51
|
Behavior Characteristics and Risk for Metabolic Syndrome Among Women in Rural Communities in China. J Cardiovasc Nurs 2021; 37:490-498. [PMID: 34321435 DOI: 10.1097/jcn.0000000000000836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Rapid economic growth and lifestyle changes in China have resulted in increased metabolic syndrome (MetS) rates. Few investigators have examined sex-specific risk factors and the role of menopause, stress, and sleep on MetS among women in China. OBJECTIVE In this study, we aimed to identify the risk factors for MetS among women in rural China. METHODS A cross-sectional study design was used, and participants were recruited from rural areas in China. Female participants older than 18 years were eligible to participate. Participants had their weight, height, waist circumference, blood pressure, and fasting blood measured at study sites. They also completed validated questionnaires regarding sociodemographic information and MetS-related health behaviors. RESULTS A total of 646 women were included in this study. The overall prevalence of MetS was 26.2%. The MetS group had a greater number of overweight/obese women than the non-MetS group did. For premenopausal women, a higher income, being overweight/obese, and eating salty/marinated food increased their risk for MetS (odds ratio [OR], 2.56, 4.55, and 3.1, respectively). For postmenopausal women, a low level of education (OR, 0.44) and being overweight/obese (OR, 4.98) increased their risk of MetS. CONCLUSION Almost half of the women in this study were overweight/obese, and many of them did not meet the national recommendations for a healthy lifestyle, increasing their risk for MetS. Developing cultural and behavioral interventions tailored for overweight/obese women is critical in reducing MetS.
Collapse
|
52
|
Kao TW, Huang CC. Recent Progress in Metabolic Syndrome Research and Therapeutics. Int J Mol Sci 2021; 22:6862. [PMID: 34202257 PMCID: PMC8269131 DOI: 10.3390/ijms22136862] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Metabolic syndrome (MetS) is a well-defined yet difficult-to-manage disease entity. Both the precipitous rise in its incidence due to contemporary lifestyles and the growing heterogeneity among affected populations present unprecedented challenges. Moreover, the predisposed risk for developing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in populations with MetS, and the viral impacts on host metabolic parameters, underscores the need to investigate this mechanism thoroughly. Recent investigations of metabolomics and proteomics have revealed not only differentially expressed substances in MetS, but also the consequences of diet consumption and physical activity on energy metabolism. These variations in metabolites, as well as protein products, also influence a wide spectrum of host characteristics, from cellular behavior to phenotype. Research on the dysregulation of gut microbiota and the resultant inflammatory status has also contributed to our understanding of the underlying pathogenic mechanisms. As for state-of-the-art therapies, advancing depictions of the bio-molecular landscape of MetS have emerged and now play a key role in individualized precision medicine. Fecal microbiota transplantation, aiming to restore the host's homeostasis, and targeting of the bile acid signaling pathway are two approaches to combatting MetS. Comprehensive molecular inquiries about MetS by omics measures are mandatory to facilitate the development of novel therapeutic modalities.
Collapse
Affiliation(s)
- Ting-Wei Kao
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan;
| | - Chin-Chou Huang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
53
|
Fan Q, Xu F, Liang B, Zou X. The Anti-Obesity Effect of Traditional Chinese Medicine on Lipid Metabolism. Front Pharmacol 2021; 12:696603. [PMID: 34234682 PMCID: PMC8255923 DOI: 10.3389/fphar.2021.696603] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/01/2021] [Indexed: 01/01/2023] Open
Abstract
With the improvement of living conditions and the popularity of unhealthy eating and living habits, obesity is becoming a global epidemic. Obesity is now recognized as a disease that not only increases the risk of metabolic diseases such as type 2 diabetes (T2D), non-alcoholic fatty liver disease (NAFLD), cardiovascular disease (CVD), and cancer but also negatively affects longevity and the quality of life. The traditional Chinese medicines (TCMs) are highly enriched in bioactive compounds and have been used for the treatment of obesity and obesity-related metabolic diseases over a long period of time. In this review, we selected the most commonly used anti-obesity or anti-hyperlipidemia TCMs and, where known, their major bioactive compounds. We then summarized their multi-target molecular mechanisms, specifically focusing on lipid metabolism, including the modulation of lipid absorption, reduction of lipid synthesis, and increase of lipid decomposition and lipid transportation, as well as the regulation of appetite. This review produces a current and comprehensive understanding of integrative and systematic mechanisms for the use of TCMs for anti-obesity. We also advocate taking advantage of TCMs as another therapy for interventions on obesity-related diseases, as well as stressing the fact that more is needed to be done, scientifically, to determine the active compounds and modes of action of the TCMs.
Collapse
Affiliation(s)
- Qijing Fan
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Furong Xu
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Bin Liang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Xiaoju Zou
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
54
|
Grijalva-Guiza RE, Jiménez-Garduño AM, Hernández LR. Potential Benefits of Flavonoids on the Progression of Atherosclerosis by Their Effect on Vascular Smooth Muscle Excitability. Molecules 2021; 26:3557. [PMID: 34200914 PMCID: PMC8230563 DOI: 10.3390/molecules26123557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 12/26/2022] Open
Abstract
Flavonoids are a group of secondary metabolites derived from plant-based foods, and they offer many health benefits in different stages of several diseases. This review will focus on their effects on ion channels expressed in vascular smooth muscle during atherosclerosis. Since ion channels can be regulated by redox potential, it is expected that during the onset of oxidative stress-related diseases, ion channels present changes in their conductive activity, impacting the progression of the disease. A typical oxidative stress-related condition is atherosclerosis, which involves the dysfunction of vascular smooth muscle. We aim to present the state of the art on how redox potential affects vascular smooth muscle ion channel function and summarize if the benefits observed in this disease by using flavonoids involve restoring the ion channel activity.
Collapse
Affiliation(s)
- Rosa Edith Grijalva-Guiza
- Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, San Andrés Cholula 72810, Mexico;
| | | | - Luis Ricardo Hernández
- Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, San Andrés Cholula 72810, Mexico;
| |
Collapse
|
55
|
Bergström H, Ekström L, Warnqvist A, Bergman P, Björkhem-Bergman L. Variations in biomarkers of dyslipidemia and dysbiosis during the menstrual cycle: a pilot study in healthy volunteers. BMC WOMENS HEALTH 2021; 21:166. [PMID: 33879161 PMCID: PMC8058971 DOI: 10.1186/s12905-021-01306-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/14/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Dyslipidemia in metabolic syndrome may introduce an underestimation of the risk for cardiovascular disease (CVD) using Low-Density Lipoprotein-Cholesterol (LDL-C) as a surrogate marker. Recently, non-High-Density Lipoprotein-Cholesterol (non-HDL-C), Apolipoprotein B (ApoB) and remnant-Cholesterol (remnant-C) have been suggested as better biomarkers for dyslipidemia. In addition, the microbial metabolites trimethylamine-N-oxide (TMAO), betaine and choline have been associated with CVD and suggested as markers for dysbiosis. There is a lack of knowledge on potential alterations in these biomarkers during the menstrual cycle. The aim of this single center, prospective non-interventional study, was to investigate variations in biomarkers of dyslipidemia and dysbiosis in healthy volunteers during the menstrual cycle. METHOD Serum samples were collected from 17 healthy, regularly menstruating women during two menstrual cycles, including the follicular, ovulatory and luteal phases. Levels of lipoproteins, lipoprotein ratios and microbial metabolites were analyzed in a total of 90 samples (30 complete menstrual cycles). RESULTS ApoB, ApoB/HDL and non-HDL-C/HDL ratios were significantly higher in the follicular phase compared to the ovulatory and luteal phases (p < 0.05). Remnant-C were higher during the luteal phase (p < 0.05). TMAO did not vary during the different phases and did not correlate with estrogen levels. CONCLUSION Our data support that biomarkers for dyslipidemia vary during the menstrual cycle. Thus, to avoid an underestimation of cardiovascular risk, sampling during the follicular phase, when levels of pro-atherogenic lipids are higher, may be considered.
Collapse
Affiliation(s)
- Helena Bergström
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institute, Blickagången 16, Neo floor 7, 141 83, Huddinge, Sweden.
| | - Lena Ekström
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, and Karolinska University Laboratory, Karolinska University Hospital, 141 83, Huddinge, Sweden
| | - Anna Warnqvist
- Division of Biostatistics, Department of Environmental Medicine, Karolinska Institutet, Nobels väg 13, 171 77, Stockholm, Sweden
| | - Peter Bergman
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8, 141 52, Huddinge, Sweden.,Department of Infectious Diseases, Immunodeficiency Unit, Karolinska University Hospital, 141 83, Huddinge, Sweden
| | - Linda Björkhem-Bergman
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institute, Blickagången 16, Neo floor 7, 141 83, Huddinge, Sweden.,Stockholms Sjukhem, Palliative Medicine, Mariebergsgatan 22, 112 19, Stockholm, Sweden
| |
Collapse
|
56
|
Xu J, Kitada M, Ogura Y, Koya D. Relationship Between Autophagy and Metabolic Syndrome Characteristics in the Pathogenesis of Atherosclerosis. Front Cell Dev Biol 2021; 9:641852. [PMID: 33937238 PMCID: PMC8083902 DOI: 10.3389/fcell.2021.641852] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis is the main cause of mortality in metabolic-related diseases, including cardiovascular disease and type 2 diabetes (T2DM). Atherosclerosis is characterized by lipid accumulation and increased inflammatory cytokines in the vascular wall, endothelial cell and vascular smooth muscle cell dysfunction and foam cell formation initiated by monocytes/macrophages. The characteristics of metabolic syndrome (MetS), including obesity, glucose intolerance, dyslipidemia and hypertension, may activate multiple mechanisms, such as insulin resistance, oxidative stress and inflammatory pathways, thereby contributing to increased risks of developing atherosclerosis and T2DM. Autophagy is a lysosomal degradation process that plays an important role in maintaining cellular metabolic homeostasis. Increasing evidence indicates that impaired autophagy induced by MetS is related to oxidative stress, inflammation, and foam cell formation, further promoting atherosclerosis. Basal and mild adaptive autophagy protect against the progression of atherosclerotic plaques, while excessive autophagy activation leads to cell death, plaque instability or even plaque rupture. Therefore, autophagic homeostasis is essential for the development and outcome of atherosclerosis. Here, we discuss the potential role of autophagy and metabolic syndrome in the pathophysiologic mechanisms of atherosclerosis and potential therapeutic drugs that target these molecular mechanisms.
Collapse
Affiliation(s)
- Jing Xu
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan.,Department of Endocrinology and Metabolism, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Munehiro Kitada
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan.,Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| | - Yoshio Ogura
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan.,Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
57
|
Hernández JL, Olmos JM, Pariente E, Ramos C, Martínez J, Nan D. The atherogenic index of plasma is related to a degraded bone microarchitecture assessed by the trabecular bone score in postmenopausal women: The Camargo Cohort Study. Maturitas 2021; 148:1-6. [PMID: 34024345 DOI: 10.1016/j.maturitas.2021.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/10/2021] [Accepted: 03/21/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To assess the association between the atherogenic index of plasma (AIP) and the trabecular bone score (TBS) in postmenopausal women. Furthermore, to analyze its relationship with bone mineral density (BMD), and serum concentrations of 25OHD, PTH, and bone turnover markers. STUDY DESIGN Cross-sectional study nested in a population-based cohort of 1,367 postmenopausal women aged 44-94 years. Participants were classified according to TBS values (<1.230, between 1.230-1.310 and >1.310) and regarding a widely accepted cut-off point of ≥0.11 for AIP. We analyzed TBS, BMD, serum levels of 25OHD, PTH, P1NP, CTX, and clinical covariates. A multivariate analysis was performed to assess the adjusted association between AIP and TBS. RESULTS The mean age of participants was 63±10 years. Women with TBS values <1.230 were older, had greater BMI, greater prevalence of fractures after the age of 40 years, more years since menopause, higher values of AIP, and significantly lower levels of HDL-C, serum phosphate, and 25OHD. AIP values ≥0.11 were not associated with the presence of densitometric osteoporosis (OR=0.83, 95%CI 0.58-1.18; p = 0.30) but, in multivariate analysis, AIP values ≥0.11 were related to a degraded microarchitecture after controlling for age, BMI, smoking, diabetes status, ischemic heart disease, statin use, GFR, a fragility fracture at over 40 years of age and lumbar osteoporosis by DXA, with an adjusted OR=1.61 (95%CI 1.06-2.46; p = 0.009). CONCLUSIONS AIP is significantly and independently associated with a degraded bone microarchitecture as measured by TBS. In this sense, AIP might be a useful tool in the overall assessment of bone metabolism in postmenopausal women.
Collapse
Affiliation(s)
- José L Hernández
- Bone Metabolic Unit. Department of Internal Medicine, Hospital Marqués de Valdecilla-IDIVAL. University of Cantabria. Santander, Spain.
| | - José M Olmos
- Bone Metabolic Unit. Department of Internal Medicine, Hospital Marqués de Valdecilla-IDIVAL. University of Cantabria. Santander, Spain
| | | | | | - Josefina Martínez
- Department of Clinical Biochemistry. Hospital Marqués de Valdecilla-IDIVAL. Santander, Spain
| | - Daniel Nan
- Bone Metabolic Unit. Department of Internal Medicine, Hospital Marqués de Valdecilla-IDIVAL. University of Cantabria. Santander, Spain
| |
Collapse
|
58
|
Oh ES, Na M, Rogers CJ. The Association Between Monocyte Subsets and Cardiometabolic Disorders/Cardiovascular Disease: A Systematic Review and Meta-Analysis. Front Cardiovasc Med 2021; 8:640124. [PMID: 33681309 PMCID: PMC7925827 DOI: 10.3389/fcvm.2021.640124] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Monocyte subsets in humans, i.e., classical (CM), intermediate (IM), and non-classical monocytes (NCM), are thought to differentially contribute to the pathogenesis of atherosclerosis, the leading cause of cardiovascular disease (CVD). However, the association between monocyte subsets and cardiometabolic disorders and CVD is not well-understood. Thus, the aim of the current systematic review and meta-analysis was to evaluate recent findings from clinical studies that examined the association between the distribution of monocyte subsets in subjects with cardiometabolic disorders and CVD compared to healthy controls. Methods: Articles were systematically searched in CINAHL, PubMed and Cochrane Library. Articles were independently screened and selected by two reviewers. Studies that reported the percentage of each monocyte subset were included in the systematic review and meta-analysis. For the meta-analysis, a random-effects model was used to generate pooled standardized mean differences (SMD) between subjects with cardiometabolic disorders and healthy controls. Results: A total of 1,693 articles were screened and 27 studies were selected for qualitative analyses. Among them, six studies were included in the meta-analysis. In total, sample size ranged from 22 to 135 and mean or median age from 22 to 70 years old. We found studies that reported higher percentage and number of IM and/or NCM in subjects with cardiometabolic disorders (9 out of 13 studies) and in subjects with CVD (11 out of 15 studies) compared to healthy controls. In the meta-analysis, the percentage of CM was lower [SMD = −1.21; 95% CI (−1.92, −0.50); P = 0.0009; I2 = 91%] and the percentage of IM [SMD = 0.56; 95% CI (0.23, 0.88); P = 0.0008; I2 = 65%] and NCM [SMD = 1.39; 95% CI (0.59, 2.19); P = 0.0007; I2 = 93%] were higher in subjects with cardiometabolic disorders compared to healthy controls. Conclusions: Individuals with cardiometabolic disorders and CVD may have a higher percentage of IM and NCM than healthy controls. Future studies are needed to evaluate the cause and biological significance of this potential altered distribution of monocyte subsets.
Collapse
Affiliation(s)
- Ester S Oh
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Muzi Na
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Connie J Rogers
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States.,Center for Molecular Immunology and Infectious Disease, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
59
|
Shemesh D, Rozenberg K, Rosenzweig T, Abookasis D. Single probe diffuse reflectance spectroscopy to assess the effect of sarcopoterium spinosum treatment on the cerebral tissue properties of ApoE knockout mouse. JOURNAL OF BIOPHOTONICS 2021; 14:e202000307. [PMID: 33084182 DOI: 10.1002/jbio.202000307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
In this work, diffuse near-infrared light reflectance spectroscopy based on a single optical probe, contains central single collection fiber surrounded by a circular array of illumination fibers, was used to quantify cerebral tissue properties in ApoE knockout mice following Sarcopoterium spinosum treatment. Sarcopoterium spinosum, also known as Thorny burnet, is a Mediterranean plant widely used as a traditional therapy for the treatment of a variety of pathologies, primarily type 2 diabetes mellitus (T2D). While it's efficacy in the treatment of T2D, and of other components of metabolic syndrome, have already been validated by us, the aim of this study was to investigate the effects of Sarcopoterium spinosum extract (SSE) on dyslipidemia and vascular functions. We utilized ApoE deficient mice (ApoE-/- , Atherosclerosis-prone apolipoprotein E-deficient), who have a severe impairment in plasma lipoprotein clearance and thus develop alterations in blood lipid profile and are highly susceptible to atherogenic plaque formation. A total of 34 male mice were divided into five groups representing various genetic, dietary, and treatment configurations. Optical measurements were used to assess changes in diffused reflectance spectra, optical properties (absorption and scattering), and cerebral tissue chromophore contents. Specifically, significant improvement in cerebral hemoglobin level was observed in ApoE KO mice, fed an artherogenic diet (ATD), upon SSE treatment. Biochemical and histological analyses of ApoE-/- ATD mice showed elevated body weight and a high level of blood triglycerides, free fatty acids and cholesterol. In contrast, in SSE treated mice improvement was observed, suggesting beneficial effects of SSE. In ApoE-/- ATD mice group a higher levels of deoxyhemoglobin was monitored indicating that the rate of oxygen release to the tissue is low. This was supported by decrease in oxygen saturation. It was also shown a reduction in water content in the brain of ApoE KO. Mice fed with the atherogenic diet demonstrated increased water content as compared to STD-fed ApoE KO mice, while SSE administration reversed the effect of the diet. To our knowledge, no such study has been reported before.
Collapse
Affiliation(s)
- David Shemesh
- Department of Electrical and Electronics Engineering, Ariel University, Ariel, Israel
| | - Konstantin Rozenberg
- Departments of Molecular Biology and Nutritional Studies, Ariel University, Ariel, Israel
| | - Tovit Rosenzweig
- Departments of Molecular Biology and Nutritional Studies, Ariel University, Ariel, Israel
| | - David Abookasis
- Department of Electrical and Electronics Engineering, Ariel University, Ariel, Israel
| |
Collapse
|
60
|
Luzi L, Bucciarelli L, Ferrulli A, Terruzzi I, Massarini S. Obesity and COVID-19: the ominous duet affecting the renin-angiotensin system. Minerva Endocrinol (Torino) 2021; 46:193-201. [PMID: 33435650 DOI: 10.23736/s2724-6507.20.03402-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The world population is facing a health challenge never seen since the Spanish influenza of one hundred years ago. During the last months, the scientific community has been debating on the potential harmful effect of angiotensin-converting-enzyme inhibitors (ACEi) or angiotensin II receptor type 1 receptor blockers (AT1-receptor blockers, ARBs) during the COVID-19 pandemic. That is because the S spike protein of SARS-CoV viruses utilizes the angiotensin-converting enzyme 2 (ACE2) as a receptor to enter alveolar epithelial cells. Obesity, often associated to type 2 Diabetes, was shown to worsen the prognosis of SARS-CoV-2 infection. Herein we discuss the complex interaction between the renin-angiotensin-aldosterone system (RAAS), its receptors, and the interaction with the Kallikrein-Kinin-system (KKS) and the potential activation of the coagulation cascade. Alteration of the equilibrium between the RAAS system and the KKS cascade may explain the frequent thromboembolic complications of COVID-19 mainly seen in obese and diabetic-obese patients. In contrast, angiotensin (1-7) contributes to maintaining a correct balance between RAAS and KKS system. Our conclusion is that the higher mortality rate in patients with obesity is linked to the alteration of RAS and RAS-KKS interaction consequent to SARS-CoV-2-cell entrance. At present, no data support the necessity of modifying ACEi or ARBs treatment in hypertensive patients.
Collapse
Affiliation(s)
- Livio Luzi
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy - .,Department of Biomedical Sciences for Health, University of Milan, Milan, Italy -
| | - Loredana Bucciarelli
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Anna Ferrulli
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy.,Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Ileana Terruzzi
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy.,Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Stefano Massarini
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
61
|
Arruda HS, Neri-Numa IA, Kido LA, Maróstica Júnior MR, Pastore GM. Recent advances and possibilities for the use of plant phenolic compounds to manage ageing-related diseases. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
62
|
Leonardi BF, Gosmann G, Zimmer AR. Modeling Diet-Induced Metabolic Syndrome in Rodents. Mol Nutr Food Res 2020; 64:e2000249. [PMID: 32978870 DOI: 10.1002/mnfr.202000249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 08/24/2020] [Indexed: 12/17/2022]
Abstract
Standardized animal models represent one of the most valuable tools available to understand the mechanism underlying the metabolic syndrome (MetS) and to seek for new therapeutic strategies. However, there is considerable variability in the studies conducted with this essential purpose. This review presents an updated discussion of the most recent studies using diverse experimental conditions to induce MetS in rodents with unbalanced diets, discusses the key findings in metabolic outcomes, and critically evaluates what we have been learned from them and how to advance in the field. The study includes scientific reports sourced from the Web of Science and PubMed databases, published between January 2013 and June 2020, which used hypercaloric diets to induce metabolic disorders, and address the impact of the diet on metabolic parameters. The collected data are used as support to discuss variables such as sex, species, and age of the animals, the most favorable type of diet, and the ideal diet length to generate metabolic changes. The experimental characteristics propose herein improve the performance of a preclinical model that resembles the human MetS and will guide researchers to investigate new therapeutic alternatives with confidence and higher translational validity.
Collapse
Affiliation(s)
- Bianca F Leonardi
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| | - Grace Gosmann
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| | - Aline R Zimmer
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| |
Collapse
|
63
|
Goschorska M, Gutowska I, Baranowska-Bosiacka I, Barczak K, Chlubek D. The Use of Antioxidants in the Treatment of Migraine. Antioxidants (Basel) 2020; 9:E116. [PMID: 32012936 PMCID: PMC7070237 DOI: 10.3390/antiox9020116] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 12/12/2022] Open
Abstract
Despite numerous studies concerning the pathophysiology of migraine, the exact molecular mechanism of disturbances underlying migraine is still unknown. Furthermore, oxidative stress is considered to play a significant role in migraine pathogenesis. The notion of oxidative stress in migraine patients has been discussed for several decades. Over the past few years, among the substances that could potentially be used for migraine treatment, particular attention has been paid to the so-called nutraceutics, including antioxidants. Antioxidants supplied with food prevent oxidative stress by inhibiting initiation, propagation, and the oxidative chain reaction itself. Additionally, the agents used so far in the prevention of migraine indeed show some anti-oxidative action. The antioxidants discussed in the present paper are increasingly more often used by migraine patients not only due to mild or even a lack of side effects but also because of their effectiveness (decreased frequency of migraine episodes or shortening of an episode duration). The present review provides a summary of the studies on nutraceuticals with antioxidative properties.
Collapse
Affiliation(s)
- Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powst. Wlkp. 72, 70-111 Szczecin, Poland; (I.B.-B.); (D.C.)
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powst. Wlkp. 72, 70-111 Szczecin, Poland;
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powst. Wlkp. 72, 70-111 Szczecin, Poland; (I.B.-B.); (D.C.)
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University in Szczecin, Powst. Wlkp. 72, 70-111 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powst. Wlkp. 72, 70-111 Szczecin, Poland; (I.B.-B.); (D.C.)
| |
Collapse
|