51
|
Ecoy GAU, Chamni S, Suwanborirux K, Chanvorachote P, Chaotham C. Jorunnamycin A from Xestospongia sp. Suppresses Epithelial to Mesenchymal Transition and Sensitizes Anoikis in Human Lung Cancer Cells. JOURNAL OF NATURAL PRODUCTS 2019; 82:1861-1873. [PMID: 31260310 DOI: 10.1021/acs.jnatprod.9b00102] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Metastasis is a key driving force behind the high mortality rate associated with lung cancer. Herein, we report the first study revealing the antimetastasis activity of jorunnamycin A, a bistetrahydroisoquinolinequinone isolated from a Thai blue sponge Xestospongia sp. evidenced by its inhibition of epithelial to mesenchymal transition (EMT), sensitization of anoikis, and suppression of anchorage-independent survival in human lung cancer cells. Treatment with jorunnamycin A (0.05-0.5 μM) altered the expression of p53 and Bcl-2 family proteins, particularly causing the down-regulation of antiapoptosis Bcl-2 and Mcl-1 proteins. Under detachment conditions for 12 h, jorunnamycin A-treated cells exhibited diminution of pro-survival proteins p-Akt and p-Erk as well as the survival-promoting factor caveolin-1. Corresponding with the inhibition on the Akt and Erk pathway as well as activation of p53, there was an increase in the epithelial marker E-cadherin and a remarkable decrease of EMT markers and associated proteins including vimentin, snail, and claudin-1. As the loss of anchorage dependence is an important barrier to metastasis, the observed inhibitory effects of jorunnamycin A on the coordinating networks of EMT and anchorage-independent growth emphasize the potential development of jorunnamycin A as an effective agent against lung cancer metastasis.
Collapse
|
52
|
Yu C, Hao X, Zhang S, Hu W, Li J, Sun J, Zheng M. Characterization of the prognostic values of the NDRG family in gastric cancer. Therap Adv Gastroenterol 2019; 12:1756284819858507. [PMID: 31384305 PMCID: PMC6647212 DOI: 10.1177/1756284819858507] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 05/07/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The N-myc downstream-regulated gene (NDRG) family, NDRG1-4, has been involved in a wide spectrum of biological functions in multiple cancers. However, their prognostic values remain sparse in gastric cancer (GC). Therefore, it is crucial to systematically investigate the prognostic values of the NDRG family in GC. METHODS The prognostic values of the NDRG family were evaluated by Kaplan-Meier Plotter and SurvExpress. The mRNA of the NDRG family was investigated in The Cancer Genome Atlas (TCGA). Transcription factors (TFs) and miRNAs associated with the NDRG family were predicted by NetworkAnalysis. The prognostic values of DNA methylation levels were analyzed by MethSurv. The correlation between immune cells and the NDRG family was evaluated by the Tumor Immune Estimation Resource (TIMER) database. RESULTS High levels of mRNA expression of NDRG2 and NDRG3 were associated with a favorable prognosis in all GCs. In HER2 - GC, NDRG1 was significantly associated with a poor prognosis of GC [hazard ratio (HR) = 1.65, 95% confidence interval (CI) = 1.16-2.33, p = 0.0046]. In HER2 + GC, NDRG4 showed a poor prognosis (HR = 1.4, 95% CI: 1.06-1.85, p = 0.017). NDRG4 was an independent prognostic factor in recurrence-free survival by TCGA cohort. The low-risk NDRG-signature group displayed a significantly favorable survival outcome than the high-risk group (HR = 1.76, 95% CI: 1.2-2.59, p = 0.00385). The phosphorylated protein NDRG1 (NDRG1_pT346) displayed a favorable overall survival and was significantly associated with HER2 and phosphorylated HER2. Epidermis development was the top biological process (BP) for coexpressed genes associated with NDRG1 and NDRG4, while mitotic nuclear division and mitotic cell processes were the top BPs for NDRG2 and NDRG3, respectively. Overall, 6 CpGs of NDRG1, 4 CpGs of NDRG2, 3 CpGs of NDRG3 and 24 CpGs of NDRG4 were associated with significant prognosis. CD4+ T-cells showed the highest correlation with NDRG4 (correlation = 0.341, p = 2.14e-11). Furthermore, BCL6 in follicular helper T-cells (Tfh) cells showed the highest association with NDRG4 (correlation = 0.438, p = 00e+00). CONCLUSIONS This study analyzed the multilevel prognostic values and biological roles of the NDRG family in GC.
Collapse
Affiliation(s)
- Chaoran Yu
- Department of Gastrointestinal Surgery, Ruijin
Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai,
China
- Shanghai Minimally Invasive Surgery Center,
Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine,
Shanghai, China
| | - Xiaohui Hao
- Department of Gastrointestinal Surgery, Ruijin
Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai,
China
- Shanghai Minimally Invasive Surgery Center,
Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine,
Shanghai, China
| | - Sen Zhang
- Department of Gastrointestinal Surgery, Ruijin
Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai,
China
- Shanghai Minimally Invasive Surgery Center,
Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine,
Shanghai, China
| | - Wenjun Hu
- Department of Gastrointestinal Surgery, Ruijin
Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai,
China
- Shanghai Minimally Invasive Surgery Center,
Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine,
Shanghai, China
| | - Jianwen Li
- Department of Gastrointestinal Surgery, Ruijin
Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai,
China
- Shanghai Minimally Invasive Surgery Center,
Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine,
Shanghai, China
| | - Jing Sun
- Department of Gastrointestinal Surgery, Ruijin
Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai,
China
- Shanghai Minimally Invasive Surgery Center,
Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine,
Shanghai, China
| | | |
Collapse
|
53
|
Popow O, Paulo JA, Tatham MH, Volk MS, Rojas-Fernandez A, Loyer N, Newton IP, Januschke J, Haigis KM, Näthke I. Identification of Endogenous Adenomatous Polyposis Coli Interaction Partners and β-Catenin-Independent Targets by Proteomics. Mol Cancer Res 2019; 17:1828-1841. [PMID: 31160382 DOI: 10.1158/1541-7786.mcr-18-1154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 04/11/2019] [Accepted: 05/28/2019] [Indexed: 01/15/2023]
Abstract
Adenomatous Polyposis Coli (APC) is the most frequently mutated gene in colorectal cancer. APC negatively regulates the Wnt signaling pathway by promoting the degradation of β-catenin, but the extent to which APC exerts Wnt/β-catenin-independent tumor-suppressive activity is unclear. To identify interaction partners and β-catenin-independent targets of endogenous, full-length APC, we applied label-free and multiplexed tandem mass tag-based mass spectrometry. Affinity enrichment-mass spectrometry identified more than 150 previously unidentified APC interaction partners. Moreover, our global proteomic analysis revealed that roughly half of the protein expression changes that occur in response to APC loss are independent of β-catenin. Combining these two analyses, we identified Misshapen-like kinase 1 (MINK1) as a putative substrate of an APC-containing destruction complex. We validated the interaction between endogenous MINK1 and APC and further confirmed the negative, and β-catenin-independent, regulation of MINK1 by APC. Increased Mink1/Msn levels were also observed in mouse intestinal tissue and Drosophila follicular cells expressing mutant Apc/APC when compared with wild-type tissue/cells. Collectively, our results highlight the extent and importance of Wnt-independent APC functions in epithelial biology and disease. IMPLICATIONS: The tumor-suppressive function of APC, the most frequently mutated gene in colorectal cancer, is mainly attributed to its role in β-catenin/Wnt signaling. Our study substantially expands the list of APC interaction partners and reveals that approximately half of the changes in the cellular proteome induced by loss of APC function are mediated by β-catenin-independent mechanisms.
Collapse
Affiliation(s)
- Olesja Popow
- Cancer Research Institute and Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts.,Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - João A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Michael H Tatham
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Melanie S Volk
- Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Alejandro Rojas-Fernandez
- Center for Interdisciplinary Studies on the Nervous System (CISNe) and Institute of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Nicolas Loyer
- Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Ian P Newton
- Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Jens Januschke
- Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Kevin M Haigis
- Cancer Research Institute and Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,Harvard Digestive Disease Center, Harvard Medical School, Boston, Massachusetts
| | - Inke Näthke
- Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom.
| |
Collapse
|
54
|
Skedsmo FS, Tranulis MA, Espenes A, Prydz K, Matiasek K, Gunnes G, Hermansen LC, Jäderlund KH. Cell and context-dependent sorting of neuropathy-associated protein NDRG1 - insights from canine tissues and primary Schwann cell cultures. BMC Vet Res 2019; 15:121. [PMID: 31029158 PMCID: PMC6487035 DOI: 10.1186/s12917-019-1872-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 04/16/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Mutations in the N-myc downstream-regulated gene 1 (NDRG1) can cause degenerative polyneuropathy in humans, dogs, and rodents. In humans, this motor and sensory neuropathy is known as Charcot-Marie-Tooth disease type 4D, and it is assumed that analogous canine diseases can be used as models for this disease. NDRG1 is also regarded as a metastasis-suppressor in several malignancies. The tissue distribution of NDRG1 has been described in humans and rodents, but this has not been studied in the dog. RESULTS By immunolabeling and Western blotting, we present a detailed mapping of NDRG1 in dog tissues and primary canine Schwann cell cultures, with particular emphasis on peripheral nerves. High levels of phosphorylated NDRG1 appear in distinct subcellular localizations of the Schwann cells, suggesting signaling-driven rerouting of the protein. In a nerve from an Alaskan malamute homozygous for the disease-causing Gly98Val mutation in NDRG1, this signal was absent. Furthermore, NDRG1 is present in canine epithelial cells, predominantly in the cytosolic compartment, often with basolateral localization. Constitutive expression also occurs in mesenchymal cells, including developing spermatids that are transiently positive for NDRG1. In some cells, NDRG1 localize to centrosomes. CONCLUSIONS Overall, canine NDRG1 shows a cell and context-dependent localization. Our data from peripheral nerves and primary Schwann cell cultures suggest that the subcellular localization of NDRG1 in Schwann cells is dynamically influenced by signaling events leading to reversible phosphorylation of the protein. We propose that disease-causing mutations in NDRG1 can disrupt signaling in myelinating Schwann cells, causing disturbance in myelin homeostasis and axonal-glial cross talk, thereby precipitating polyneuropathy.
Collapse
Affiliation(s)
- Fredrik S Skedsmo
- Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Michael A Tranulis
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Arild Espenes
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Kristian Prydz
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Kaspar Matiasek
- Section of Clinical & Comparative Neuropathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Gjermund Gunnes
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Lene C Hermansen
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Karin H Jäderlund
- Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway.
| |
Collapse
|
55
|
He D, Ma Z, Fang C, Ding J, Yang W, Chen P, Huang L, Wang C, Yu Y, Yang L, Li Y, Zhou Z. Pseudophosphatase STYX promotes tumor growth and metastasis by inhibiting FBXW7 function in colorectal cancer. Cancer Lett 2019; 454:53-65. [PMID: 30981757 DOI: 10.1016/j.canlet.2019.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/14/2019] [Accepted: 04/09/2019] [Indexed: 02/05/2023]
Abstract
Serine/threonine/tyrosine interacting protein (STYX), a member of protein tyrosine phosphatases, has recently been reported as a potential oncogene. However, the role of STYX in colorectal cancer (CRC) remains unknown. In this study, we found that STYX was highly expressed in CRC tissues and closely correlated with tumor development and survival of CRC patients. In vitro studies showed that overexpression of STYX promoted proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) and inhibited apoptosis in CRC cells, while STYX knockdown had the opposite effects. Consistently, in vivo experiments showed that overexpression of STYX promoted tumor growth and lung metastasis. Mechanically, STYX bound to the F-box and WD repeat domain-containing7 (FBXW7) protein and inhibited its function. Co-regulation of STYX and FBXW7 expression reversed the biological changes mediated by regulation of STYX expression alone in CRC cells. Additionally, FBXW7 expression was negatively associated with STYX expression in CRC tissues, and low STYX levels accompanying high FBXW7 levels predicted favorable prognosis of CRC patients. In conclusion, our results suggest that STYX plays an oncogenic role by inhibiting FBXW7 and represents a potential therapeutic target and prognostic biomarker in CRC.
Collapse
Affiliation(s)
- Diao He
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Institute of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zida Ma
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Institute of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chao Fang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Institute of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jingjing Ding
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wenming Yang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Peng Chen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Libin Huang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Institute of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Cun Wang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yongyang Yu
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lie Yang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Institute of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yuan Li
- Institute of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zongguang Zhou
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Institute of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
56
|
Gao Y, Li L, Li T, Ma L, Yuan M, Sun W, Cheng HL, Niu L, Du Z, Quan Z, Fan Y, Fan J, Luo C, Wu X. Simvastatin delays castration‑resistant prostate cancer metastasis and androgen receptor antagonist resistance by regulating the expression of caveolin‑1. Int J Oncol 2019; 54:2054-2068. [PMID: 31081050 PMCID: PMC6521936 DOI: 10.3892/ijo.2019.4774] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/22/2019] [Indexed: 12/19/2022] Open
Abstract
The failure of androgen deprivation therapy in prostate cancer treatment mainly results from drug resistance to androgen receptor antagonists. Although an aberrant caveolin‑1 (Cav‑1) expression has been reported in multiple tumor cell lines, it is unknown whether it is responsible for the progression of castration‑resistant prostate cancer (CRPC). Thus, the aim of the present study was to determine whether Cav‑1 can be used as a key molecule for the prevention and treatment of CRPC, and to explore its mechanism of action in CRPC. For this purpose, tissue and serum samples from patients with primary prostate cancer and CRPC were analyzed using immunohistochemistry and enzyme‑linked immunosorbent assay, which revealed that Cav‑1 was overexpressed in CRPC. Furthermore, Kaplan‑Meier survival analysis and univariate Cox proportional hazards regression analysis demonstrated that Cav‑1 expression in tumors was an independent risk factor for the occurrence of CRPC and was associated with a shorter recurrence‑free survival time in patients with CRPC. Receiver operating characteristic curves suggested that serum Cav‑1 could be used as a diagnostic biomarker for CRPC (area under the curve, 0.876) using a cut‑off value of 0.68 ng/ml (with a sensitivity of 82.1% and specificity of 80%). In addition, it was determined that Cav‑1 induced the invasion and migration of CRPC cells by the activation of the H‑Ras/phosphoinositide‑specific phospholipase Cε signaling cascade in the cell membrane caveolae. Importantly, simvastatin was able to augment the anticancer effects of androgen receptor antagonists by downregulating the expression of Cav‑1. Collectively, the findings of this study provide evidence that Cav‑1 is a promising predictive biomarker for CRPC and that lowering cholesterol levels with simvastatin or interfering with the expression of Cav‑1 may prove to be a useful strategy with which to prevent and/or treat CRPC.
Collapse
Affiliation(s)
- Yingying Gao
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing 408000, P.R. China
| | - Luo Li
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing 408000, P.R. China
| | - Ting Li
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing 408000, P.R. China
| | - Lei Ma
- Department of Laboratory Diagnosis, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Mengjuan Yuan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 408000, P.R. China
| | - Wei Sun
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 408000, P.R. China
| | - Hong Lin Cheng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 408000, P.R. China
| | - Lingfang Niu
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing 408000, P.R. China
| | - Zhongbo Du
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 408000, P.R. China
| | - Zhen Quan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 408000, P.R. China
| | - Yanru Fan
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing 408000, P.R. China
| | - Jiaxin Fan
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing 408000, P.R. China
| | - Chunli Luo
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing 408000, P.R. China
| | - Xiaohou Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 408000, P.R. China
| |
Collapse
|
57
|
Upregulation of NDRG1 predicts poor outcome and facilitates disease progression by influencing the EMT process in bladder cancer. Sci Rep 2019; 9:5166. [PMID: 30914736 PMCID: PMC6435802 DOI: 10.1038/s41598-019-41660-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/14/2019] [Indexed: 12/12/2022] Open
Abstract
N-myc downstream regulated gene 1 (NDRG1) is an intracellular protein involved in cell differentiation and was recently reported to exert various effects in several cancers. However, its expression and role in bladder cancer remain unclear. Our study enrolled 100 bladder cancer patients to detect NDRG1 expression in tumour tissues by immunohistochemistry. Correlations between NDRG1 expression and clinical factors were analysed. An NDRG1 overexpression plasmid and NDRG1 siRNAs were transfected into bladder cancer cell lines. Cell biological behaviours were assessed by CCK-8, flow cytometry, wound healing and Transwell assays. Additionally, the influence of NDRG1 on epithelial-mesenchymal transition (EMT) was investigated by western blotting and real-time PCR. NDRG1 expression in urine from bladder cancer patients was examined by ELISA. NDRG1 protein levels were significantly increased in bladder cancer patients and correlated with tumour stage (p = 0.025), lymph node metastasis (p = 0.034) and overall survival (p = 0.016). Patients with high NDRG1 expression had poorer outcomes than those with low NDRG1 expression. NDRG1 overexpression was associated with increased cell proliferation, migration, and invasion and decreased apoptotic cell numbers; NDRG1 knockdown resulted in the inverse effects. Moreover, upregulated NDRG1 expression was associated with downregulated Cytokeratin 7 and Claudin-1 expression and upregulated N-cad, β-catenin and slug expression. Downregulated NDRG1 expression was associated with the inverse effects. Urine protein levels could distinguish bladder cancer patients from healthy controls, with an area under the curve of 0.909. NDRG1 promoted EMT in bladder cancer and could be an effective diagnostic and prognostic biomarker in bladder cancer patients.
Collapse
|
58
|
Mao X, Tey SK, Ko FCF, Kwong EML, Gao Y, Ng IOL, Cheung ST, Guan XY, Yam JWP. C-terminal truncated HBx protein activates caveolin-1/LRP6/β-catenin/FRMD5 axis in promoting hepatocarcinogenesis. Cancer Lett 2019; 444:60-69. [DOI: 10.1016/j.canlet.2018.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/26/2018] [Accepted: 12/18/2018] [Indexed: 02/08/2023]
|
59
|
Breuer EK, Fukushiro-Lopes D, Dalheim A, Burnette M, Zartman J, Kaja S, Wells C, Campo L, Curtis KJ, Romero-Moreno R, Littlepage LE, Niebur GL, Hoskins K, Nishimura MI, Gentile S. Potassium channel activity controls breast cancer metastasis by affecting β-catenin signaling. Cell Death Dis 2019; 10:180. [PMID: 30792401 PMCID: PMC6385342 DOI: 10.1038/s41419-019-1429-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023]
Abstract
Potassium ion channels are critical in the regulation of cell motility. The acquisition of cell motility is an essential parameter of cancer metastasis. However, the role of K+ channels in cancer metastasis has been poorly studied. High expression of the hG1 gene, which encodes for Kv11.1 channel associates with good prognosis in estrogen receptor-negative breast cancer (BC). We evaluated the efficacy of the Kv11.1 activator NS1643 in arresting metastasis in a triple negative breast cancer (TNBC) mouse model. NS1643 significantly reduces the metastatic spread of breast tumors in vivo by inhibiting cell motility, reprogramming epithelial–mesenchymal transition via attenuation of Wnt/β-catenin signaling and suppressing cancer cell stemness. Our findings provide important information regarding the clinical relevance of potassium ion channel expression in breast tumors and the mechanisms by which potassium channel activity can modulate tumor biology. Findings suggest that Kv11.1 activators may represent a novel therapeutic approach for the treatment of metastatic estrogen receptor-negative BC. Ion channels are critical factor for cell motility but little is known about their role in metastasis. Stimulation of the Kv11.1 channel suppress the metastatic phenotype in TNBC. This work could represent a paradigm-shifting approach to reducing mortality by targeting a pathway that is central to the development of metastases.
Collapse
Affiliation(s)
- Eun-Kyoung Breuer
- Department of Radiation Oncology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, 60153, USA
| | - Daniela Fukushiro-Lopes
- Department of Molecular Pharmacology & Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, 60153, USA
| | - Annika Dalheim
- Department of Surgery, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, 60153, USA
| | - Miranda Burnette
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Jeremiah Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Simon Kaja
- Department of Molecular Pharmacology & Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, 60153, USA.,Department of Ophthalmology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA.,Research Service, Edward Hines Jr. VA Hospital, Hines, IL, USA
| | - Claire Wells
- Division of Cancer Studies, King's College London, Rm. 2.34 A New Hunts House, Guy's Campus, London, SE1 1 UL, UK
| | - Loredana Campo
- Department of Radiation Oncology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, 60153, USA
| | - Kimberly J Curtis
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Ricardo Romero-Moreno
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Laurie E Littlepage
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Glen L Niebur
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, 46556, USA.,Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Kent Hoskins
- Division of Hematology Oncology, Department of Medicine, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Michael I Nishimura
- Department of Surgery, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, 60153, USA
| | - Saverio Gentile
- Department of Molecular Pharmacology & Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, 60153, USA. .,Division of Hematology Oncology, Department of Medicine, University of Illinois Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
60
|
Liu J, Shao Y, He Y, Ning K, Cui X, Liu F, Wang Z, Li F. MORC2 promotes development of an aggressive colorectal cancer phenotype through inhibition of NDRG1. Cancer Sci 2018; 110:135-146. [PMID: 30407715 PMCID: PMC6317918 DOI: 10.1111/cas.13863] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/01/2018] [Accepted: 11/03/2018] [Indexed: 01/19/2023] Open
Abstract
MORC2 (microrchidia family CW‐type zinc finger 2) is a newly identified chromatin remodeling protein that functions in diverse biological processes including gene transcription. NDRG1 is a metastasis suppressor and a prognostic biomarker for colorectal cancer (CRC). However, the relationship between MORC2 and NDRG1 transcriptional regulation and the roles of MORC2 in CRC remain elusive. Here, we showed that MORC2 downregulated NDRG1 mRNA, protein levels, and promoter activity in CRC cells. We also found that MORC2 bound to the −446 to −213 bp region of the NDRG1 promoter. Mechanistically, histone deacetylase sirtuin 1 (SIRT1) was involved in NDRG1 transcriptional regulation. MORC2 was able to interact with SIRT1 and inhibit NDRG1 promoter activity cumulatively with SIRT1. MORC2 overexpression led to a decrease of H3Ac and H4Ac of the NDRG1 promoter. Importantly, we showed that NDRG1 was essential in MORC2‐mediated promotion of CRC cell migration and invasion in vitro, as well as lung metastasis of CRC cells in vivo. Moreover, MORC2 expression correlated negatively with NDRG1 expression in CRC patients. High expression of MORC2 was significantly associated with lymph node metastasis (P = 0.019) and poor pTNM stage (P = 0.02) and the expression of MORC2 correlated with poor prognosis in colon cancer patients. Our findings thus contribute to the knowledge of the regulatory mechanism of MORC2 in downregulating NDRG1, and suggest MORC2 as a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Jiao Liu
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, Shenyang, China
| | - Yangguang Shao
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, Shenyang, China
| | - Yuxin He
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, Shenyang, China
| | - Ke Ning
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, Shenyang, China
| | - Xi Cui
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, Shenyang, China
| | - Furong Liu
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, Shenyang, China
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, China
| | - Feng Li
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, Shenyang, China
| |
Collapse
|
61
|
Extract from Moringa oleifera seeds suppresses the epithelial-mesenchymal transition-mediated metastasis of gastric cancer by targeting the metastatic suppressor NDRG1. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.09.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
62
|
Vaes N, Schonkeren SL, Brosens E, Koch A, McCann CJ, Thapar N, Hofstra RM, van Engeland M, Melotte V. A combined literature and in silico analysis enlightens the role of the NDRG family in the gut. Biochim Biophys Acta Gen Subj 2018; 1862:2140-2151. [DOI: 10.1016/j.bbagen.2018.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 12/12/2022]
|
63
|
Mi L, Hu K, Wen X, Sun J, Wu A, Wang M, Zheng M, Zang L, Ji J. Upregulation of C/EBPα contributes to colorectal cancer growth, metastasis and indicates poor survival outcome. Am J Cancer Res 2018; 8:1449-1465. [PMID: 30210916 PMCID: PMC6129490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/22/2018] [Indexed: 06/08/2023] Open
Abstract
The function and clinical implication of transcription factor CCAAT/enhancer-binding protein α (C/EBPα) in colorectal cancer (CRC) still remains undefined. In fact, C/EBPα has long been considered as a tumor suppressor in hematopoietic system and also found lowly expressed in numerous solid tumors. However, our results here for the first time showed that C/EBPα was unexpectedly upregulated and was an independent prognostic marker for patients with CRC. We therefore aimed to explore the detailed role and mechanisms of C/EBPα in CRC. Our investigation demonstrated that C/EBPα promoted tumor growth both in vitro and in vivo. In addition, suppression of C/EBPα inhibited cell proliferation by inducing G1 phase arrest and inducing apoptosis. Also, C/EBPα enhances CRC cells migration and invasion in vitro as well as metastasis in vivo through regulating EMT. Mechanistically, C/EBPα exerts its oncogenic role by targeting c-Myc/cyclin D1 mediated by β-catenin involved pathway and we provide evidence indicating that cytoplasmic exclusion of C/EBPα might contribute to its oncogenic function in tumor progression. In conclusion, C/EBPα acts as an oncogene in CRC and could be a potential biomarker of colon carcinogenesis.
Collapse
Affiliation(s)
- Lan Mi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and InstituteBeijing, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital and InstituteBeijing, China
| | - Kai Hu
- European Pancreas Centre/EPZ, Department of General, Visceral and Transplantation Surgery, University Hospital HeidelbergHeidelberg, Germany
| | - Xianzi Wen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and InstituteBeijing, China
| | - Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Aiwen Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital and InstituteBeijing, China
| | - Mingliang Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Minhua Zheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Lu Zang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital and InstituteBeijing, China
| |
Collapse
|
64
|
Paired box 8 suppresses tumor angiogenesis and metastasis in gastric cancer through repression of FOXM1 via induction of microRNA-612. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:159. [PMID: 30021604 PMCID: PMC6052629 DOI: 10.1186/s13046-018-0830-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 07/05/2018] [Indexed: 12/31/2022]
Abstract
Background Paired box 8 (PAX8) has been documented to be downregulated in gastric cancer. However, its biological function in this malignancy is poorly understood. Methods In the present work, we investigated the effects of PAX8 overexpression and knockdown on the aggressive phenotype of gastric cancer cells. We further checked the involvement of forkhead box M1 (FOXM1), a ubiquitously expressed oncogene that can facilitate gastric cancer progression, in the action of PAX8. Results Ectopic expression of PAX8 blocked the migration and invasion of both AGS and SGC-7901 cells, but had no effect on cell proliferation. Conversely, knockdown of PAX8 enhanced gastric cancer cell migration and invasion. PAX8 overexpression inhibited epithelial-mesenchymal transition (EMT) and pro-angiogenic activity of gastric cancer cells. Mechanistically, PAX8 overexpression downregulated FOXM1 by stimulating microRNA (miR)-612 expression. Ectopic expression of miR-612 recapitulated the effect of PAX8 overexpression on gastric cancer cells, causing an inhibition of migration, invasion, EMT, and angiogenesis. Knockdown of miR-612 or overexpression of FOXM1 significantly reversed the tumor-suppressive activity of PAX8. In vivo studies further demonstrated that PAX8 overexpression restrained tumor angiogenesis and metastasis in nude mice, which was accompanied by increased expression of miR-612 and decreased expression of FOXM1. Conclusions PAX8 exerts a tumor-suppressive effect against gastric cancer cells, largely through induction of miR-612 and repression of FOXM1. Therefore, restoration of PAX8 expression may offer therapeutic benefits in the treatment of gastric cancer.
Collapse
|
65
|
Li T, Sun R, Lu M, Chang J, Meng X, Wu H. NDRG3 facilitates colorectal cancer metastasis through activating Src phosphorylation. Onco Targets Ther 2018; 11:2843-2852. [PMID: 29844682 PMCID: PMC5961472 DOI: 10.2147/ott.s156814] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background NDRG3 is an N-myc downregulated gene (NDRG). The aim of this article was to identify the role of NDRG3 in colorectal cancer (CRC) and to determine the mechanism underlying its function. Methods Using immunohistochemical staining, expression and clinicopathological variables of NDRG3 were analyzed in 170 CRC samples. Overexpression of NDRG3 was employed in SW1116 cells, downregulation of NDRG3 was achieved in RKO cells, then migration and invasion assays were performed in vitro, and a mouse model was constructed in vivo. Results Increased expression of NDRG3 was observed in primary CRC tissues, and this expression was correlated with distant metastasis. Consistently, ectopic expression of NDRG3 in SW1116 cells enhanced cell migration and invasion, while knockdown of NDRG3 in RKO cells significantly suppressed CRC cell metastasis. The portal vein injection models suggested that NDRG3 overexpression facilitates liver metastasis. These events were associated with the phosphorylation of Src (c-Src) at Tyr 419 site. Conclusion Our results showed that NDRG3 facilitates CRC migration and invasion by activating Src phosphorylation, suggesting the role of NDRG3 as a candidate oncogene.
Collapse
Affiliation(s)
- Ting Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, He Fei, 230222, China
| | - Ruochuan Sun
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, He Fei, 230222, China
| | - Mingdian Lu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, He Fei, 230222, China
| | - Jiacong Chang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, He Fei, 230222, China
| | - Xiangling Meng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, He Fei, 230222, China
| | - Huo Wu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, He Fei, 230222, China
| |
Collapse
|
66
|
ITGB1-dependent upregulation of Caveolin-1 switches TGFβ signalling from tumour-suppressive to oncogenic in prostate cancer. Sci Rep 2018; 8:2338. [PMID: 29402961 PMCID: PMC5799174 DOI: 10.1038/s41598-018-20161-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 01/15/2018] [Indexed: 01/10/2023] Open
Abstract
Caveolin-1 (CAV1) is over-expressed in prostate cancer (PCa) and is associated with adverse prognosis, but the molecular mechanisms linking CAV1 expression to disease progression are poorly understood. Extensive gene expression correlation analysis, quantitative multiplex imaging of clinical samples, and analysis of the CAV1-dependent transcriptome, supported that CAV1 re-programmes TGFβ signalling from tumour suppressive to oncogenic (i.e. induction of SLUG, PAI-1 and suppression of CDH1, DSP, CDKN1A). Supporting such a role, CAV1 knockdown led to growth arrest and inhibition of cell invasion in prostate cancer cell lines. Rationalized RNAi screening and high-content microscopy in search for CAV1 upstream regulators revealed integrin beta1 (ITGB1) and integrin associated proteins as CAV1 regulators. Our work suggests TGFβ signalling and beta1 integrins as potential therapeutic targets in PCa over-expressing CAV1, and contributes to better understand the paradoxical dual role of TGFβ in tumour biology.
Collapse
|
67
|
Wang ZY, Hu M, Dai MH, Xiong J, Zhang S, Wu HJ, Zhang SS, Gong ZJ. Upregulation of the long non-coding RNA AFAP1-AS1 affects the proliferation, invasion and survival of tongue squamous cell carcinoma via the Wnt/β-catenin signaling pathway. Mol Cancer 2018; 17:3. [PMID: 29310682 PMCID: PMC5757289 DOI: 10.1186/s12943-017-0752-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/26/2017] [Indexed: 02/08/2023] Open
Abstract
Background Long non-coding RNA (lncRNA) actin filament associated protein 1 antisense RNA1 (AFAP1-AS1) is oriented in an antisense direction to the protein-coding gene AFAP1 in the opposite strand. Previous studies showed that lncRNA AFAP1-AS1 was upregulated and acted as an oncogene in a variety of tumors. However, the expression and biological functions of lncRNA AFAP1-AS1 in tongue squamous cell carcinoma (TSCC) are still unknown. Methods The expression level of AFAP1-AS1 was measured in 103 pairs of human TSCC tissues and corresponding adjacent normal tongue mucous tissues. The correlation between AFAP1-AS1 and the clinicopathological features was evaluated using the chi-square test. The effects of AFAP1-AS1 on TSCC cells were determined via a CCK-8 assay, clone formation assay, flow cytometry, wound healing assay and transwell assay. Furthermore, the effect of AFAP1-AS1 knockdown on the activation of the Wnt/β-catenin signaling pathway was investigated. Finally, CAL-27 cells with AFAP1-AS1 knockdown were subcutaneously injected into nude mice to evaluate the effect of AFAP1-AS1 on tumor growth in vivo. Results In this study, we found that lncRNA AFAP1-AS1 was increased in TSCC tissues and that patients with high AFAP1-AS1 expression had a shorter overall survival. Short hairpin RNA (shRNA)-mediated AFAP1-AS1 knockdown significantly decreased the proliferation of TSCC cells. Furthermore, AFAP1-AS1 silencing partly inhibited cell migration and invasion. Inhibition of AFAP1-AS1 decreased the activity of the Wnt/β-catenin pathway and suppressed the expression of EMT-related genes (SLUG, SNAIL1, VIM, CADN, ZEB1, ZEB2, SMAD2 and TWIST1) in TSCC cells. In addition, CAL-27 cells with AFAP1-AS1 knockdown were injected into nude mice to investigate the effect of AFAP1-AS1 on tumorigenesis in vivo. Downregulation of AFAP1-AS1 suppressed tumor growth and inhibited the expression of EMT-related genes (SLUG, SNIAL1, VIM, ZEB1, NANOG, SMAD2, NESTIN and SOX2) in vivo. Conclusions Taken together, our findings present a road map for targeting the newly identified lncRNA AFAP1-AS1 to suppress TSCC progression, and these results elucidate a novel potential therapeutic strategy for TSCC.
Collapse
Affiliation(s)
- Ze-You Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Min Hu
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Min-Hui Dai
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jing Xiong
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shuai Zhang
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, 350100, China.,Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Han-Jiang Wu
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Shan-Shan Zhang
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China. .,Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Zhao-Jian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
68
|
El Bairi K, Tariq K, Himri I, Jaafari A, Smaili W, Kandhro AH, Gouri A, Ghazi B. Decoding colorectal cancer epigenomics. Cancer Genet 2018; 220:49-76. [PMID: 29310839 DOI: 10.1016/j.cancergen.2017.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is very heterogeneous and presents different types of epigenetic alterations including DNA methylation, histone modifications and microRNAs. These changes are considered as characteristics of various observed clinical phenotypes. Undoubtedly, the discovery of epigenetic pathways with novel epigenetic-related mechanisms constitutes a promising advance in cancer biomarker discovery. In this review, we provide an evidence-based discussing of the current understanding of CRC epigenomics and its role in initiation, epithelial-to-mesenchymal transition and metastasis. We also discuss the recent findings regarding the potential clinical perspectives of these alterations as potent biomarkers for CRC diagnosis, prognosis, and therapy in the era of liquid biopsy.
Collapse
Affiliation(s)
- Khalid El Bairi
- Independent Research Team in Cancer Biology and Bioactive Compounds, Mohamed 1(st) University, Oujda, Morocco.
| | - Kanwal Tariq
- B-10 Jumani Center, Garden East, Karachi 74400, Pakistan
| | - Imane Himri
- Laboratory of Biochemistry, Faculty of Sciences, Mohamed I(st) Universiy, Oujda, Morocco; Delegation of the Ministry of Health, Oujda, Morocco
| | - Abdeslam Jaafari
- Laboratoire de Génie Biologique, Equipe d'Immunopharmacologie, Faculté des Sciences et Techniques, Université Sultan Moulay Slimane, Beni Mellal, Maroc
| | - Wiam Smaili
- Centre de Génomique Humaine, Faculté de Médecine et de Pharmacie, Université Mohamed V, Rabat, Maroc; Département de Génétique Médicale, Institut National d'Hygiène, Rabat, Maroc
| | - Abdul Hafeez Kandhro
- Department of Biochemistry, Healthcare Molecular and Diagnostic Laboratory, Hyderabad, Pakistan
| | - Adel Gouri
- Laboratory of Medical Biochemistry, Ibn Rochd University Hospital, Annaba, Algeria
| | - Bouchra Ghazi
- National Laboratory of Reference, Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| |
Collapse
|
69
|
Xie J, Shen K, Lenchine RV, Gethings LA, Trim PJ, Snel MF, Zhou Y, Kenney JW, Kamei M, Kochetkova M, Wang X, Proud CG. Eukaryotic elongation factor 2 kinase upregulates the expression of proteins implicated in cell migration and cancer cell metastasis. Int J Cancer 2017; 142:1865-1877. [PMID: 29235102 DOI: 10.1002/ijc.31210] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/23/2017] [Accepted: 12/05/2017] [Indexed: 01/01/2023]
Abstract
Eukaryotic elongation factor 2 kinase (eEF2K) negatively regulates the elongation phase of mRNA translation and hence protein synthesis. Increasing evidence indicates that eEF2K plays an important role in the survival and migration of cancer cells and in tumor progression. As demonstrated by two-dimensional wound-healing and three-dimensional transwell invasion assays, knocking down or inhibiting eEF2K in cancer cells impairs migration and invasion of cancer cells. Conversely, exogenous expression of eEF2K or knocking down eEF2 (the substrate of eEF2K) accelerates wound healing and invasion. Importantly, using LC-HDMSE analysis, we identify 150 proteins whose expression is decreased and 73 proteins which are increased upon knocking down eEF2K in human lung carcinoma cells. Of interest, 34 downregulated proteins are integrins and other proteins implicated in cell migration, suggesting that inhibiting eEF2K may help prevent cancer cell mobility and metastasis. Interestingly, eEF2K promotes the association of integrin mRNAs with polysomes, providing a mechanism by which eEF2K may enhance their cellular levels. Consistent with this, genetic knock down or pharmacological inhibition of eEF2K reduces the protein expression levels of integrins. Notably, pharmacological or genetic inhibition of eEF2K almost completely blocked tumor growth and effectively prevented the spread of tumor cells in vivo. High levels of eEF2K expression were associated with invasive carcinoma and metastatic tumors. These data provide the evidence that eEF2K is a new potential therapeutic target for preventing tumor metastasis.
Collapse
Affiliation(s)
- Jianling Xie
- Nutrition & Metabolism, South Australian Health & Medical Research Institute, Adelaide, Australia.,Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Kaikai Shen
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Roman V Lenchine
- Nutrition & Metabolism, South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Lee A Gethings
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow, United Kingdom
| | - Paul J Trim
- Hopwood Centre for Neurobiology, South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Marten F Snel
- Hopwood Centre for Neurobiology, South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Ying Zhou
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Justin W Kenney
- Program in Neurosciences and Mental Health, the Hospital for Sick Children, Toronto, Canada
| | - Makoto Kamei
- Hopwood Centre for Neurobiology, South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Marina Kochetkova
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, Australia
| | - Xuemin Wang
- Nutrition & Metabolism, South Australian Health & Medical Research Institute, Adelaide, Australia.,Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom.,School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Christopher G Proud
- Nutrition & Metabolism, South Australian Health & Medical Research Institute, Adelaide, Australia.,Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom.,Hopwood Centre for Neurobiology, South Australian Health & Medical Research Institute, Adelaide, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
70
|
Pedriali G, Rimessi A, Sbano L, Giorgi C, Wieckowski MR, Previati M, Pinton P. Regulation of Endoplasmic Reticulum-Mitochondria Ca 2+ Transfer and Its Importance for Anti-Cancer Therapies. Front Oncol 2017; 7:180. [PMID: 28913175 PMCID: PMC5583168 DOI: 10.3389/fonc.2017.00180] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/07/2017] [Indexed: 12/18/2022] Open
Abstract
Inter-organelle membrane contact sites are emerging as major sites for the regulation of intracellular Ca2+ concentration and distribution. Here, extracellular stimuli operate on a wide array of channels, pumps, and ion exchangers to redistribute intracellular Ca2+ among several compartments. The resulting highly defined spatial and temporal patterns of Ca2+ movement can be used to elicit specific cellular responses, including cell proliferation, migration, or death. Plasma membrane (PM) also can directly contact mitochondria and endoplasmic reticulum (ER) through caveolae, small invaginations of the PM that ensure inter-organelle contacts, and can contribute to the regulation of numerous cellular functions through scaffolding proteins such as caveolins. PM and ER organize specialized junctions. Here, many components of the receptor-dependent Ca2+ signals are clustered, including the ORAI1-stromal interaction molecule 1 complex. This complex constitutes a primary mechanism for Ca2+ entry into non-excitable cells, modulated by intracellular Ca2+. Several contact sites between the ER and mitochondria, termed mitochondria-associated membranes, show a very complex and specialized structure and host a wide number of proteins that regulate Ca2+ transfer. In this review, we summarize current knowledge of the particular action of several oncogenes and tumor suppressors at these specialized check points and analyze anti-cancer therapies that specifically target Ca2+ flow at the inter-organelle contacts to alter the metabolism and fate of the cancer cell.
Collapse
Affiliation(s)
- Gaia Pedriali
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Alessandro Rimessi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Luigi Sbano
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Carlotta Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Mariusz R Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Maurizio Previati
- Department of Morphology, Surgery and Experimental Medicine, Section of Human Anatomy and Histology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| |
Collapse
|