51
|
Enhancement of connexin30.3 expression in mouse embryonic stem cell line EB3 in response to cell-cell contacts. Hum Cell 2019; 32:95-102. [PMID: 30674001 DOI: 10.1007/s13577-018-00235-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023]
Abstract
To clarify the potential role of gap junction in cell-cell contact response, the expression of connexin30.3 gene (Cx30.3), a specifically expressed isoform in undifferentiated state of mouse embryonic stem (ES) cell line EB3 was investigated under different cell-cell contact conditions. ES cells were cultured by hanging drop culture method to increase cell-cell contact frequency. As control, a single cell culture was conducted. After culture for 12 h, the Cx30.3 expression level in hanging drop culture reached 1.73-fold that of the control (p < 0.001). By contrast, connexin43 gene (Cx43), a ubiquitously expressed gene, showed no difference between both cultures. The experiment of E-cadherin inhibition and β-catenin knockdown suggested the action of E-cadherin upstream of the Cx30.3 regulating pathway. The cell-cell contacts with different cell lines such as HeLa cells and B16/BL6 caused no effect on the Cx30.3 in ES cells. These suggest a potential role of Cx30.3 as a cell-cell contact signal mediator partially regulated by E-cadherin signaling.
Collapse
|
52
|
Fornetti J, Welm AL, Stewart SA. Understanding the Bone in Cancer Metastasis. J Bone Miner Res 2018; 33:2099-2113. [PMID: 30476357 DOI: 10.1002/jbmr.3618] [Citation(s) in RCA: 286] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 12/11/2022]
Abstract
The bone is the third most common site of metastasis for a wide range of solid tumors including lung, breast, prostate, colorectal, thyroid, gynecologic, and melanoma, with 70% of metastatic prostate and breast cancer patients harboring bone metastasis.1 Unfortunately, once cancer spreads to the bone, it is rarely cured and is associated with a wide range of morbidities including pain, increased risk of fracture, and hypercalcemia. This fact has driven experts in the fields of bone and cancer biology to study the bone, and has revealed that there is a great deal that each can teach the other. The complexity of the bone was first described in 1889 when Stephen Paget proposed that tumor cells have a proclivity for certain organs, where they "seed" into a friendly "soil" and eventually grow into metastatic lesions. Dr. Paget went on to argue that although many study the "seed" it would be paramount to understand the "soil." Since this original work, significant advances have been made not only in understanding the cell-autonomous mechanisms that drive metastasis, but also alterations which drive changes to the "soil" that allow a tumor cell to thrive. Indeed, it is now clear that the "soil" in different metastatic sites is unique, and thus the mechanisms that allow tumor cells to remain in a dormant or growing state are specific to the organ in question. In the bone, our knowledge of the components that contribute to this fertile "soil" continues to expand, but our understanding of how they impact tumor growth in the bone remains in its infancy. Indeed, we now appreciate that the endosteal niche likely contributes to tumor cell dormancy, and that osteoclasts, osteocytes, and adipocytes can impact tumor cell growth. Here, we discuss the bone microenvironment and how it impacts cancer cell seeding, dormancy, and growth. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jaime Fornetti
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Alana L Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Sheila A Stewart
- Departments of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.,Integrating Communication within the Cancer Environment (ICCE) Institute, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
53
|
Therapeutic Targeting of Connexin Channels: New Views and Challenges. Trends Mol Med 2018; 24:1036-1053. [PMID: 30424929 DOI: 10.1016/j.molmed.2018.10.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 12/22/2022]
Abstract
Connexins, in particular connexin 43 (Cx43), function as gap junction channels (GJCs) and hemichannels (HCs). Only recently, specific tools have been developed to study their pleiotropic functions. Based on various protein interaction sites, distinct connexin-mimetic peptides have been established that enable discrimination between the function of HCs and GJCs. Although the precise mechanism of action of most of these peptides is still a matter of debate, an increasing number of studies report on important effects of those compounds in disease models. In this review, we summarize the structure, life cycle, and the most important physiological and pathological functions of both connexin GJCs and HCs. We provide a critical overview on the use of connexin-targeting peptides, in particular targeting Cx43, with a special focus on the remaining questions and hurdles to be taken in the research field of connexin channels.
Collapse
|
54
|
Abstract
The connexin family of channel-forming proteins is present in every tissue type in the human anatomy. Connexins are best known for forming clustered intercellular channels, structurally known as gap junctions, where they serve to exchange members of the metabolome between adjacent cells. In their single-membrane hemichannel form, connexins can act as conduits for the passage of small molecules in autocrine and paracrine signalling. Here, we review the roles of connexins in health and disease, focusing on the potential of connexins as therapeutic targets in acquired and inherited diseases as well as wound repair, while highlighting the associated clinical challenges.
Collapse
|
55
|
Abstract
Approximately 75% of patients with late-stage breast cancer will develop bone metastasis. This condition is currently considered incurable and patients' life expectancy is limited to 2-3 years following diagnosis of bone involvement. Interleukin (IL)-1B is a pro-inflammatory cytokine whose expression in primary tumours has been identified as a potential biomarker for predicting breast cancer patients at increased risk for developing bone metastasis. In this review, we discuss how IL-1B from both the tumour cells and the tumour microenvironment influence growth of primary breast tumours, dissemination into the bone metastatic niche and proliferation into overt metastases. Recent evidence indicates that targeting IL-1B signalling may provide promising new treatments that can hold tumour cells in a dormant state within bone thus preventing formation of overt bone metastases.
Collapse
Affiliation(s)
- Claudia Tulotta
- Department of Oncology and MetabolismMellanby Centre for Bone Research, University of Sheffield, Medical School, Sheffield, UK
| | - Penelope Ottewell
- Department of Oncology and MetabolismMellanby Centre for Bone Research, University of Sheffield, Medical School, Sheffield, UK
| |
Collapse
|
56
|
Li X, Yang J, Bao M, Zeng K, Fu S, Wang C, Ye L. Wnt signaling in bone metastasis: mechanisms and therapeutic opportunities. Life Sci 2018; 208:33-45. [PMID: 29969609 DOI: 10.1016/j.lfs.2018.06.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/29/2018] [Accepted: 06/29/2018] [Indexed: 02/05/2023]
Abstract
Bone metastasis frequently occurs in advanced cancer patients, who will develop osteogenic/osteolytic bone lesions in the late stage of the disease. Wnt signaling pathway, which is mainly grouped into the β-catenin dependent pathway and β-catenin independent pathway, is a well-organized cascade that has been reported to play important roles in a variety of physiological and pathological conditions, including bone metastasis. Regulation of Wnt signaling in bone metastasis involves multiple stages, including dissemination of primary tumor cells to bone, dormancy and outgrowth of metastatic tumor cells, and tumor-induced osteogenic and osteolytic bone destruction, suggesting the importance of Wnt signaling in bone metastasis pathology. In this review, we will introduce the involvement of Wnt signaling components in specific bone metastasis stages and summarize the promising Wnt modulators that have shown potential as bone metastasis therapeutics, in the hope to maximize the therapeutic opportunities of Wnt signaling for bone metastasis.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Minyue Bao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Kan Zeng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shijin Fu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
57
|
Connexins and Pannexins: Important Players in Tumorigenesis, Metastasis and Potential Therapeutics. Int J Mol Sci 2018; 19:ijms19061645. [PMID: 29865195 PMCID: PMC6032133 DOI: 10.3390/ijms19061645] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022] Open
Abstract
Since their characterization more than five decades ago, gap junctions and their structural proteins-the connexins-have been associated with cancer cell growth. During that period, the accumulation of data and molecular knowledge about this association revealed an apparent contradictory relationship between them and cancer. It appeared that if gap junctions or connexins can down regulate cancer cell growth they can be also implied in the migration, invasion and metastatic dissemination of cancer cells. Interestingly, in all these situations, connexins seem to be involved through various mechanisms in which they can act either as gap-junctional intercellular communication mediators, modulators of signalling pathways through their interactome, or as hemichannels, which mediate autocrine/paracrine communication. This complex involvement of connexins in cancer progression is even more complicated by the fact that their hemichannel function may overlap with other gap junction-related proteins, the pannexins. Despite this complexity, the possible involvements of connexins and pannexins in cancer progression and the elucidation of the mechanisms they control may lead to use them as new targets to control cancer progression. In this review, the involvements of connexins and pannexins in these different topics (cancer cell growth, invasion/metastasis process, possible cancer therapeutic targets) are discussed.
Collapse
|
58
|
Conflicting Roles of Connexin43 in Tumor Invasion and Growth in the Central Nervous System. Int J Mol Sci 2018; 19:ijms19041159. [PMID: 29641478 PMCID: PMC5979343 DOI: 10.3390/ijms19041159] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 12/24/2022] Open
Abstract
The tumor microenvironment is known to have increased levels of cytokines and metabolites, such as glutamate, due to their release from the surrounding cells. A normal cell around the tumor that responds to the inflammatory environment is likely to be subsequently altered. We discuss how these abnormalities will support tumor survival via the actions of gap junctions (GJs) and hemichannels (HCs) which are composed of hexamer of connexin43 (Cx43) protein. In particular, we discuss how GJ intercellular communication (GJIC) in glioma cells, the primary brain tumor, is a regulatory factor and its attenuation leads to tumor invasion. In contrast, the astrocytes, which are normal cells around the glioma, are “hijacked” by tumor cells, either by receiving the transmission of malignant substances from the cancer cells via GJIC, or perhaps via astrocytic HC activity through the paracrine signaling which enable the delivery of these substances to the distal astrocytes. This astrocytic signaling would promote tumor expansion in the brain. In addition, brain metastasis from peripheral tissues has also been known to be facilitated by GJs formed between cerebral vascular endothelial cells and cancer cells. Astrocytes and microglia are generally thought to eliminate cancer cells at the blood–brain barrier. In contrast, some reports suggest they facilitate tumor progression as tumor cells take advantage of the normal functions of astrocytes that support the survival of the neurons by exchanging nutrients and metabolites. In summary, GJIC is essential for the normal physiological function of growth and allowing the diffusion of physiological substances. Therefore, whether GJIC is cancer promoting or suppressing may be dependent on what permeates through GJs, when it is active, and to which cells. The nature of GJs, which has been ambiguous in brain tumor progression, needs to be revisited and understood together with new findings on Cx proteins and HC activities.
Collapse
|
59
|
Rhett JM, Yeh ES. The Potential for Connexin Hemichannels to Drive Breast Cancer Progression through Regulation of the Inflammatory Response. Int J Mol Sci 2018; 19:ijms19041043. [PMID: 29601539 PMCID: PMC5979453 DOI: 10.3390/ijms19041043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 12/12/2022] Open
Abstract
Over the past few decades, connexin hemichannels have become recognized as major players in modulating the inflammatory response. Chronic inflammation is documented to promote tumorigenesis and is a critical component of tumor progression. Furthermore, inflammation is strongly linked to angiogenesis, immunotolerance, invasiveness, metastasis, and resistance in breast cancers. In this review, the literature on the role of connexin hemichannels in inflammation is summarized, and the potential role for hemichannel-mediated inflammation in driving breast cancer progression is discussed. Lastly, the potential for connexin-based therapeutics to modulate the inflammatory component of the tumor microenvironment as an avenue for the treatment of breast cancer is also discussed.
Collapse
Affiliation(s)
- J Matthew Rhett
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29412, USA.
| | - Elizabeth S Yeh
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29412, USA.
| |
Collapse
|
60
|
Ma YV, Lam C, Dalmia S, Gao P, Young J, Middleton K, Liu C, Xu H, You L. Mechanical regulation of breast cancer migration and apoptosis via direct and indirect osteocyte signaling. J Cell Biochem 2018; 119:5665-5675. [DOI: 10.1002/jcb.26745] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/29/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Yu‐Heng V. Ma
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoOntarioCanada
| | - Candy Lam
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoOntarioCanada
| | - Shreyash Dalmia
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoOntarioCanada
| | - Peter Gao
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoOntarioCanada
| | - Jacob Young
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoOntarioCanada
| | - Kevin Middleton
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoOntarioCanada
| | - Chao Liu
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoOntarioCanada
| | - Henry Xu
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoOntarioCanada
| | - Lidan You
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoOntarioCanada
- Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
61
|
Ginsenoside improves papillary thyroid cancer cell malignancies partially through upregulating connexin 31. Kaohsiung J Med Sci 2018; 34:313-320. [PMID: 29747774 DOI: 10.1016/j.kjms.2017.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 11/28/2017] [Accepted: 12/21/2017] [Indexed: 12/20/2022] Open
Abstract
Connexin 31 (Cx31) is considered a suppressor for many tumors. Ginsenoside (Rg1) is a traditional Chinese herb that is widely acknowledged due to its anti-tumor characteristics. However, limited studies have focused on the role of Rg1 in papillary thyroid cancer (PTC) cells. In the current study, we found that the expression of Cx31 in thyroid cancer tissues and thyroid cancer cell lines was significantly lower than that in normal thyroid epithelial tissues and cell lines. Overexpression of Cx31 reduced thyroid cancer cell proliferation, migration and invasion. Furthermore, we found that Rg1 significantly enhanced the expression of Cx31. Moreover, the proliferation and migration of IHH-4 and BCPAP cells were significantly reduced by Rg1 treatment. In contrast, the silencing of Cx31 enhanced the expression of Ki67 and proliferating cell nuclear antigen (PCNA). Meanwhile, treatment with Rg1 significantly decreased the protein levels of Ki67 and PCNA, but these effects could be abolished by transfection with si-Cx31. In summary, we provide novel evidence that the expression of Cx31 was decreased in thyroid cancer cells, but Rg1 treatment could significantly enhance the expression of Cx31 thereby suppressing thyroid cancer cell proliferation and migration.
Collapse
|
62
|
Wang W, Sarazin BA, Kornilowicz G, Lynch ME. Mechanically-Loaded Breast Cancer Cells Modify Osteocyte Mechanosensitivity by Secreting Factors That Increase Osteocyte Dendrite Formation and Downstream Resorption. Front Endocrinol (Lausanne) 2018; 9:352. [PMID: 30034365 PMCID: PMC6043807 DOI: 10.3389/fendo.2018.00352] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 06/11/2018] [Indexed: 01/10/2023] Open
Abstract
Advanced breast cancer predominantly metastasizes to the skeleton, at which point patient prognosis significantly declines concomitant with bone loss, pain, and heightened fracture risk. Given the skeleton's sensitivity to mechanical signals, increased mechanical loading is well-documented to increase bone mass, and it also inhibited bone metastatic tumor formation and progression in vivo, though the underlying mechanisms remain under investigation. Here, we focus on the role of the osteocyte because it is the primary skeletal mechanosensor and in turn directs the remodeling balance between formation and resoprtion. In particular, osteocytic dendrites are important for mechanosensing, but how this function is altered during bone metastatic breast cancer is unknown. To examine how breast cancer cells modulate dendrite formation and function, we exposed osteocytes (MLO-Y4) to medium conditioned by breast cancer cells (MDA-MB231) and to applied fluid flow (2 h per day for 3 days, shear stress 1.1 Pa). When loading was applied to MLOs, dendrite formation increased despite the presence of tumor-derived factors while overall MLO cell number was reduced. We then exposed MLOs to fluid flow as well as media conditioned by MDAs that had been similarly loaded. When nonloaded MLOs were treated with conditioned media from loaded MDAs, their dendrite formation increased in a manner similar to that observed due to loading alone. When MLOs simultaneously underwent loading and treatment with loaded conditioned media, dendrite formation was greatest. To understand potential molecular mechanisms, we then investigated expression of genes related to osteocyte maturation and dendrite formation (E11) and remodeling (RANKL, OPG) as well as osteocyte apoptosis. E11 expression increased with loading, consistent with increased dendrite formation. Though loaded conditioned media decreased MLO cell number, apoptosis was not detected via TUNEL staining, suggesting an inhibition of growth instead. OPG expression was inhibited while RANKL expression was unaffected, leading to an overall increase in the RANKL/OPG ratio with conditioned media from loaded breast cancer cells. Taken together, our results suggest that skeletal mechanical loading stimulates breast cancer cells to alter osteocyte mechanosensing by increasing dendrite formation and downstream resorption.
Collapse
Affiliation(s)
- Wenbo Wang
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA, United States
| | - Blayne A. Sarazin
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA, United States
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, United States
| | - Gabriel Kornilowicz
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA, United States
| | - Maureen E. Lynch
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA, United States
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, United States
- *Correspondence: Maureen E. Lynch
| |
Collapse
|
63
|
Gleisner MA, Navarrete M, Hofmann F, Salazar-Onfray F, Tittarelli A. Mind the Gaps in Tumor Immunity: Impact of Connexin-Mediated Intercellular Connections. Front Immunol 2017; 8:1067. [PMID: 28919895 PMCID: PMC5585150 DOI: 10.3389/fimmu.2017.01067] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/16/2017] [Indexed: 12/22/2022] Open
Abstract
Gap junctions (GJs)-mediated intercellular communications (GJICs) are connexin (Cx)-formed plasma membrane channels that allow for the passage of small molecules between adjacent cells, and are involved in several physiopathological processes, including immune responses against cancer. In general, tumor cells are poorly coupled through GJs, mainly due to low Cx expression or reduced channel activity, suggesting that Cxs may have tumor suppressor roles. However, more recent data indicate that Cxs and/or GJICs may also in some cases promote tumor progression. This dual role of Cx channels in tumor outcome may be due, at least partially, to the fact that GJs not only interconnect cells from the same type, such as cancer cells, but also promote the intercellular communication of tumor cells with different types of cells from their microenvironment, and such diverse intercellular interactions have distinctive impact on tumor development. For example, whereas GJ-mediated interactions among tumor cells and microglia have been implicated in promotion of tumor growth, tumor cells delivery to dendritic cells of antigenic peptides through GJs have been associated with enhanced immune-mediated tumor elimination. In this review, we provide an updated overview on the role of GJICs in tumor immunity, focusing on the pro-tumor and antitumor effect of GJs occurring among tumor and immune cells. Accumulated data suggest that GJICs may act as tumor suppressors or enhancers depending on whether tumor cells interact predominantly with antitumor immune cells or with stromal cells. The complex modulation of immune-tumor cell GJICs should be taken into consideration in order to potentiate current cancer immunotherapies.
Collapse
Affiliation(s)
- María Alejandra Gleisner
- Disciplinary Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Faculty of Medicine, Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
| | - Mariela Navarrete
- Disciplinary Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Faculty of Medicine, Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
| | - Francisca Hofmann
- Disciplinary Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Faculty of Medicine, Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
| | - Flavio Salazar-Onfray
- Disciplinary Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Faculty of Medicine, Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
| | - Andrés Tittarelli
- Disciplinary Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Faculty of Medicine, Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
| |
Collapse
|
64
|
Qiao H, Cui Z, Yang S, Ji D, Wang Y, Yang Y, Han X, Fan Q, Qin A, Wang T, He XP, Bu W, Tang T. Targeting Osteocytes to Attenuate Early Breast Cancer Bone Metastasis by Theranostic Upconversion Nanoparticles with Responsive Plumbagin Release. ACS NANO 2017; 11:7259-7273. [PMID: 28692257 DOI: 10.1021/acsnano.7b03197] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The early detection and thus treatment of breast cancer bone metastasis remain a big challenge clinically. As the most abundant cells within bone tissue, osteocytes have been found to manipulate the activity of early cancer bone metastasis by its crosstalk with cancer cells and osteoclasts. However, conventional bone-targeting nanomedicine has limited bone-lesion specificity and ignores the vital role of osteocytes during breast cancer bone metastasis. Also, it lacks detailed insight into the therapeutic mechanisms, which hinders the following translational practice. Previously, we have shown that a combination of zoledronic acid (ZA) and plumbagin (PL) synergistically alleviates cancer-induced bone destruction. Herein, we further develop a pH-responsive bone-targeting drug delivery system, i.e., the ZA-anchored bimodal mesoporous slica covered gadolinium(III) upconversion nanoparticles loaded with PL, to detect and treat bone metastasis sensitively and specifically at an early stage. This multifunctional nanosystem can target osteocytes to release PL as controlled by pH, decreasing osteocytic RANKL expression synergistically through the structural simulation of adenosine phosphate, which competitively inhibits the phosphorylation of osteocytic protein kinase-a, cAMP-response element binding protein, extracellular regulated protein kinase, and c-Jun N-terminal kinase. More importantly, by establishing a breast cancer bone metastasis mice model via intracardiac injection, we show that tumoriogenesis and osteoclastogenesis can both be attenuated significantly. We thereby realize the effective theranostics of tiny bone metastasis in breast cancer bone metastasis. Our work highlights the significance of theranostic nanomedicine and osteocyte-targeting therapy in the treatment of early bone metastasis, which could be applied in achieving efficient theranostic effects for other bone diseases.
Collapse
Affiliation(s)
- Han Qiao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200011, People's Republic of China
| | - Zhaowen Cui
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, People's Republic of China
| | - Shengbing Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200011, People's Republic of China
| | - Dingkun Ji
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology , Shanghai 200237, People's Republic of China
| | - Yugang Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200011, People's Republic of China
| | - Ying Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200011, People's Republic of China
| | - Xiuguo Han
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200011, People's Republic of China
| | - Qiming Fan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200011, People's Republic of China
| | - An Qin
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200011, People's Republic of China
| | - Tingyu Wang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200011, People's Republic of China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology , Shanghai 200237, People's Republic of China
| | - Wenbo Bu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, People's Republic of China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200062, People's Republic of China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200011, People's Republic of China
| |
Collapse
|
65
|
Boucher J, Monvoisin A, Vix J, Mesnil M, Thuringer D, Debiais F, Cronier L. Connexins, important players in the dissemination of prostate cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:202-215. [PMID: 28693897 DOI: 10.1016/j.bbamem.2017.06.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/22/2017] [Accepted: 06/29/2017] [Indexed: 12/25/2022]
Abstract
Over the past 50years, increasing experimental evidences have established that connexins (Cxs) and gap junctional intercellular communication (GJIC) ensure an important role in both the onset and development of cancerous processes. In the present review, we focus on the impact of Cxs and GJIC during the development of prostate cancer (PCa), from the primary growth mainly localized in acinar glands and ducts to the distant metastasis mainly concentrated in bone. As observed in several other types of solid tumours, Cxs and especially Cx43 exhibit an ambivalent role with a tumour suppressor effect in the early stages and, conversely, a rather pro-tumoural profile for most of invasion and dissemination steps to secondary sites. We report here the current knowledge on the function of Cxs during PCa cells migration, cytoskeletal dynamics, proteinases activities and the cross talk with the surrounding stromal cells in the microenvironment of the tumour and the bones. In addition, we discuss the role of Cxs in the bone tropism even if the prostate model is rarely used to study the complete sequence of cancer dissemination compared to breast cancer or melanoma. Even if not yet fully understood, these recent findings on Cxs provide new insights into their molecular mechanisms associated with progression and bone targeted behaviour of PCa. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Jonathan Boucher
- Laboratory Signalisation et Transports Ioniques Membranaires (STIM), ERL7368 - CNRS, University of Poitiers, Poitiers, France
| | - Arnaud Monvoisin
- Laboratory Signalisation et Transports Ioniques Membranaires (STIM), ERL7368 - CNRS, University of Poitiers, Poitiers, France
| | - Justine Vix
- Laboratory Signalisation et Transports Ioniques Membranaires (STIM), ERL7368 - CNRS, University of Poitiers, Poitiers, France; Department of Rheumatology, C.H.U. la Milétrie, Poitiers, France
| | - Marc Mesnil
- Laboratory Signalisation et Transports Ioniques Membranaires (STIM), ERL7368 - CNRS, University of Poitiers, Poitiers, France
| | | | - Françoise Debiais
- Laboratory Signalisation et Transports Ioniques Membranaires (STIM), ERL7368 - CNRS, University of Poitiers, Poitiers, France; Department of Rheumatology, C.H.U. la Milétrie, Poitiers, France
| | - Laurent Cronier
- Laboratory Signalisation et Transports Ioniques Membranaires (STIM), ERL7368 - CNRS, University of Poitiers, Poitiers, France.
| |
Collapse
|
66
|
Middleton K, Al-Dujaili S, Mei X, Günther A, You L. Microfluidic co-culture platform for investigating osteocyte-osteoclast signalling during fluid shear stress mechanostimulation. J Biomech 2017; 59:35-42. [PMID: 28552413 DOI: 10.1016/j.jbiomech.2017.05.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 05/12/2017] [Accepted: 05/13/2017] [Indexed: 11/30/2022]
Abstract
Bone cells exist in a complex environment where they are constantly exposed to numerous dynamic biochemical and mechanical stimuli. These stimuli regulate bone cells that are involved in various bone disorders, such as osteoporosis. Knowledge of how these stimuli affect bone cells have been utilised to develop various treatments, such as pharmaceuticals, hormone therapy, and exercise. To investigate the role that bone loading has on these disorders in vitro, bone cell mechanotransduction studies are typically performed using parallel plate flow chambers (PPFC). However, these chambers do not allow for dynamic cellular interactions among different cell populations to be investigated. We present a microfluidic approach that exposes different cell populations, which are located at physiologically relevant distances within adjacent channels, to different levels of fluid shear stress, and promotes cell-cell communication between the different channels. We employed this microfluidic system to assess mechanically regulated osteocyte-osteoclast communication. Osteoclast precursors (RAW264.7 cells) responded to cytokine gradients (e.g., RANKL, OPG, PGE-2) developed by both mechanically stimulated (fOCY) and unstimulated (nOCY) osteocyte-like MLO-Y4 cells simultaneously. Specifically, we observed increased osteoclast precursor cell densities and osteoclast differentiation towards nOCY. We also used this system to show an increased mechanoresponse of osteocytes when in co-culture with osteoclasts. We envision broad applicability of the presented approach for microfluidic perfusion co-culture of multiple cell types in the presence of fluid flow stimulation, and as a tool to investigate osteocyte mechanotransduction, as well as bone metastasis extravasation. This system could also be applied to any multi-cell population cross-talk studies that are typically performed using PPFCs (e.g. endothelial cells, smooth muscle cells, and fibroblasts).
Collapse
Affiliation(s)
- K Middleton
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - S Al-Dujaili
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - X Mei
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - A Günther
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - L You
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada.
| |
Collapse
|
67
|
Abstract
When normal physiologic functions go awry, disorders and disease occur. This is universal; even for the osteocyte, a cell embedded within the mineralized matrix of bone. It was once thought that this cell was simply a placeholder in bone. Within the last decade, the number of studies of osteocytes has increased dramatically, leading to the discovery of novel functions of these cells. With the discovery of novel physiologic functions came the discoveries of how these cells can also be responsible for not only bone diseases and disorders, but also those of the kidney, heart, and potentially muscle.
Collapse
Affiliation(s)
- Lynda F Bonewald
- Indiana Center for Musculoskeletal Health, VanNuys Medical Science Building, MS 5055, 635 Barnhill Drive, Indianapolis, IN 46202, USA; Department of Anatomy and Cell Biology, VanNuys Medical Science Building, MS 5035, Indianapolis, IN 46202, USA; Department of Orthopaedic Surgery, 1120 West Michigan Street, Suite 600, Indianapolis, IN 46202, USA.
| |
Collapse
|
68
|
|
69
|
Jiang G, Dong S, Yu M, Han X, Zheng C, Zhu X, Tong X. Influence of gap junction intercellular communication composed of connexin 43 on the antineoplastic effect of adriamycin in breast cancer cells. Oncol Lett 2016; 13:857-866. [PMID: 28356970 DOI: 10.3892/ol.2016.5471] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 10/06/2016] [Indexed: 12/15/2022] Open
Abstract
Gap junctions (GJs) serve the principal role in the antineoplastic (cytotoxicity and induced apoptosis) effect of chemical drugs. The aim of the present study was to determine the effect of GJ intercellular communication (GJIC) composed of connexin 43 (Cx43) on adriamycin cytotoxicity in breast cancer cells. Four cell lines (Hs578T, MCF-7, MDA-MB-231 and SK-BR-3) with different degree of malignancy were used in the study. The results of western blotting and immunofluorescence revealed that, in Hs578T and MCF-7 cells, which have a low degree of malignancy, the expression levels of Cx43 and GJIC were higher than those in MDA-MB-231 and SK-BR-3 cells (which have a high degree of malignancy). In Hs578T and MCF-7 cells, where GJ could be formed, the function of GJ was modulated by a pharmacological potentiators [retinoid acid (RA)]/inhibitors [oleamide and 18-α-glycyrrhetinic acid (18-α-GA)] and small interfering RNA (siRNA). In high-density cells (where GJ was formed), enhancement of GJ function by RA increased the cytotoxicity of adriamycin, while inhibition of GJ function by oleamide/18-α-GA and siRNA decreased the cytotoxicity caused by adriamycin. Notably, the modulation of GJ did not affect the survival of cells treated with adriamycin when cells were in low density (no GJ was formed). The present study illustrated the association between GJIC and the antitumor effect of adriamycin in breast cancer cells. The cytotoxicity of adriamycin on breast cancer cells was increased when the function of gap junctions was enhanced.
Collapse
Affiliation(s)
- Guojun Jiang
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Shuying Dong
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Meiling Yu
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China; Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Xi Han
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Chao Zheng
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Xiaoguang Zhu
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Xuhui Tong
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| |
Collapse
|
70
|
Abstract
Fifty years ago, tumour cells were found to lack electrical coupling, leading to the hypothesis that loss of direct intercellular communication is commonly associated with cancer onset and progression. Subsequent studies linked this phenomenon to gap junctions composed of connexin proteins. Although many studies support the notion that connexins are tumour suppressors, recent evidence suggests that, in some tumour types, they may facilitate specific stages of tumour progression through both junctional and non-junctional signalling pathways. This Timeline article highlights the milestones connecting gap junctions to cancer, and underscores important unanswered questions, controversies and therapeutic opportunities in the field.
Collapse
Affiliation(s)
- Trond Aasen
- (Co-corresponding authors) Correspondence to
T.A. () and D.W.L.
()
| | - Marc Mesnil
- STIM Laboratory ERL 7368 CNRS - Faculté des Sciences
Fondamentales et Appliquées, Université de Poitiers, Poitiers,
France
| | - Christian C. Naus
- Department of Cellular and Physiological Sciences, The Life
Sciences Institute, University of British Columbia, Vancouver, British
Columbia, Canada
| | - Paul D. Lampe
- Translational Research Program, Fred Hutchinson Cancer Research
Center, Seattle, United States
| | - Dale W. Laird
- (Co-corresponding authors) Correspondence to
T.A. () and D.W.L.
()
| |
Collapse
|
71
|
Mao XY, Li QQ, Gao YF, Zhou HH, Liu ZQ, Jin WL. Gap junction as an intercellular glue: Emerging roles in cancer EMT and metastasis. Cancer Lett 2016; 381:133-7. [PMID: 27490999 DOI: 10.1016/j.canlet.2016.07.037] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/27/2016] [Accepted: 07/27/2016] [Indexed: 12/31/2022]
Abstract
Metastasis is a common phenomenon in the progression and dissemination of cancer. It is estimated that metastasis accounts for 90% cancer-related mortality. Although the formation of tumor metastasis is relatively well understood, the underlying molecular mechanisms responsible for the emergence of aggressive cancer phenotype are still elusive. Figuring out the mechanisms by which cancer cells evade from the tumor is beneficial for obtaining novel and effectively therapeutic approaches. Primary tumors are composed of various subpopulations of cells with heterogeneous metastatic characteristics and the occurrence of metastatic dissemination is mainly dependent upon the interactions between tumor and the surrounding microenvironment. Tumor microenvironment (TME) such as extracellular matrix, macrophages, fibroblasts, stem cells and endothelial cells can orchestrate events critical to tumor evolution toward metastasis. GJ serves as an important communication between tumor cells and stromal cells. Increased GJs coupling blocks metastatic potential in some cancer animal models such as breast cancer and melanoma. Besides, epithelial-to-mesenchymal transition (EMT) is also a crucial step in the metastatic process and there are signs that GJs contribute to cell adhesion and migration (the pathological feature of EMT) in breast cancer. Therefore, we propose that GJ serves as an intercellular glue to suppress EMT and cancer metastasis.
Collapse
Affiliation(s)
- Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Qiu-Qi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China
| | - Yuan-Feng Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Wei-Lin Jin
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; National Centers for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
72
|
Bultynck G. The anti-metastatic micro-environment of the bone: Importance of osteocyte Cx43 hemichannels. Biochim Biophys Acta Rev Cancer 2016; 1866:121-7. [PMID: 27400952 DOI: 10.1016/j.bbcan.2016.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/04/2016] [Accepted: 07/07/2016] [Indexed: 12/25/2022]
Abstract
Bone metastases of tumor cells are a common and life-threatening feature of a variety of late-stage cancers, including breast cancers. However, until now, much less has been known about the intrinsic anti-metastatic properties of the bones and how these could be exploited to prevent or treat bone metastases. Very recently, native Cx43 hemichannels present in osteocytes have been identified as important anti-metastatic signaling complexes by establishing high local extracellular ATP levels. Moreover, bisphosphonate drugs, applied as adjuvant therapies in the treatment of breast cancer patients and bone diseases, are known to display anti-metastatic properties. Now, it became clear that these compounds exert their effects through osteocyte Cx43 hemichannels, thereby triggering their opening and promoting ATP release in the extracellular micro-environment. Hence, endogenous osteocyte Cx43 hemichannels emerge as important and promising therapeutic targets for the prevention of bone metastases and/or clinical treatment of bone-metastasized breast cancers.
Collapse
Affiliation(s)
- Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE 3000 Leuven, Belgium.
| |
Collapse
|
73
|
Iyyathurai J, Decuypere JP, Leybaert L, D'hondt C, Bultynck G. Connexins: substrates and regulators of autophagy. BMC Cell Biol 2016; 17 Suppl 1:20. [PMID: 27229147 PMCID: PMC4896244 DOI: 10.1186/s12860-016-0093-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Connexins mediate intercellular communication by assembling into hexameric channel complexes that act as hemichannels and gap junction channels. Most connexins are characterized by a very rapid turn-over in a variety of cell systems. The regulation of connexin turn-over by phosphorylation and ubiquitination events has been well documented. Moreover, different pathways have been implicated in connexin degradation, including proteasomal and lysosomal-based pathways. Only recently, autophagy emerged as an important connexin-degradation pathway for different connexin isoforms. As such, conditions well known to induce autophagy have an immediate impact on the connexin-expression levels. This is not only limited to experimental conditions but also several pathophysiological conditions associated with autophagy (dys)function affect connexin levels and their presence at the cell surface as gap junctions. Finally, connexins are not only substrates of autophagy but also emerge as regulators of the autophagy process. In particular, several connexin isoforms appear to recruit pre-autophagosomal autophagy-related proteins, including Atg16 and PI3K-complex components, to the plasma membrane, thereby limiting their availability and capacity for regulating autophagy.
Collapse
Affiliation(s)
- Jegan Iyyathurai
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department Cellular and Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, B-3000, Leuven, Belgium
| | - Jean-Paul Decuypere
- KU Leuven, Laboratory for Membrane Trafficking, Department of Human Genetics, and VIB-Center for the Biology of Disease, Campus Gasthuisberg, O/N-IV, 7.159, Herestraat 49, 3000, Leuven, Belgium
| | - Luc Leybaert
- Ghent University, Physiology Group, Department of Basic Medical Sciences, 9000, Ghent, Belgium
| | - Catheleyne D'hondt
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department Cellular and Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, B-3000, Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department Cellular and Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, B-3000, Leuven, Belgium.
| |
Collapse
|