51
|
McClements J, Buffone C, Shaver MP, Sefiane K, Koutsos V. Poly(styrene-co-butadiene) random copolymer thin films and nanostructures on a mica surface: morphology and contact angles of nanodroplets. SOFT MATTER 2017; 13:6152-6166. [PMID: 28795749 DOI: 10.1039/c7sm00994a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The self-assembly of poly(styrene-co-butadiene) random copolymers on mica surfaces was studied by varying solution concentrations and polymer molecular weights. Toluene solutions of the poly(styrene-co-butadiene) samples were spin coated onto a mica surface and the resulting polymer morphology was investigated by atomic force microscopy. At higher concentrations, thin films formed with varying thicknesses; some dewetting was observed which depended on the molecular weight. Total dewetting did not occur despite the polymer's low glass transition temperature. Instead, partial dewetting was observed suggesting that the polymer was in a metastable equilibrium state. At lower concentrations, spherical cap shaped nanodroplets formed with varying sizes from single polymer chains to aggregates containing millions of chains. As the molecular weight was increased, fewer aggregates were observed on the surface, albeit with larger sizes resulting from increased solution viscosities and more chain entanglements at higher molecular weights. The contact angles of the nanodroplets were shown to be size dependent. A minimum contact angle occurs for droplets with radii of 100-250 nm at each molecular weight. Droplets smaller than 100 nm showed a sharp increase in contact angle; attributed to an increase in the elastic modulus of the droplets, in addition, to a positive line tension value. Droplets larger than 250 nm also showed an increased contact angle due to surface heterogeneities which cannot be avoided for larger droplets. This increase in contact angle plateaus as the droplet size reaches the macroscopic scale.
Collapse
Affiliation(s)
- Jake McClements
- Institute for Materials and Processes, School of Engineering, The University of Edinburgh, Sanderson Building, King's Buildings, Edinburgh EH9 3FB, UK.
| | | | | | | | | |
Collapse
|
52
|
De-La-Cuesta J, González E, Moreno AJ, Arbe A, Colmenero J, Pomposo JA. Size of Elastic Single-Chain Nanoparticles in Solution and on Surfaces. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01199] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Julen De-La-Cuesta
- Centro de Física
de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
| | - Edurne González
- Centro de Física
de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
| | - Angel J. Moreno
- Centro de Física
de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
- Donostia International
Physics Center (DIPC), Paseo Manuel
de Lardizabal 4, E-20018 San Sebastián, Spain
| | - Arantxa Arbe
- Centro de Física
de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
| | - Juan Colmenero
- Centro de Física
de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
- Donostia International
Physics Center (DIPC), Paseo Manuel
de Lardizabal 4, E-20018 San Sebastián, Spain
- Departamento
de Física de Materiales, Universidad del País Vasco (UPV/EHU), Apartado 1072, E-20800 San Sebastián, Spain
| | - José A. Pomposo
- Centro de Física
de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
- Departamento
de Física de Materiales, Universidad del País Vasco (UPV/EHU), Apartado 1072, E-20800 San Sebastián, Spain
- IKERBASQUE - Basque
Foundation for Science, María
Díaz de Haro 3, E-48013 Bilbao, Spain
| |
Collapse
|
53
|
Gao Y, Wei M, Li X, Xu W, Ahiabu A, Perdiz J, Liu Z, Serpe MJ. Stimuli-responsive polymers: Fundamental considerations and applications. Macromol Res 2017. [DOI: 10.1007/s13233-017-5088-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
54
|
Schöne AC, Roch T, Schulz B, Lendlein A. Evaluating polymeric biomaterial-environment interfaces by Langmuir monolayer techniques. J R Soc Interface 2017; 14:20161028. [PMID: 28468918 PMCID: PMC5454283 DOI: 10.1098/rsif.2016.1028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/05/2017] [Indexed: 12/18/2022] Open
Abstract
Polymeric biomaterials are of specific relevance in medical and pharmaceutical applications due to their wide range of tailorable properties and functionalities. The knowledge about interactions of biomaterials with their biological environment is of crucial importance for developing highly sophisticated medical devices. To achieve optimal in vivo performance, a description at the molecular level is required to gain better understanding about the surface of synthetic materials for tailoring their properties. This is still challenging and requires the comprehensive characterization of morphological structures, polymer chain arrangements and degradation behaviour. The review discusses selected aspects for evaluating polymeric biomaterial-environment interfaces by Langmuir monolayer methods as powerful techniques for studying interfacial properties, such as morphological and degradation processes. The combination of spectroscopic, microscopic and scattering methods with the Langmuir techniques adapted to polymers can substantially improve the understanding of their in vivo behaviour.
Collapse
Affiliation(s)
- Anne-Christin Schöne
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Kantstrasse 55, 14513 Teltow, Germany
| | - Toralf Roch
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Kantstrasse 55, 14513 Teltow, Germany
- Helmholtz Virtual Institute-Multifunctional Biomaterials for Medicine, Kantstrasse 55, 14513 Teltow, Germany
| | - Burkhard Schulz
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Kantstrasse 55, 14513 Teltow, Germany
| | - Andreas Lendlein
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Kantstrasse 55, 14513 Teltow, Germany
- Helmholtz Virtual Institute-Multifunctional Biomaterials for Medicine, Kantstrasse 55, 14513 Teltow, Germany
| |
Collapse
|
55
|
Hashimoto Y, Sato T, Goto R, Nagao Y, Mitsuishi M, Nagano S, Matsui J. In-plane oriented highly ordered lamellar structure formation of poly(N-dodecylacrylamide) induced by humid annealing. RSC Adv 2017. [DOI: 10.1039/c6ra27994e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Highly oriented and ordered lamellar polymer film was prepared by simply annealing the poly(N-dodecylacrylamide) film under humid conditions.
Collapse
Affiliation(s)
- Yuki Hashimoto
- Graduate School of Science and Engineering
- Yamagata University
- Yamagata 990-8560
- Japan
| | - Takuma Sato
- Graduate School of Science and Engineering
- Yamagata University
- Yamagata 990-8560
- Japan
| | - Ryosuke Goto
- Department of Molecular Design and Engineering
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Yuki Nagao
- School of Materials Science
- Japan Advanced Institute of Science and Technology
- Nomi
- Japan
| | - Masaya Mitsuishi
- Institute for Multidisciplinary Research for Advanced Materials
- Tohoku University
- Sendai 980-8577
- Japan
| | - Shusaku Nagano
- Department of Molecular Design and Engineering
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Jun Matsui
- Department of Material and Biological Chemistry
- Yamagata University
- Yamagata 990-8560
- Japan
| |
Collapse
|
56
|
|
57
|
Yashima E, Ousaka N, Taura D, Shimomura K, Ikai T, Maeda K. Supramolecular Helical Systems: Helical Assemblies of Small Molecules, Foldamers, and Polymers with Chiral Amplification and Their Functions. Chem Rev 2016; 116:13752-13990. [PMID: 27754649 DOI: 10.1021/acs.chemrev.6b00354] [Citation(s) in RCA: 1288] [Impact Index Per Article: 143.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In this review, we describe the recent advances in supramolecular helical assemblies formed from chiral and achiral small molecules, oligomers (foldamers), and helical and nonhelical polymers from the viewpoints of their formations with unique chiral phenomena, such as amplification of chirality during the dynamic helically assembled processes, properties, and specific functionalities, some of which have not been observed in or achieved by biological systems. In addition, a brief historical overview of the helical assemblies of small molecules and remarkable progress in the synthesis of single-stranded and multistranded helical foldamers and polymers, their properties, structures, and functions, mainly since 2009, will also be described.
Collapse
Affiliation(s)
- Eiji Yashima
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University , Chikusa-ku, Nagoya 464-8603, Japan
| | - Naoki Ousaka
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University , Chikusa-ku, Nagoya 464-8603, Japan
| | - Daisuke Taura
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University , Chikusa-ku, Nagoya 464-8603, Japan
| | - Kouhei Shimomura
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University , Chikusa-ku, Nagoya 464-8603, Japan
| | - Tomoyuki Ikai
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| | - Katsuhiro Maeda
- Graduate School of Natural Science and Technology, Kanazawa University , Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
58
|
Fuchs C, Busse K, Flieger AK, Kressler J. Polymer Crystallization on the Surface of Water or Aqueous Salt Solution. Chem Eng Technol 2016. [DOI: 10.1002/ceat.201600034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|