51
|
Chen X, Li Z, Cheng Y, Kardami E, Loh YP. Low and High Molecular Weight FGF-2 Have Differential Effects on Astrocyte Proliferation, but Are Both Protective Against Aβ-Induced Cytotoxicity. Front Mol Neurosci 2020; 12:328. [PMID: 32038161 PMCID: PMC6992557 DOI: 10.3389/fnmol.2019.00328] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022] Open
Abstract
Astrocytes are the most abundant type of glial cells in the brain, and they play a key role in Alzheimer’s disease (AD). Fibroblast Growth Factor-2 (FGF-2) has been implicated as a potential therapeutic agent for treating AD. In the present study, we investigated the protective effects of low molecular weight (LMW; 17 KDa) and high molecular weight (HMW; 23 KDa) forms of FGF-2 on Aβ1–42-induced toxicity, and proliferation in astrocytes. We show that both isoforms of FGF-2 have similar protective effects against Aβ1–42-induced cytotoxicity in primary cultured cortical astrocytes as measured by Lactate Dehydrogenase (LDH) release assay. Additionally, 17 KDa FGF-2 significantly promoted astrocyte proliferation as measured by Trypan Blue, DRAQ5 and 5-ethynyl-2’-deoxyuridine (EdU) staining, but not 23 kDa FGF-2. Furthermore, our results demonstrated that AKT signaling pathway was required for the protective and proliferative effects of FGF-2. Downstream effector studies indicated that 17 kDa FGF-2 promoted astrocyte proliferation by enhanced expression of c-Myc, Cyclin D1, Cyclin E. Furthermore, our data suggested that Cyclin D1 was required for the proliferative effect of LMW FGF2 in astrocytes. Taken together, our findings provide important information for the similarities and differences between 23 kDa and17 kDa isoforms of FGF-2 on astrocyte survival and proliferation.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Zhaojin Li
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Yong Cheng
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China.,Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Elissavet Kardami
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Y Peng Loh
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
52
|
Shin SM, Kim JS, Park SW, Jun SY, Kweon HJ, Choi DK, Lee D, Cho YB, Kim YS. Direct targeting of oncogenic RAS mutants with a tumor-specific cytosol-penetrating antibody inhibits RAS mutant-driven tumor growth. SCIENCE ADVANCES 2020; 6:eaay2174. [PMID: 31998840 PMCID: PMC6962039 DOI: 10.1126/sciadv.aay2174] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/08/2019] [Indexed: 05/07/2023]
Abstract
Oncogenic RAS mutant (RASMUT) proteins have been considered undruggable via conventional antibody regimens owing to the intracellular location restricting conventional-antibody accessibility. Here, we report a pan-RAS-targeting IgG antibody, inRas37, which directly targets the intracellularly activated form of various RASMUT subtypes after tumor cell-specific internalization into the cytosol to block the interactions with effector proteins, thereby suppressing the downstream signaling. Systemic administration of inRas37 exerted a potent antitumor activity in a subset of RASMUT tumor xenografts in mice, but little efficacy in RASMUT tumors with concurrent downstream PI3K mutations, which were overcome by combination with a PI3K inhibitor. The YAP1 protein was up-regulated as an adaptive resistance-inducing response to inRas37 in RASMUT-dependent colorectal tumors; accordingly, a combination of inRas37 with a YAP1 inhibitor manifested synergistic antitumor effects in vitro and in vivo. Our study offers a promising pan-RAS-targeting antibody and the corresponding therapeutic strategy against RASMUT tumors.
Collapse
Affiliation(s)
- Seung-Min Shin
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Ji-Sun Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Seong-Wook Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Sei-Yong Jun
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Hye-Jin Kweon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Dong-Ki Choi
- Orum Therapeutics Inc., Daejeon 34050, Republic of Korea
| | - Dakeun Lee
- Department of Pathology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Yong Beom Cho
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
53
|
Abstract
Malignant melanoma is the most aggressive and notorious skin cancer, and metastatic disease is associated with very poor long-term survival outcomes. Although metastatic melanoma patients with oncogenic mutations in the BRAF gene initially respond well to the treatment with specific BRAF inhibitors, most of them will eventually develop resistance to this targeted therapy. As a highly conserved catabolic process, autophagy is responsible for the maintenance of cellular homeostasis and cell survival, and is involved in multiple diseases, including cancer. Recent study results have indicated that autophagy might play a decisive role in the resistance to BRAF inhibitors in BRAF-mutated melanomas. In this review, we will discuss how autophagy is up-regulated by BRAF inhibitors, and how autophagy induces the resistance to these agents.
Collapse
|
54
|
Knudsen ES, Pruitt SC, Hershberger PA, Witkiewicz AK, Goodrich DW. Cell Cycle and Beyond: Exploiting New RB1 Controlled Mechanisms for Cancer Therapy. Trends Cancer 2019; 5:308-324. [PMID: 31174843 DOI: 10.1016/j.trecan.2019.03.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022]
Abstract
Recent studies highlight the importance of the RB1 tumor suppressor as a target for cancer therapy. Canonically, RB1 regulates cell cycle progression and represents the downstream target for cyclin-dependent kinase (CDK) 4/6 inhibitors that are in clinical use. However, newly discovered features of the RB1 pathway suggest new therapeutic strategies to counter resistance and improve precision medicine. These therapeutic strategies include deepening cell cycle exit with CDK4/6 inhibitor combinations, selectively targeting tumors that have lost RB1, and expanding therapeutic index by mitigating therapy-associated adverse effects. In addition, RB1 impacts immunological features of tumors and the microenvironment that can enhance sensitivity to immunotherapy. Lastly, RB1 specifies epigenetically determined cell lineage states that are disrupted during therapy resistance and could be re-installed through the direct use of epigenetic therapies. Thus, new opportunities are emerging to improve cancer therapy by exploiting the RB1 pathway.
Collapse
Affiliation(s)
- Erik S Knudsen
- Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA.
| | - Steven C Pruitt
- Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Pamela A Hershberger
- Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA; Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Agnieszka K Witkiewicz
- Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA; Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - David W Goodrich
- Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| |
Collapse
|
55
|
Zhang Y, Wang J, Hui B, Sun W, Li B, Shi F, Che S, Chai L, Song L. Pristimerin enhances the effect of cisplatin by inhibiting the miR‑23a/Akt/GSK3β signaling pathway and suppressing autophagy in lung cancer cells. Int J Mol Med 2019; 43:1382-1394. [PMID: 30664149 PMCID: PMC6365073 DOI: 10.3892/ijmm.2019.4057] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/31/2018] [Indexed: 12/14/2022] Open
Abstract
Lung cancer is a common type of cancer with a high mortality rate in China. Cisplatin (Cis) is one of the most effective broad‑spectrum chemotherapeutic drugs for the treatment of advanced lung cancer. However, Cis resistance remains an obstacle in the treatment of advanced lung cancer. Pristimerin (Pris), a naturally occurring triterpenoid quinone compound, not only possesses anticancer properties, but also enhances chemosensitivity. Therefore, the present study aimed to investigate whether Pris can enhance the chemosensitivity of lung cancer cells to Cis and identify the underlying mechanism. A Cell Counting kit‑8 and flow cytometry were used to determine cell viability, cell cycle progression and apoptosis in A549 and NCI‑H446 cells. Western blotting was used to determine cell apoptosis‑related, cell cycle‑related and autophagy‑related proteins. The results showed that Pris inhibited cell proliferation, and induced G0/G1 arrest and cell apoptosis in A549 and NCI‑H446 cells. The western blotting revealed that Pris effectively synergized with Cis to induce cell apoptosis by inhibiting the microRNA‑23a/Akt/glycogen synthase kinase 3β signaling pathway and suppressing autophagy. In vivo xenograft experiments confirmed that Pris effectively synergized with Cis to suppress tumor growth. Collectively, these results indicate that Pris synergized with Cis and that this may be a potential therapeutic strategy to overcome lung cancer.
Collapse
Affiliation(s)
- Yingbing Zhang
- Department of Radiation Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jiquan Wang
- Department of Radiation Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Beina Hui
- Department of Radiation Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wenze Sun
- Department of Radiation Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Bin Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Fan Shi
- Department of Radiation Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shaomin Che
- Department of Radiation Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Linyan Chai
- Department of Radiation Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Liping Song
- Department of Radiation Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
56
|
Goel S, DeCristo MJ, McAllister SS, Zhao JJ. CDK4/6 Inhibition in Cancer: Beyond Cell Cycle Arrest. Trends Cell Biol 2018; 28:911-925. [PMID: 30061045 PMCID: PMC6689321 DOI: 10.1016/j.tcb.2018.07.002] [Citation(s) in RCA: 281] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 01/20/2023]
Abstract
Pharmacologic inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6) have recently entered the therapeutic armamentarium of clinical oncologists, and show promising activity in patients with breast and other cancers. Although their chief mechanism of action is inhibition of retinoblastoma (RB) protein phosphorylation and thus the induction of cell cycle arrest, CDK4/6 inhibitors alter cancer cell biology in other ways that can also be leveraged for therapeutic benefit. These include modulation of mitogenic kinase signaling, induction of a senescence-like phenotype, and enhancement of cancer cell immunogenicity. We describe here the less-appreciated effects of CDK4/6 inhibitors on cancer cells, and suggest ways by which they might be exploited to enhance the benefits of these agents for cancer patients.
Collapse
Affiliation(s)
- Shom Goel
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Molly J DeCristo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sandra S McAllister
- Department of Medicine, Harvard Medical School, Boston, MA, USA; Hematology Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jean J Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|