addari Institute, S.Orsola Malpighi Hospital, University of Bologna, Viale Ercolani 4/2, 40138 Bologna, Italy
| | - Valentina Agostini
- />Department of Pathology, F. Addari Institute, S.Orsola Malpighi Hospital, University of Bologna, Viale Ercolani 4/2, 40138 Bologna, Italy
| | - Manuela Ferracin
- />Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Borsari 46, 44121 Ferrara, Italy
- />Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Massimo Negrini
- />Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Borsari 46, 44121 Ferrara, Italy
- />Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Giovanni Luca Frassineti
- />Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Piero Maroncelli 40, 47014 Meldola, Italy
| | - Giampaolo Gavelli
- />Department of Radiology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Piero Maroncelli 40, 47014 Meldola, Italy
| | - Adam Enver Frampton
- />HPB Surgical Unit, Department of Surgery & Cancer, Hammersmith Hospital Campus, Imperial College, Du Cane Road, London, W12 0HS UK
| | - Guido Biasco
- />Department of Experimental, Diagnostic and Speciality Medicine, Sant’Orsola-Malpighi Hospital, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Elisa Giovannetti
- />Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, CCA room 1.52, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- />Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, Lungarno Pacinotti 43, 56126 Pisa, Italy
- />Cancer Pharmacology Lab, Start-Up Unit, University of Pisa, via Paradisa 2, 56124 Pisa, Italy
| |
Collapse
|
73
|
Lu Z, Zhang W, Gao S, Jiang Q, Xiao Z, Ye L, Zhang X. MiR-506 suppresses liver cancer angiogenesis through targeting sphingosine kinase 1 (SPHK1) mRNA. Biochem Biophys Res Commun 2015; 468:8-13. [PMID: 26549227 DOI: 10.1016/j.bbrc.2015.11.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022]
Abstract
MicroRNAs acting as oncogenes or tumor suppressor genes play crucial roles in human cancers. Sphingosine kinase 1 (SPHK1) and its metabolite sphingosine 1-phosphate (S1P) contribute to tumor angiogenesis. We have reported that the down-regulation of miR-506 targeting YAP mRNA results in the hepatocarcinogenesis. In the present study, we report a novel function of miR-506, which suppresses tumor angiogenesis through targeting SPHK1 mRNA in liver cancer. Bioinformatics analysis showed that miR-506 might target 3'-untranslated region (3'UTR) of SPHK1 mRNA. Then, we validated that by luciferase reporter gene assays. MiR-506 was able to reduce the expression of SPHK1 at the levels of mRNA and protein using reverse transcription-polymerase chain reaction and Western blot analysis in hepatoma HepG2 cells. Functionally, human umbilical vein endothelial cell (HUVEC) tube formation assays demonstrated that the forced miR-506 expression remarkably inhibited the production of S1P in the supernatant of hepatoma cells. The supernatant resulted in the inhibition of tumor angiogenesis. Interestingly, the supernatant with overexpression of SPHK1 could rescue the inhibition of angiogenesis of liver cancer mediated by miR-506. Anti-miR-506 increased the production of S1P in the supernatant of hepatoma cells, but the supernatant with silencing of SPHK1 abolished anti-miR-506-induced acceleration of tumor angiogenesis. Clinically, we observed that the levels of miR-506 were negatively related to those of SPHK1 mRNA in liver cancer tissues. Thus, we conclude that miR-506 depresses the angiogenesis of liver cancer through targeting 3'UTR of SPHK1 mRNA. Our finding provides new insights into the mechanism of tumor angiogenesis.
Collapse
Affiliation(s)
- Zhanping Lu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Weiying Zhang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Shan Gao
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Qiulei Jiang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Zelin Xiao
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Lihong Ye
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Xiaodong Zhang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, PR China.
| |
Collapse
|
74
|
Ye L, Wang H, Liu B. miR-211 promotes non-small cell lung cancer proliferation by targeting SRCIN1. Tumour Biol 2015; 37:1151-7. [PMID: 26277787 DOI: 10.1007/s13277-015-3835-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/21/2015] [Indexed: 01/11/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that, when dysregulated, are involved in the initiation and progression of various cancers, including lung cancer, in humans. In the current study, qRT-PCR was performed to measure miR-211 expression in human non-small cell lung cancer (NSCLC) cell lines and tissues. Cell proliferation, cell cycle, colony formation, and invasion were performed to detect the functional role of miR-211 in human NSCLC cell line. We used luciferase reporter assay to find the potential target of miR-211. We found that miR-211 expression was upregulated in human non-small cell lung cancer (NSCLC) cell lines and tissues. The overexpression of miR-211 enhanced NSCLC cell proliferation, colony formation, and invasion. SRC kinase signaling inhibitor 1 (SRCIN1) was identified as a direct target of miR-211. SRCIN1 silencing promoted cell proliferation, and SRCIN1 expression was downregulated in human NSCLC cell lines. Thus, miR-211 may function as an oncogenic miRNA in NSCLC, partly by regulating SRCIN1, and the modulation of miR-211 expression represents a potential strategy for the treatment of NSCLC patients.
Collapse
Affiliation(s)
- Leiguang Ye
- Department of Pulmonary Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China, 150040
| | - Hui Wang
- Department of Pulmonary Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China, 150040
| | - Baogang Liu
- Department of Pulmonary Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China, 150040.
| |
Collapse
|
75
|
DU JUNDONG, ZHENG XI, CAI SHOUWANG, ZHU ZIMAN, TAN JINGWANG, HU BIN, HUANG ZHIQIANG, JIAO HUABO. MicroRNA-506 participates in pancreatic cancer pathogenesis by targeting PIM3. Mol Med Rep 2015; 12:5121-6. [DOI: 10.3892/mmr.2015.4109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 03/18/2015] [Indexed: 11/06/2022] Open
|
76
|
Sun Y, Guo F, Bagnoli M, Xue FX, Sun BC, Shmulevich I, Mezzanzanica D, Chen KX, Sood AK, Yang D, Zhang W. Key nodes of a microRNA network associated with the integrated mesenchymal subtype of high-grade serous ovarian cancer. CHINESE JOURNAL OF CANCER 2015; 34:28-40. [PMID: 25556616 PMCID: PMC4302087 DOI: 10.5732/cjc.014.10284] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metastasis is the main cause of cancer mortality. One of the initiating events of cancer metastasis of epithelial tumors is epithelial-to-mesenchymal transition (EMT), during which cells dedifferentiate from a relatively rigid cell structure/morphology to a flexible and changeable structure/morphology often associated with mesenchymal cells. The presence of EMT in human epithelial tumors is reflected by the increased expression of genes and levels of proteins that are preferentially present in mesenchymal cells. The combined presence of these genes forms the basis of mesenchymal gene signatures, which are the foundation for classifying a mesenchymal subtype of tumors. Indeed, tumor classification schemes that use clustering analysis of large genomic characterizations, like The Cancer Genome Atlas (TCGA), have defined mesenchymal subtype in a number of cancer types, such as high-grade serous ovarian cancer and glioblastoma. However, recent analyses have shown that gene expression-based classifications of mesenchymal subtypes often do not associate with poor survival. This “paradox” can be ameliorated using integrated analysis that combines multiple data types. We recently found that integrating mRNA and microRNA (miRNA) data revealed an integrated mesenchymal subtype that is consistently associated with poor survival in multiple cohorts of patients with serous ovarian cancer. This network consists of 8 major miRNAs and 214 mRNAs. Among the 8 miRNAs, 4 are known to be regulators of EMT. This review provides a summary of these 8 miRNAs, which were associated with the integrated mesenchymal subtype of serous ovarian cancer.
Collapse
Affiliation(s)
- Yan Sun
- Departments of Pathology, The Key Laboratory of Tianjin Cancer Prevention and Treatment, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P. R. China. ,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Zhang Z, Ma J, Luan G, Kang L, Su Y, He Y, Luan F. MiR-506 suppresses tumor proliferation and invasion by targeting FOXQ1 in nasopharyngeal carcinoma. PLoS One 2015; 10:e0122851. [PMID: 25856555 PMCID: PMC4391879 DOI: 10.1371/journal.pone.0122851] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/24/2015] [Indexed: 01/09/2023] Open
Abstract
MiRNAs are small noncoding RNAs that play important roles in various biological processes including tumorigenesis. However, little is known about the expression and function of miR-506 in nasopharyngeal carcinoma (NPC). In this study, we showed that miR-506 was downregulated in nasopharyngeal carcinoma (NPC) cell lines and tissues. Ectopic expression of miR-506 dramatically suppressed cell proliferation, colony formation and invasion. Moreover, we identified the Forkhead box Q1 (FOXQ1) gene as a novel direct target of miR-506. MiR-506 exerts its tumor suppressor function through inhibition of the FOXQ1, which was involved in tumor metastasis and proliferation in various cancers. Furthermore, the expression of FOXQ1 is up-regulated in NPC cell lines and tissues. Taken together, our results indicate that miR-506 functions as a tumor suppressor miRNA in NPC and that its suppressive effects are mediated chiefly by repressing FOXQ1 expression.
Collapse
Affiliation(s)
- Zhanchi Zhang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, PR China
| | - Jun Ma
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, PR China
| | - Guang Luan
- The Third Hospital of Hebei Medical University, Shijiazhuang, PR China
| | - Lin Kang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, PR China
| | - Yuhong Su
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, PR China
| | - Yanan He
- Department of Otorhinolaryngology, The Third Hospital of Hebei Medical University, Shijiazhuang, PR China
| | - Feng Luan
- Department of Otorhinolaryngology, The Third Hospital of Hebei Medical University, Shijiazhuang, PR China
- * E-mail:
| |
Collapse
|
78
|
Kumari R, Kohli S, Das S. p53 regulation upon genotoxic stress: intricacies and complexities. Mol Cell Oncol 2014; 1:e969653. [PMID: 27308356 DOI: 10.4161/23723548.2014.969653] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/02/2014] [Accepted: 09/02/2014] [Indexed: 12/11/2022]
Abstract
p53, the revered savior of genomic integrity, receives signals from diverse stress sensors and strategizes to maintain cellular homeostasis. However, the predominance of p53 overshadows the fact that this herculean task is no one-man show; rather, there is a huge army of regulators that reign over p53 at various levels to avoid an unnecessary surge in its levels and sculpt it dynamically to favor one cellular outcome over another. This governance starts right at the time of p53 translation, which is gated by proteins that bind to p53 mRNA and keep a stringent check on p53 protein levels. The same effect is also achieved by ubiquitylases and deubiquitylases that fine-tune p53 turnover and miRNAs that modulate p53 levels, adding precision to this entire scheme. In addition, extensive covalent modifications and differential protein interactions allow p53 to trigger a tailor-made response for a given circumstance. To magnify the marvel, these various tiers of regulation operate simultaneously and in various combinations. In this review, we have tried to provide a glimpse into this bewildering labyrinth. We believe that further studies will result in a better understanding of p53 regulation and that new insights will help unravel many aspects of cancer biology.
Collapse
Affiliation(s)
- Rajni Kumari
- Molecular Oncology Laboratory; National Institute of Immunology ; New Delhi, India
| | - Saishruti Kohli
- Molecular Oncology Laboratory; National Institute of Immunology ; New Delhi, India
| | - Sanjeev Das
- Molecular Oncology Laboratory; National Institute of Immunology ; New Delhi, India
| |
Collapse
|
79
|
Sun Y, Hu L, Zheng H, Bagnoli M, Guo Y, Rupaimoole R, Rodriguez-Aguayo C, Lopez-Berestein G, Ji P, Chen K, Sood AK, Mezzanzanica D, Liu J, Sun B, Zhang W. MiR-506 inhibits multiple targets in the epithelial-to-mesenchymal transition network and is associated with good prognosis in epithelial ovarian cancer. J Pathol 2014; 235:25-36. [PMID: 25230372 DOI: 10.1002/path.4443] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/28/2014] [Accepted: 09/11/2014] [Indexed: 02/06/2023]
Abstract
Extensive investigations have shown that miRNAs are important regulators of epithelial-to-mesenchymal transition (EMT), mainly targeting the transcriptional repressors of E-cadherin (E-cad). Less is known about the post-transcriptional regulation of vimentin or N-cadherin (N-cad) in EMT. Our previous study identified miR-506 as a key EMT inhibitor through directly targeting the E-cad transcriptional repressor SNAI2. In this study, we provide evidence that miR-506 simultaneously suppresses vimentin and N-cad. The knockdown of vimentin using siRNA reversed EMT, suppressed cell migration and invasion, and increased E-cad expression on the cell membrane in epithelial ovarian cancer (EOC) cells. In a set of tissue microarrays that included 204 EOCs of all major subtypes (eg serous, endometrioid, clear cell, and mucinous), miR-506 was positively correlated with E-cad and negatively correlated with vimentin and N-cad in all subtypes of EOC. A high level of miR-506 was positively associated with early FIGO stage and longer survival in EOC. Introduction of miR-506, mediated by nanoparticle delivery, in EOC orthotopic mouse models resulted in decreased vimentin, N-cad, and SNAI2 expression and increased E-cad expression; it also suppressed the dissemination of EOC cells. Thus, miR-506 represents a new class of miRNA that regulates both E-cad and vimentin/N-cad in the suppression of EMT and metastasis.
Collapse
Affiliation(s)
- Yan Sun
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China; Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Ananthanarayanan M, Banales JM, Guerra MT, Spirli C, Munoz-Garrido P, Mitchell-Richards K, Tafur D, Saez E, Nathanson MH. Post-translational regulation of the type III inositol 1,4,5-trisphosphate receptor by miRNA-506. J Biol Chem 2014; 290:184-96. [PMID: 25378392 DOI: 10.1074/jbc.m114.587030] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The type III isoform of the inositol 1,4,5-trisphosphate receptor (InsP3R3) is apically localized and triggers Ca(2+) waves and secretion in a number of polarized epithelia. However, nothing is known about epigenetic regulation of this InsP3R isoform. We investigated miRNA regulation of InsP3R3 in primary bile duct epithelia (cholangiocytes) and in the H69 cholangiocyte cell line, because the role of InsP3R3 in cholangiocyte Ca(2+) signaling and secretion is well established and because loss of InsP3R3 from cholangiocytes is responsible for the impairment in bile secretion that occurs in a number of liver diseases. Analysis of the 3'-UTR of human InsP3R3 mRNA revealed two highly conserved binding sites for miR-506. Transfection of miR-506 mimics into cell lines expressing InsP3R3-3'UTR-luciferase led to decreased reporter activity, whereas co-transfection with miR-506 inhibitors led to enhanced activity. Reporter activity was abrogated in isolated mutant proximal or distal miR-506 constructs in miR-506-transfected HEK293 cells. InsP3R3 protein levels were decreased by miR-506 mimics and increased by inhibitors, and InsP3R3 expression was markedly decreased in H69 cells stably transfected with miR-506 relative to control cells. miR-506-H69 cells exhibited a fibrotic signature. In situ hybridization revealed elevated miR-506 expression in vivo in human-diseased cholangiocytes. Histamine-induced, InsP3-mediated Ca(2+) signals were decreased by 50% in stable miR-506 cells compared with controls. Finally, InsP3R3-mediated fluid secretion was significantly decreased in isolated bile duct units transfected with miR-506, relative to control IBDU. Together, these data identify miR-506 as a regulator of InsP3R3 expression and InsP3R3-mediated Ca(2+) signaling and secretion.
Collapse
Affiliation(s)
| | - Jesus M Banales
- the Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of Basque Country (UPV/EHU), CIBERehd, IKERBASQUE, AECC, 20014 San Sebastian, Spain, and the Division of Gene Therapy and Hepatology, CIMA of the University of Navarra, Ciberehd, 31009 Pamplona, Spain
| | | | | | - Patricia Munoz-Garrido
- the Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of Basque Country (UPV/EHU), CIBERehd, IKERBASQUE, AECC, 20014 San Sebastian, Spain, and
| | - Kisha Mitchell-Richards
- Pathology, Section of Digestive Diseases and the Liver Center, Yale University School of Medicine, New Haven, Connecticut 06520
| | | | - Elena Saez
- the Division of Gene Therapy and Hepatology, CIMA of the University of Navarra, Ciberehd, 31009 Pamplona, Spain
| | | |
Collapse
|
81
|
Wang Y, Cui M, Sun BD, Liu FB, Zhang XD, Ye LH. MiR-506 suppresses proliferation of hepatoma cells through targeting YAP mRNA 3'UTR. Acta Pharmacol Sin 2014; 35:1207-14. [PMID: 25087998 DOI: 10.1038/aps.2014.59] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/18/2014] [Indexed: 12/11/2022]
Abstract
AIM MiR-506 is a miRNA involved in carcinogenesis of several kinds of cancer. In this study, we explored whether miR-506 played a critical role in hepatocellular carcinoma (HCC). METHODS Twenty HCC and adjacent normal liver tissue samples were collected. Human hepatoma cell lines HepG2 and H7402 were used for in vitro studies. The expression of miR-506 and transcriptional co-activator YAP was examined using qRT-PCR. Western blot analysis was used to measure the expression of YAP and its target genes. Luciferase reporter gene assay was used to identify YAP as a target gene of miR-506. MTT and EdU assays were carried out for functional analysis. RESULTS The expression of miR-506 was significantly lower in HCC than in adjacent normal liver tissues. Bioinformatics analysis revealed that YAP mRNA might be one of the targets of miR-506, and miR-506 in HCC tissues was found to be negatively correlated with YAP (r=-0.605). In both HepG2 and H7402 cells, miR-506 dose-dependently down-regulated YAP and its target genes c-Myc and the connective tissue growth factor (CTGF). Luciferase reporter gene assays demonstrated that miR-506 targeted the wild type 3'UTR of YAP mRNA, but not a 3'UTR with a mutant seed site. Furthermore, miR-506 significantly inhibited the proliferation of HepG2 and H7402 cells, while anti-miR-506 enhanced the cell proliferation, which was blocked by YAP siRNA. CONCLUSION MiR-506 suppresses the proliferation of hepatoma cells by targeting YAP mRNA.
Collapse
|