51
|
Kieslinger M, Swoboda A, Kramer N, Freund P, Pratscher B, Neubauer HA, Steinborn R, Wolfesberger B, Fuchs-Baumgartinger A, Moriggl R, Burgener IA. A Recurrent STAT5BN642H Driver Mutation in Feline Alimentary T Cell Lymphoma. Cancers (Basel) 2021; 13:5238. [PMID: 34680385 PMCID: PMC8534107 DOI: 10.3390/cancers13205238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/05/2021] [Indexed: 11/18/2022] Open
Abstract
Alimentary lymphomas arising from T cells are rare and aggressive malignancies in humans. In comparison, they represent the most common anatomical form of lymphoma in cats. Due to the low prevalence in humans, the underlying pathomechanism for these diseases is poorly characterised, limiting experimental analysis and therapeutic exploration. To date, activating mutations of the JAK/STAT core cancer pathway and particularly the STAT5B oncoprotein have been identified in human enteropathy-associated T cell lymphoma. Here, we describe a high homology of human and feline STAT3 and STAT5B proteins and strong conservation at the genomic level. Analysis of 42 samples of feline T cell alimentary lymphoma reveals broad activation of STAT3 and STAT5B. Screening for known activating mutations in STAT3 or STAT5B identifies the presence of the STAT5BN642H driver mutation in feline enteropathy-associated T cell lymphoma in 7 out of 42 (16.67%) samples in total. Regarding lymphoma subtypes, the majority of mutations with 5 out of 17 (29.41%) cases were found in feline enteropathy-associated lymphoma type II (EATL II). This identification of an oncogenic STAT5B driver mutation in felines recapitulates the genetic situation in the corresponding human disease, thereby establishing the cat as a potential new model for a rare and incurable human T cell disease.
Collapse
Affiliation(s)
- Matthias Kieslinger
- Department for Companion Animals and Horses, Division of Small Animal Internal Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (A.S.); (N.K.); (P.F.); (B.P.); (B.W.); (I.A.B.)
| | - Alexander Swoboda
- Department for Companion Animals and Horses, Division of Small Animal Internal Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (A.S.); (N.K.); (P.F.); (B.P.); (B.W.); (I.A.B.)
| | - Nina Kramer
- Department for Companion Animals and Horses, Division of Small Animal Internal Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (A.S.); (N.K.); (P.F.); (B.P.); (B.W.); (I.A.B.)
| | - Patricia Freund
- Department for Companion Animals and Horses, Division of Small Animal Internal Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (A.S.); (N.K.); (P.F.); (B.P.); (B.W.); (I.A.B.)
| | - Barbara Pratscher
- Department for Companion Animals and Horses, Division of Small Animal Internal Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (A.S.); (N.K.); (P.F.); (B.P.); (B.W.); (I.A.B.)
| | - Heidi A. Neubauer
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (H.A.N.); (R.M.)
| | - Ralf Steinborn
- Genomics Core Facility, VetCore, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| | - Birgitt Wolfesberger
- Department for Companion Animals and Horses, Division of Small Animal Internal Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (A.S.); (N.K.); (P.F.); (B.P.); (B.W.); (I.A.B.)
| | - Andrea Fuchs-Baumgartinger
- Department of Pathobiology, Institute of Pathology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| | - Richard Moriggl
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (H.A.N.); (R.M.)
| | - Iwan A. Burgener
- Department for Companion Animals and Horses, Division of Small Animal Internal Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (A.S.); (N.K.); (P.F.); (B.P.); (B.W.); (I.A.B.)
| |
Collapse
|
52
|
Klemm F, Möckl A, Salamero-Boix A, Alekseeva T, Schäffer A, Schulz M, Niesel K, Maas RR, Groth M, Elie BT, Bowman RL, Hegi ME, Daniel RT, Zeiner PS, Zinke J, Harter PN, Plate KH, Joyce JA, Sevenich L. Compensatory CSF2-driven macrophage activation promotes adaptive resistance to CSF1R inhibition in breast-to-brain metastasis. NATURE CANCER 2021; 2:1086-1101. [PMID: 35121879 DOI: 10.1038/s43018-021-00254-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/09/2021] [Indexed: 02/08/2023]
Abstract
Tumor microenvironment-targeted therapies are emerging as promising treatment options for different cancer types. Tumor-associated macrophages and microglia (TAMs) represent an abundant nonmalignant cell type in brain metastases and have been proposed to modulate metastatic colonization and outgrowth. Here we demonstrate that targeting TAMs at distinct stages of the metastatic cascade using an inhibitor of colony-stimulating factor 1 receptor (CSF1R), BLZ945, in murine breast-to-brain metastasis models leads to antitumor responses in prevention and intervention preclinical trials. However, in established brain metastases, compensatory CSF2Rb-STAT5-mediated pro-inflammatory TAM activation blunted the ultimate efficacy of CSF1R inhibition by inducing neuroinflammation gene signatures in association with wound repair responses that fostered tumor recurrence. Consequently, blockade of CSF1R combined with inhibition of STAT5 signaling via AC4-130 led to sustained tumor control, a normalization of microglial activation states and amelioration of neuronal damage.
Collapse
Affiliation(s)
- Florian Klemm
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Aylin Möckl
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Anna Salamero-Boix
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- Biological Sciences, Faculty 15, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Tijna Alekseeva
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Alexander Schäffer
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Michael Schulz
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- Biological Sciences, Faculty 15, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Katja Niesel
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Roeltje R Maas
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne, Switzerland
- Neuroscience Research Center, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Marie Groth
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benelita T Elie
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert L Bowman
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Monika E Hegi
- Neuroscience Research Center, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Roy T Daniel
- Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Pia S Zeiner
- Institute of Neurology (Edinger Institute), Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
- Dr. Senckenberg Institute of Neurooncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jenny Zinke
- Institute of Neurology (Edinger Institute), Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Patrick N Harter
- Institute of Neurology (Edinger Institute), Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Karl H Plate
- Institute of Neurology (Edinger Institute), Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, Lausanne, Switzerland.
| | - Lisa Sevenich
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
53
|
TET3 promotes AML growth and epigenetically regulates glucose metabolism and leukemic stem cell associated pathways. Leukemia 2021; 36:416-425. [PMID: 34462525 DOI: 10.1038/s41375-021-01390-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/07/2021] [Accepted: 08/17/2021] [Indexed: 11/09/2022]
Abstract
Acute myeloid leukemia (AML) is considered a poor prognosis malignancy where patients exhibit altered glucose metabolism and stem cell signatures that contribute to AML growth and maintenance. Here, we report that the epigenetic factor, Ten-Eleven Translocation 3 (TET3) dioxygenase is overexpressed in AML patients and functionally validated human leukemic stem cells (LSCs), is required for leukemic growth by virtue of its regulation of glucose metabolism in AML cells. In human AML cells, TET3 maintains 5-hydroxymethylcytosine (5hmC) epigenetic marks and expression of early myeloid progenitor program, critical glucose metabolism and STAT5A signaling pathway genes, which also positively correlate with TET3 expression in AML patients. Consequently, TET3 depletion impedes hexokinase activity and L-Lactate production in AML cells. Conversely, overexpression of TET3 in healthy human hematopoietic stem progenitors (HSPCs) upregulates the expression of glucose metabolism, STAT5A signaling and AML associated genes, and impairs normal HSPC lineage differentiation in vitro. Finally, TET3 depletion renders AML cells highly sensitive to blockage of the TET3 downstream pathways glycolysis and STAT5 signaling via the combination of 2-Deoxy-D-glucose and STAT5 inhibitor which preferentially targets AML cells but spares healthy CD34+ HSPCs.
Collapse
|
54
|
Moser B, Edtmayer S, Witalisz-Siepracka A, Stoiber D. The Ups and Downs of STAT Inhibition in Acute Myeloid Leukemia. Biomedicines 2021; 9:1051. [PMID: 34440253 PMCID: PMC8392322 DOI: 10.3390/biomedicines9081051] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 01/03/2023] Open
Abstract
Aberrant Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling is implicated in the pathogenesis of acute myeloid leukemia (AML), a highly heterogeneous hematopoietic malignancy. The management of AML is complex and despite impressive efforts into better understanding its underlying molecular mechanisms, survival rates in the elderly have not shown a substantial improvement over the past decades. This is particularly due to the heterogeneity of AML and the need for personalized approaches. Due to the crucial role of the deregulated JAK-STAT signaling in AML, selective targeting of the JAK-STAT pathway, particularly constitutively activated STAT3 and STAT5 and their associated upstream JAKs, is of great interest. This strategy has shown promising results in vitro and in vivo with several compounds having reached clinical trials. Here, we summarize recent FDA approvals and current potential clinically relevant inhibitors for AML patients targeting JAK and STAT proteins. This review underlines the need for detailed cytogenetic analysis and additional assessment of JAK-STAT pathway activation. It highlights the ongoing development of new JAK-STAT inhibitors with better disease specificity, which opens up new avenues for improved disease management.
Collapse
Affiliation(s)
| | | | | | - Dagmar Stoiber
- Department of Pharmacology, Physiology and Microbiology, Division Pharmacology, Karl Landsteiner University of Health Sciences, 3500 Krems, Austria; (B.M.); (S.E.); (A.W.-S.)
| |
Collapse
|
55
|
Seipel K, Graber C, Flückiger L, Bacher U, Pabst T. Rationale for a Combination Therapy with the STAT5 Inhibitor AC-4-130 and the MCL1 Inhibitor S63845 in the Treatment of FLT3-Mutated or TET2-Mutated Acute Myeloid Leukemia. Int J Mol Sci 2021; 22:ijms22158092. [PMID: 34360855 PMCID: PMC8347059 DOI: 10.3390/ijms22158092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022] Open
Abstract
The FMS-like tyrosine kinase 3 (FLT3) gene is mutated in one-third of patients with de novo acute myeloid leukemia (AML). Mutated FLT3 variants are constitutively active kinases signaling via AKT kinase, MAP kinases, and STAT5. FLT3 inhibitors have been approved for the treatment of FLT3-mutated AML. However, treatment response to FLT3 inhibitors may be short-lived, and resistance may emerge. Compounds targeting STAT5 may enhance and prolong effects of FLT3 inhibitors in this subset of patients with FLT3-mutated AML. Here STAT5-inhibitor AC-4-130, FLT3 inhibitor midostaurin (PKC412), BMI-1 inhibitor PTC596, MEK-inhibitor trametinib, MCL1-inhibitor S63845, and BCL-2 inhibitor venetoclax were assessed as single agents and in combination for their ability to induce apoptosis and cell death in leukemic cells grown in the absence or presence of bone marrow stroma. Synergistic effects on cell viability were detected in both FLT3-mutated and FLT3-wild-type AML cells treated with AC-4-130 in combination with the MCL1 inhibitor S63845. AML patient samples with a strong response to AC-4-130 and S63845 combination treatment were characterized by mutated FLT3 or mutated TET2 genes. Susceptibility of AML cells to AC-4-130, PTC596, trametinib, PKC412, and venetoclax was altered in the presence of HS-5 stroma. Only the MCL1 inhibitor S63845 induced cell death with equal efficacy in the absence or presence of bone marrow stroma. The combination of the STAT5-inhibitor AC-4-130 and the MCL1 inhibitor S63845 may be an effective treatment targeting FLT3-mutated or TET2-mutated AML.
Collapse
Affiliation(s)
- Katja Seipel
- Department for Biomedical Research, University of Bern, 2008 Bern, Switzerland; (C.G.); (L.F.)
- Correspondence: (K.S.); (T.P.); Tel.: +41-31-632-0934 (K.S.)
| | - Carolyn Graber
- Department for Biomedical Research, University of Bern, 2008 Bern, Switzerland; (C.G.); (L.F.)
| | - Laura Flückiger
- Department for Biomedical Research, University of Bern, 2008 Bern, Switzerland; (C.G.); (L.F.)
| | - Ulrike Bacher
- Department of Hematology, University Hospital Bern, 3010 Bern, Switzerland;
| | - Thomas Pabst
- Department of Medical Oncology, University Hospital Bern, 3010 Bern, Switzerland
- Correspondence: (K.S.); (T.P.); Tel.: +41-31-632-0934 (K.S.)
| |
Collapse
|
56
|
A STAT5B-CD9 axis determines self-renewal in hematopoietic and leukemic stem cells. Blood 2021; 138:2347-2359. [PMID: 34320169 DOI: 10.1182/blood.2021010980] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/21/2021] [Indexed: 11/20/2022] Open
Abstract
The transcription factors STAT5A and STAT5B are critical in hematopoiesis and leukemia. They are widely believed to have redundant functions but we describe a unique role for STAT5B in driving the self-renewal of hematopoietic and leukemic stem cells (HSCs/LSCs). We find STAT5B to be specifically activated in HSCs and LSCs, where it induces many genes associated with quiescence and self-renewal, including the surface marker CD9. Levels of CD9 represent a prognostic marker for patients with STAT5-driven leukemia and our findings suggest that anti-CD9 antibodies may be useful in their treatment to target and eliminate LSCs. We show that it is vital to consider STAT5A and STAT5B as distinct entities in normal and malignant hematopoiesis.
Collapse
|
57
|
Therapeutic delivery of siRNA with polymeric carriers to down-regulate STAT5A expression in high-risk B-cell acute lymphoblastic leukemia (B-ALL). PLoS One 2021; 16:e0251719. [PMID: 34157051 PMCID: PMC8219370 DOI: 10.1371/journal.pone.0251719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 05/02/2021] [Indexed: 11/19/2022] Open
Abstract
Overexpression and persistent activation of STAT5 play an important role in the development and progression of acute lymphoblastic leukemia (ALL), the most common pediatric cancer. Small interfering RNA (siRNA)-mediated downregulation of STAT5 represents a promising therapeutic approach for ALL to overcome the limitations of current treatment modalities such as high relapse rates and poor prognosis. However, to effectively transport siRNA molecules to target cells, development of potent carriers is of utmost importance to surpass hurdles of delivery. In this study, we investigated the use of lipopolymers as non-viral delivery systems derived from low molecular weight polyethylenimines (PEI) substituted with lauric acid (Lau), linoleic acid (LA) and stearic acid (StA) to deliver siRNA molecules to ALL cell lines and primary samples. Among the lipid-substituted polymers explored, Lau- and LA-substituted PEI displayed excellent siRNA delivery to SUP-B15 and RS4;11 cells. STAT5A gene expression was downregulated (36-92%) in SUP-B15 and (32%) in RS4;11 cells using the polymeric delivery systems, which consequently reduced cell growth and inhibited the formation of colonies in ALL cells. With regard to ALL primary cells, siRNA-mediated STAT5A gene silencing was observed in four of eight patient cells using our leading polymeric delivery system, 1.2PEI-Lau8, accompanied by the significant reduction in colony formation in three of eight patients. In both BCR-ABL positive and negative groups, three of five patients demonstrated marked cell growth inhibition in both MTT and trypan blue exclusion assays using 1.2PEI-Lau8/siRNA complexes in comparison with their control siRNA groups. Three patient samples did not show any positive results with our delivery systems. Differential therapeutic responses to siRNA therapy observed in different patients could result from variable genetic profiles and patient-to-patient variability in delivery. This study supports the potential of siRNA therapy and the designed lipopolymers as a delivery system in ALL therapy.
Collapse
|
58
|
Synergistic targeting of FLT3 mutations in AML via combined menin-MLL and FLT3 inhibition. Blood 2021; 136:2442-2456. [PMID: 32589720 DOI: 10.1182/blood.2020005037] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022] Open
Abstract
The interaction of menin (MEN1) and MLL (MLL1, KMT2A) is a dependency and provides a potential opportunity for treatment of NPM1-mutant (NPM1mut) and MLL-rearranged (MLL-r) leukemias. Concomitant activating driver mutations in the gene encoding the tyrosine kinase FLT3 occur in both leukemias and are particularly common in the NPM1mut subtype. In this study, transcriptional profiling after pharmacological inhibition of the menin-MLL complex revealed specific changes in gene expression, with downregulation of the MEIS1 transcription factor and its transcriptional target gene FLT3 being the most pronounced. Combining menin-MLL inhibition with specific small-molecule kinase inhibitors of FLT3 phosphorylation resulted in a significantly superior reduction of phosphorylated FLT3 and transcriptional suppression of genes downstream of FLT3 signaling. The drug combination induced synergistic inhibition of proliferation, as well as enhanced apoptosis, compared with single-drug treatment in models of human and murine NPM1mut and MLL-r leukemias harboring an FLT3 mutation. Primary acute myeloid leukemia (AML) cells harvested from patients with NPM1mutFLT3mut AML showed significantly better responses to combined menin and FLT3 inhibition than to single-drug or vehicle control treatment, whereas AML cells with wild-type NPM1, MLL, and FLT3 were not affected by either of the 2 drugs. In vivo treatment of leukemic animals with MLL-r FLT3mut leukemia reduced leukemia burden significantly and prolonged survival compared with results in the single-drug and vehicle control groups. Our data suggest that combined menin-MLL and FLT3 inhibition represents a novel and promising therapeutic strategy for patients with NPM1mut or MLL-r leukemia and concurrent FLT3 mutation.
Collapse
|
59
|
The EMT modulator SNAI1 contributes to AML pathogenesis via its interaction with LSD1. Blood 2021; 136:957-973. [PMID: 32369597 DOI: 10.1182/blood.2019002548] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 04/15/2020] [Indexed: 12/21/2022] Open
Abstract
Modulators of epithelial-to-mesenchymal transition (EMT) have recently emerged as novel players in the field of leukemia biology. The mechanisms by which EMT modulators contribute to leukemia pathogenesis, however, remain to be elucidated. Here we show that overexpression of SNAI1, a key modulator of EMT, is a pathologically relevant event in human acute myeloid leukemia (AML) that contributes to impaired differentiation, enhanced self-renewal, and proliferation of immature myeloid cells. We demonstrate that ectopic expression of Snai1 in hematopoietic cells predisposes mice to AML development. This effect is mediated by interaction with the histone demethylase KDM1A/LSD1. Our data shed new light on the role of SNAI1 in leukemia development and identify a novel mechanism of LSD1 corruption in cancer. This is particularly pertinent given the current interest surrounding the use of LSD1 inhibitors in the treatment of multiple different malignancies, including AML.
Collapse
|
60
|
Schoepf AM, Salcher S, Obexer P, Gust R. Tackling resistance in chronic myeloid leukemia: Novel cell death modulators with improved efficacy. Eur J Med Chem 2021; 216:113285. [PMID: 33662676 DOI: 10.1016/j.ejmech.2021.113285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
The development of resistance poses a serious problem in the therapy of cancer due to the necessity of a multiple-drug and unlimited treatment of affected patients. In chronic myeloid leukemia (CML), the introduction of imatinib has revolutionized the therapy. The persistence of an untreatable cancer stem cell pool and other resistance-causing factors, however, also impede the cure of this malignancy. New therapeutic approaches are therefore essential to overcome current treatment drawbacks. In this regard, an intervention in the STAT5 signaling pathway can significantly improve drug response, as this central signaling node induces the formation of highly resistant CML cells. In the present study, we continued the design of efficient chemosensitizers derived from the partial PPARγ agonist telmisartan. The developed 2-carbonitriles or 2-carboxymethyl esters showed improved potency in sensitizing K562-resistant cells to imatinib treatment, even at concentrations, which are considered patient-relevant. At 5 μM, for instance, 2d sensitized the cells in such a manner that the resistance was fully overcome and the recovered efficacy of imatinib resulted in >76% cell death. Importantly, all compounds were non-cytotoxic per se. A transactivation experiment showed that only the carbonitriles are partial agonists of PPARγ, which does not seem to be involved in the mode of action. Yet, immunoassays revealed a suppression of the STAT5 phosphorylation status by co-application of the most active derivatives with imatinib. This mechanism consequently resulted in reduced cell proliferation and induction of cell death in resistant CML cells.
Collapse
Affiliation(s)
- Anna M Schoepf
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI - Center for Molecular Biosciences Innsbruck, University of Innsbruck, CCB - Centrum for Chemistry and Biomedicine, Innrain 80-82, 6020, Innsbruck, Austria; Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, United Kingdom
| | - Stefan Salcher
- Tyrolean Cancer Research Institute, Innrain 66, 6020, Innsbruck, Austria; Department of Internal Medicine V, Medical University Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Petra Obexer
- Tyrolean Cancer Research Institute, Innrain 66, 6020, Innsbruck, Austria; Department of Pediatrics II, Medical University Innsbruck, Innrain 66, 6020, Innsbruck, Austria
| | - Ronald Gust
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI - Center for Molecular Biosciences Innsbruck, University of Innsbruck, CCB - Centrum for Chemistry and Biomedicine, Innrain 80-82, 6020, Innsbruck, Austria.
| |
Collapse
|
61
|
Polomski M, Brachet-Botineau M, Juen L, Viaud-Massuard MC, Gouilleux F, Prié G. Inhibitors Targeting STAT5 Signaling in Myeloid Leukemias: New Tetrahydroquinoline Derivatives with Improved Antileukemic Potential. ChemMedChem 2021; 16:1034-1046. [PMID: 33275308 DOI: 10.1002/cmdc.202000841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Indexed: 01/23/2023]
Abstract
Signal transducers and activators of transcription 5A and 5B (STAT5A and STAT5B) are two closely related STAT family members that are crucial downstream effectors of tyrosine kinase oncoproteins such as FLT3-ITD in acute myeloid leukemia (AML) and BCR-ABL in chronic myeloid leukemia (CML). We recently developed and reported the synthesis of a first molecule called 17 f that selectively inhibits STAT5 signaling in myeloid leukemia cells and overcomes their resistance to chemotherapeutic agents. To improve the antileukemic effect of 17 f, we synthesized ten analogs of this molecule and analyzed their impact on cell growth, survival, chemoresistance and STAT5 signaling. Two compounds, 7 a and 7 a', were identified as having similar or higher antileukemic effects in various AML and CML cell lines. Both molecules were found to be more effective than 17 f at inhibiting STAT5 activity/expression and suppressing the chemoresistance of CML.
Collapse
Affiliation(s)
- Marion Polomski
- Equipe IMT "Innovation Moléculaire et Thérapeutique" - GICC EA7501, Université de Tours-Labex SYNORG, Faculté de Pharmacie, 31 av. Monge, 37200, Tours, France
| | - Marie Brachet-Botineau
- Equipe LNOx "Niche Leucémique & Métabolisme Oxydatif" - GICC ERL 7001 CNRS, Université de Tours, Faculté de Médecine, Bâtiment Dutrochet, 10bis bvd Tonnellé, 37032, Tours, France
| | - Ludovic Juen
- Equipe IMT "Innovation Moléculaire et Thérapeutique" - GICC EA7501, Université de Tours-Labex SYNORG, Faculté de Pharmacie, 31 av. Monge, 37200, Tours, France
| | - Marie-Claude Viaud-Massuard
- Equipe IMT "Innovation Moléculaire et Thérapeutique" - GICC EA7501, Université de Tours-Labex SYNORG, Faculté de Pharmacie, 31 av. Monge, 37200, Tours, France
| | - Fabrice Gouilleux
- Equipe LNOx "Niche Leucémique & Métabolisme Oxydatif" - GICC ERL 7001 CNRS, Université de Tours, Faculté de Médecine, Bâtiment Dutrochet, 10bis bvd Tonnellé, 37032, Tours, France
| | - Gildas Prié
- Equipe IMT "Innovation Moléculaire et Thérapeutique" - GICC EA7501, Université de Tours-Labex SYNORG, Faculté de Pharmacie, 31 av. Monge, 37200, Tours, France
| |
Collapse
|
62
|
Symeonidou V, Ottersbach K. HOXA9/IRX1 expression pattern defines two subgroups of infant MLL-AF4-driven acute lymphoblastic leukemia. Exp Hematol 2021; 93:38-43.e5. [PMID: 33069783 PMCID: PMC7851112 DOI: 10.1016/j.exphem.2020.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 11/25/2022]
Abstract
Infant t(4;11) acute lymphoblastic leukemia is the most common leukemia in infant patients and has a highly aggressive nature. The patients have a dismal prognosis, which has not improved in more than a decade, suggesting that a better understanding of this disease is required. In the study described here, we analyzed two previously published RNA-sequencing data sets and gained further insights into the global transcriptomes of two known subgroups of this disease, which are characterized by the presence or absence of a homeobox gene expression signature. Specifically, we identified a remarkable mutually exclusive expression of the HOXA9/HOXA10 and IRX1 genes and termed the two subgroups iALL-HOXA9 and iALL-IRX1. This expression pattern is critical as it suggests that there is a fundamental difference between the two subgroups. Investigation of the transcriptomes of the two subgroups reveals a more aggressive nature for the iALL-IRX1 group, which is further supported by the fact that patients within this group have a worse prognosis and are also diagnosed at a younger age. This could be reflective of a developmentally earlier cell of origin for iALL-IRX1. Our analysis further uncovered critical differences between the two groups that may have an impact on treatment strategies. In summary, after a detailed investigation into the transcriptional profiles of iALL-HOXA9 and iALL-IRX1 patients, we highlight the importance of acknowledging that these two subgroups are different and that this is of clinical importance.
Collapse
Affiliation(s)
- Vasiliki Symeonidou
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Katrin Ottersbach
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
63
|
Abstract
PURPOSE OF REVIEW T cell prolymphocytic leukemia (T-PLL) is a rare mature T cell tumor. Available treatment options in this aggressive disease are largely inefficient and patient outcomes are highly dissatisfactory. Current therapeutic strategies mainly employ the CD52-antibody alemtuzumab as the most active single agent. However, sustained remissions after sole alemtuzumab-based induction are exceptions. Responses after available second-line strategies are even less durable. More profound disease control or rare curative outcomes can currently only be expected after a consolidating allogeneic hematopoietic stem cell transplantation (allo-HSCT) in best first response. However, only 30-50% of patients are eligible for this procedure. Major advances in the molecular characterization of T-PLL during recent years have stimulated translational studies on potential vulnerabilities of the T-PLL cell. We summarize here the current state of "classical" treatments and critically appraise novel (pre)clinical strategies. RECENT FINDINGS Alemtuzumab-induced first remissions, accomplished in ≈ 90% of patients, last at median ≈ 12 months. Series on allo-HSCT in T-PLL, although of very heterogeneous character, suggest a slight improvement in outcomes among transplanted patients within the past decade. Dual-action nucleosides such as bendamustine or cladribine show moderate clinical activity as single agents in the setting of relapsed or refractory disease. Induction of apoptosis via reactivation of p53 (e.g., by inhibitors of HDAC or MDM2) and targeting of its downstream pathways (i.e., BCL2 family antagonists, CDK inhibitors) are promising new approaches. Novel strategies also focus on inhibition of the JAK/STAT pathway with the first clinical data. Implementations of immune-checkpoint blockades or CAR-T cell therapy are at the stage of pre-clinical assessments of activity and feasibility. The recommended treatment strategy in T-PLL remains a successful induction by infusional alemtuzumab followed by a consolidating allo-HSCT in eligible patients. Nevertheless, long-term survivors after this "standard" comprise only 10-20%. The increasingly revealed molecular make-up of T-PLL and the tremendous expansion of approved targeted compounds in oncology represent a "never-before" opportunity to successfully tackle the voids in T-PLL. Approaches, e.g., those reinstating deficient cell death execution, show encouraging pre-clinical and first-in-human results in T-PLL, and urgently have to be transferred to systematic clinical testing.
Collapse
Affiliation(s)
- Till Braun
- Department I of Internal Medicine, Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, University of Cologne (UoC), 50937, Cologne, Germany.,Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), UoC, 50937, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), UoC, 50937, Cologne, Germany
| | - Jana von Jan
- Department I of Internal Medicine, Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, University of Cologne (UoC), 50937, Cologne, Germany.,Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), UoC, 50937, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), UoC, 50937, Cologne, Germany
| | - Linus Wahnschaffe
- Department I of Internal Medicine, Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, University of Cologne (UoC), 50937, Cologne, Germany.,Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), UoC, 50937, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), UoC, 50937, Cologne, Germany
| | - Marco Herling
- Department I of Internal Medicine, Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, University of Cologne (UoC), 50937, Cologne, Germany. .,Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), UoC, 50937, Cologne, Germany. .,Center for Molecular Medicine Cologne (CMMC), UoC, 50937, Cologne, Germany.
| |
Collapse
|
64
|
Marensi V, Keeshan KR, MacEwan DJ. Pharmacological impact of FLT3 mutations on receptor activity and responsiveness to tyrosine kinase inhibitors. Biochem Pharmacol 2020; 183:114348. [PMID: 33242449 DOI: 10.1016/j.bcp.2020.114348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 01/09/2023]
Abstract
Acute myelogenous leukaemia (AML) is an aggressive blood cancer characterized by the rapid proliferation of immature myeloid blast cells, resulting in a high mortality rate. The 5-year overall survival rate for AML patients is approximately 25%. Circa 35% of all patients carry a mutation in the FLT3 gene which have a poor prognosis. Targeting FLT3 receptor tyrosine kinase has become a treatment strategy in AML patients possessing FLT3 mutations. The most common mutations are internal tandem duplications (ITD) within exon 14 and a single nucleotide polymorphism (SNP) that leads to a point mutation in the D835 of the tyrosine kinase domain (TKD). Variations in the ITD sequence and the occurrence of other point mutations that lead to ligand-independent FLT3 receptor activation create difficulties in developing personalized therapeutic strategies to overcome observed mutation-driven drug resistance. Midostaurin and quizartinib are tyrosine kinase inhibitors (TKIs) with inhibitory efficacy against FLT3-ITD, but exhibit limited clinical impact. In this review, we focus on the structural aspects of the FLT3 receptor and correlate those mutations with receptor activation and the consequences for molecular and clinical responsiveness towards therapies targeting FLT3-ITD positive AML.
Collapse
Affiliation(s)
- Vanessa Marensi
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Karen R Keeshan
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - David J MacEwan
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
65
|
Prospects for Clinical Development of Stat5 Inhibitor IST5-002: High Transcriptomic Specificity in Prostate Cancer and Low Toxicity In Vivo. Cancers (Basel) 2020; 12:cancers12113412. [PMID: 33217941 PMCID: PMC7724566 DOI: 10.3390/cancers12113412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary There is an unmet medical need for new and potent pharmacological inhibitor drugs for the protein Stat5 that would be orally bioavailable for treatment of several different cancers. Previous work has established a critical role for Stat5 in molecular and clinical progression of prostate cancer to metastatic disease and in the pathogenesis of several leukemias and blood-based disorders. Our group has developed a potent pharmacological inhibitor for Stat5, IST5-002, which targets two critical steps in the activation process of Stat5 in cancer cells. In the present work, we evaluated the characteristics of IST5-002 for further development into a cancer drug. We evaluated whether IST5-002 affects the Stat5 targets genes in prostate cancer, defined more closely its mechanisms of action, and investigated its initial toxicity as the basis for further development in order to enable its entrance into clinical testing in patients. Our study supports optimization of IST5-002 compound for oral bioavailability and for clinical development. Abstract Stat5 is of significant interest in the search for new therapeutics for prostate cancer (PC) and hematopoietic disorders. We evaluated the transcriptomic specificity of the Stat5a/b inhibitor IST5-002 (IST5) in PC, defined more closely its mechanisms of action, and investigated the in vivo toxicity of IST5 for further optimization for clinical development. The transcriptomic specificity of IST5 vs. genetic Stat5 knockdown was evaluated by RNA-seq analysis, which showed high similarity with the Pearson correlation coefficient ranging from 0.98–0.99. The potency of IST5 vs. its derivative lacking the phosphate group in suppressing Stat5 was evaluated in two separate but complementary assays. The inhibitory activity of IST5 against kinases was investigated in cell-free assays followed by more focused evaluation in a cell-based assay. IST5 has no specific inhibitory activity against 54 kinases, while suppressing Stat5 phosphorylation and subsequent dimerization in PC cells. The phosphate group was not critical for the biological activity of IST5 in cells. The acute, sub-chronic and chronic toxicity studies of IST5 were carried out in mice. IST5 did not cause any significant toxic effects or changes in the blood profiles. The present work supports further optimization of IST5 for oral bioavailability for clinical development for therapies for solid tumors, hematological and myeloproliferative disorders.
Collapse
|
66
|
Novel Approaches to Target Mutant FLT3 Leukaemia. Cancers (Basel) 2020; 12:cancers12102806. [PMID: 33003568 PMCID: PMC7600363 DOI: 10.3390/cancers12102806] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Acute myeloid leukemia (AML) is a haematologic disease in which oncogenic mutations in the receptor tyrosine kinase FLT3 frequently lead to leukaemic development. Potent treatment of AML patients is still hampered by inefficient targeting of leukemic stem cells expressing constitutive active FLT3 mutants. This review summarizes the current knowledge about the regulation of FLT3 activity at cellular level and discusses therapeutical options to affect the tumor cells and the microenvironment to impair the haematological aberrations. Abstract Fms-like tyrosine kinase 3 (FLT3) is a member of the class III receptor tyrosine kinases (RTK) and is involved in cell survival, proliferation, and differentiation of haematopoietic progenitors of lymphoid and myeloid lineages. Oncogenic mutations in the FLT3 gene resulting in constitutively active FLT3 variants are frequently found in acute myeloid leukaemia (AML) patients and correlate with patient’s poor survival. Targeting FLT3 mutant leukaemic stem cells (LSC) is a key to efficient treatment of patients with relapsed/refractory AML. It is therefore essential to understand how LSC escape current therapies in order to develop novel therapeutic strategies. Here, we summarize the current knowledge on mechanisms of FLT3 activity regulation and its cellular consequences. Furthermore, we discuss how aberrant FLT3 signalling cooperates with other oncogenic lesions and the microenvironment to drive haematopoietic malignancies and how this can be harnessed for therapeutical purposes.
Collapse
|
67
|
Darici S, Alkhaldi H, Horne G, Jørgensen HG, Marmiroli S, Huang X. Targeting PI3K/Akt/mTOR in AML: Rationale and Clinical Evidence. J Clin Med 2020; 9:E2934. [PMID: 32932888 PMCID: PMC7563273 DOI: 10.3390/jcm9092934] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous hematopoietic malignancy characterized by excessive proliferation and accumulation of immature myeloid blasts in the bone marrow. AML has a very poor 5-year survival rate of just 16% in the UK; hence, more efficacious, tolerable, and targeted therapy is required. Persistent leukemia stem cell (LSC) populations underlie patient relapse and development of resistance to therapy. Identification of critical oncogenic signaling pathways in AML LSC may provide new avenues for novel therapeutic strategies. The phosphatidylinositol-3-kinase (PI3K)/Akt and the mammalian target of rapamycin (mTOR) signaling pathway, is often hyperactivated in AML, required to sustain the oncogenic potential of LSCs. Growing evidence suggests that targeting key components of this pathway may represent an effective treatment to kill AML LSCs. Despite this, accruing significant body of scientific knowledge, PI3K/Akt/mTOR inhibitors have not translated into clinical practice. In this article, we review the laboratory-based evidence of the critical role of PI3K/Akt/mTOR pathway in AML, and outcomes from current clinical studies using PI3K/Akt/mTOR inhibitors. Based on these results, we discuss the putative mechanisms of resistance to PI3K/Akt/mTOR inhibition, offering rationale for potential candidate combination therapies incorporating PI3K/Akt/mTOR inhibitors for precision medicine in AML.
Collapse
Affiliation(s)
- Salihanur Darici
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Hazem Alkhaldi
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Gillian Horne
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Heather G. Jørgensen
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Sandra Marmiroli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Xu Huang
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| |
Collapse
|
68
|
Involvement of STAT5 in Oncogenesis. Biomedicines 2020; 8:biomedicines8090316. [PMID: 32872372 PMCID: PMC7555335 DOI: 10.3390/biomedicines8090316] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 12/24/2022] Open
Abstract
Signal transducer and activator of transcription (STAT) proteins, and in particular STAT3, have been established as heavily implicated in cancer. Recently, the involvement of STAT5 signalling in the pathology of cancer has been shown to be of increasing importance. STAT5 plays a crucial role in the development of the mammary gland and the homeostasis of the immune system. However, in various cancers, aberrant STAT5 signalling promotes the expression of target genes, such as cyclin D, Bcl-2 and MMP-2, that result in increased cell proliferation, survival and metastasis. To target constitutive STAT5 signalling in cancers, there are several STAT5 inhibitors that can prevent STAT5 phosphorylation, dimerisation, or its transcriptional activity. Tyrosine kinase inhibitors (TKIs) that target molecules upstream of STAT5 could also be utilised. Consequently, since STAT5 contributes to tumour aggressiveness and cancer progression, inhibiting STAT5 constitutive activation in cancers that rely on its signalling makes for a promising targeted treatment option.
Collapse
|
69
|
Park M, Vaikari VP, Lam AT, Zhang Y, MacKay JA, Alachkar H. Anti-FLT3 nanoparticles for acute myeloid leukemia: Preclinical pharmacology and pharmacokinetics. J Control Release 2020; 324:317-329. [PMID: 32428520 PMCID: PMC7473778 DOI: 10.1016/j.jconrel.2020.05.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/20/2022]
Abstract
FLT3 receptor is an important therapeutic target in acute myeloid leukemia due to high incidence of mutations associated with poor clinical outcome. Targeted therapies against the FLT3 receptor, including small-molecule FLT3 tyrosine kinase inhibitors (TKIs) and anti-FLT3 antibodies, have demonstrated promising preclinical and even clinical efficacy. Yet, even with the current FDA approval for two FLT3 inhibitors, these modalities were unable to cure AML or significantly extend the lives of patients with a common mutation called FLT3-ITD. While FLT3 is a viable target, the approaches to inhibit its activity were inadequate. To develop a new modality for targeting FLT3, our team engineered an α-FLT3-A192 fusion protein composed of a single chain variable fragment antibody conjugated with an elastin-like polypeptide. These fusion proteins assemble into multi-valent nanoparticles with excellent stability and pharmacokinetic properties as well as in vitro and in vivo pharmacological activity in cellular and xenograft murine models of AML. In conclusion, α-FLT3-A192 fusions appear to be a viable new modality for targeting FLT3 in AML and warrant further preclinical development to bring it into the clinic.
Collapse
Affiliation(s)
- Mincheol Park
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, United States
| | - Vijaya Pooja Vaikari
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, United States
| | - Albert T Lam
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, United States
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, United States; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, United States; Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, United States; Research Center for Liver Diseases, University of Southern California, Los Angeles, CA 90089, United States
| | - John Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, United States; Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, United States; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, United States
| | - Houda Alachkar
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, United States; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, United States.
| |
Collapse
|
70
|
Strubl S, Torres JA, Spindt AK, Pellegrini H, Liebau MC, Weimbs T. STAT signaling in polycystic kidney disease. Cell Signal 2020; 72:109639. [PMID: 32325185 PMCID: PMC7269822 DOI: 10.1016/j.cellsig.2020.109639] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
The most common form of polycystic kidney disease (PKD) in humans is caused by mutations in the PKD1 gene coding for polycystin1 (PC1). Among the many identified or proposed functions of PC1 is its ability to regulate the activity of transcription factors of the STAT family. Most STAT proteins that have been investigated were found to be aberrantly activated in kidneys in PKD, and some have been shown to be drivers of disease progression. In this review, we focus on the role of signal transducer and activator of transcription (STAT) signaling pathways in various renal cell types in healthy kidneys as compared to polycystic kidneys, on the mechanisms of STAT regulation by PC1 and other factors, and on the possibility to target STAT signaling for PKD therapy.
Collapse
Affiliation(s)
- Sebastian Strubl
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA; Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jacob A Torres
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Alison K Spindt
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Hannah Pellegrini
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Max C Liebau
- Department of Pediatrics and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Weimbs
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA.
| |
Collapse
|
71
|
Attarha S, Reithmeier A, Busker S, Desroses M, Page BDG. Validating Signal Transducer and Activator of Transcription (STAT) Protein-Inhibitor Interactions Using Biochemical and Cellular Thermal Shift Assays. ACS Chem Biol 2020; 15:1842-1851. [PMID: 32412740 DOI: 10.1021/acschembio.0c00046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Signal transducer and activator of transcription (STAT) proteins have important biological functions; however, deregulation of STAT signaling is a driving force behind the onset and progression of inflammatory diseases and cancer. While their biological roles suggest that STAT proteins would be valuable targets for developing therapeutic agents, STAT proteins are notoriously difficult to inhibit using small drug-like molecules, as they do not have a distinct inhibitor binding site. Despite this, a multitude of small-molecule STAT inhibitors have been proposed, primarily focusing on inhibiting STAT3 protein to generate novel cancer therapies. Demonstrating that inhibitors bind to their targets in cells has historically been a very challenging task. With the advent of modern target engagement techniques, such as the cellular thermal shift assay (CETSA), interactions between experimental compounds and their biological targets can be detected with relative ease. To investigate interactions between STAT proteins and inhibitors, we herein developed STAT CETSAs and evaluated known STAT3 inhibitors for their ability to engage STAT proteins in biological settings. While potent binding was detected between STAT proteins and peptidic STAT inhibitors, small-molecule inhibitors elicited variable responses, most of which failed to stabilize STAT3 proteins in cells and cell lysates. The described STAT thermal stability assays represent valuable tools for evaluating proposed STAT inhibitors.
Collapse
Affiliation(s)
- Sanaz Attarha
- Department of Oncology and Pathology, Karolinska Institutet, 171 65, Karolinska vägen A2:07, Solna 171 64, Sweden
- Science for Life Laboratory, Tomtebodavägen 23A, Alpha Floor 5, Solna 171 65, Sweden
| | - Anja Reithmeier
- Science for Life Laboratory, Tomtebodavägen 23A, Alpha Floor 5, Solna 171 65, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 9, Biomedicum A3, Solna 171 65, Sweden
- Chemical Biology Consortium Sweden (CBCS), Tomtebodavägen 23A, Alpha Floor 5, Solna 171 65, Sweden
| | - Sander Busker
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 9, Biomedicum A3, Solna 171 65, Sweden
| | - Matthieu Desroses
- Department of Oncology and Pathology, Karolinska Institutet, 171 65, Karolinska vägen A2:07, Solna 171 64, Sweden
- Science for Life Laboratory, Tomtebodavägen 23A, Alpha Floor 5, Solna 171 65, Sweden
| | - Brent D. G. Page
- Department of Oncology and Pathology, Karolinska Institutet, 171 65, Karolinska vägen A2:07, Solna 171 64, Sweden
- Science for Life Laboratory, Tomtebodavägen 23A, Alpha Floor 5, Solna 171 65, Sweden
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
72
|
Schmidt-Arras D, Böhmer FD. Mislocalisation of Activated Receptor Tyrosine Kinases - Challenges for Cancer Therapy. Trends Mol Med 2020; 26:833-847. [PMID: 32593582 DOI: 10.1016/j.molmed.2020.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/20/2022]
Abstract
Activating mutations in genes encoding receptor tyrosine kinases (RTKs) mediate proliferation, cell migration, and cell survival, and are therefore important drivers of oncogenesis. Numerous targeted cancer therapies are directed against activated RTKs, including small compound inhibitors, and immunotherapies. It has recently been discovered that not only certain RTK fusion proteins, but also many full-length RTKs harbouring activating mutations, notably RTKs of the class III family, are to a large extent mislocalised in intracellular membranes. Active kinases in these locations cause aberrant activation of signalling pathways. Moreover, low levels of activated RTKs at the cell surface present an obstacle for immunotherapy. We outline here why understanding of the mechanisms underlying mislocalisation will help in improving existing and developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Dirk Schmidt-Arras
- Christian-Albrechts-University Kiel, Institute of Biochemistry, 24118 Kiel, Germany.
| | - Frank-D Böhmer
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, Jena, Germany
| |
Collapse
|
73
|
Long L, Assaraf YG, Lei ZN, Peng H, Yang L, Chen ZS, Ren S. Genetic biomarkers of drug resistance: A compass of prognosis and targeted therapy in acute myeloid leukemia. Drug Resist Updat 2020; 52:100703. [PMID: 32599434 DOI: 10.1016/j.drup.2020.100703] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia (AML) is a highly aggressive hematological malignancy with complex heterogenous genetic and biological nature. Thus, prognostic prediction and targeted therapies might contribute to better chemotherapeutic response. However, the emergence of multidrug resistance (MDR) markedly impedes chemotherapeutic efficacy and dictates poor prognosis. Therefore, prior evaluation of chemoresistance is of great importance in therapeutic decision making and prognosis. In recent years, preclinical studies on chemoresistance have unveiled a compendium of underlying molecular basis, which facilitated the development of targetable small molecules. Furthermore, routing genomic sequencing has identified various genomic aberrations driving cellular response during the course of therapeutic treatment through adaptive mechanisms of drug resistance, some of which serve as prognostic biomarkers in risk stratification. However, the underlying mechanisms of MDR have challenged the certainty of the prognostic significance of some mutations. This review aims to provide a comprehensive understanding of the role of MDR in therapeutic decision making and prognostic prediction in AML. We present an updated genetic landscape of the predominant mechanisms of drug resistance with novel targeted therapies and potential prognostic biomarkers from preclinical and clinical chemoresistance studies in AML. We particularly highlight the unfolded protein response (UPR) that has emerged as a critical regulatory pathway in chemoresistance of AML with promising therapeutic horizon. Futhermore, we outline the most prevalent mutations associated with mechanisms of chemoresistance and delineate the future directions to improve the current prognostic tools. The molecular analysis of chemoresistance integrated with genetic profiling will facilitate decision making towards personalized prognostic prediction and enhanced therapeutic efficacy.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Disease-Free Survival
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Multiple/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Molecular Targeted Therapy/methods
- Mutation
- Neoplasm Recurrence, Local/epidemiology
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/prevention & control
- Precision Medicine/methods
- Prognosis
- Unfolded Protein Response/genetics
Collapse
Affiliation(s)
- Luyao Long
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China; Graduate School, Chinese Academy of Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zi-Ning Lei
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA; School of Public Health, Guangzhou Medical University, Guangzhou, P.R. China
| | - Hongwei Peng
- Department of Pharmacy, First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Lin Yang
- Department of Hematology, the Second Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Simei Ren
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China; Graduate School, Chinese Academy of Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China.
| |
Collapse
|
74
|
Hadzijusufovic E, Keller A, Berger D, Greiner G, Wingelhofer B, Witzeneder N, Ivanov D, Pecnard E, Nivarthi H, Schur FKM, Filik Y, Kornauth C, Neubauer HA, Müllauer L, Tin G, Park J, de Araujo ED, Gunning PT, Hoermann G, Gouilleux F, Kralovics R, Moriggl R, Valent P. STAT5 is Expressed in CD34 +/CD38 - Stem Cells and Serves as a Potential Molecular Target in Ph-Negative Myeloproliferative Neoplasms. Cancers (Basel) 2020; 12:E1021. [PMID: 32326377 PMCID: PMC7225958 DOI: 10.3390/cancers12041021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
Janus kinase 2 (JAK2) and signal transducer and activator of transcription-5 (STAT5) play a key role in the pathogenesis of myeloproliferative neoplasms (MPN). In most patients, JAK2 V617F or CALR mutations are found and lead to activation of various downstream signaling cascades and molecules, including STAT5. We examined the presence and distribution of phosphorylated (p) STAT5 in neoplastic cells in patients with MPN, including polycythemia vera (PV, n = 10), essential thrombocythemia (ET, n = 15) and primary myelofibrosis (PMF, n = 9), and in the JAK2 V617F-positive cell lines HEL and SET-2. As assessed by immunohistochemistry, MPN cells displayed pSTAT5 in all patients examined. Phosphorylated STAT5 was also detected in putative CD34+/CD38- MPN stem cells (MPN-SC) by flow cytometry. Immunostaining experiments and Western blotting demonstrated pSTAT5 expression in both the cytoplasmic and nuclear compartment of MPN cells. Confirming previous studies, we also found that JAK2-targeting drugs counteract the expression of pSTAT5 and growth in HEL and SET-2 cells. Growth-inhibition of MPN cells was also induced by the STAT5-targeting drugs piceatannol, pimozide, AC-3-019 and AC-4-130. Together, we show that CD34+/CD38- MPN-SC express pSTAT5 and that pSTAT5 is expressed in the nuclear and cytoplasmic compartment of MPN cells. Whether direct targeting of pSTAT5 in MPN-SC is efficacious in MPN patients remains unknown.
Collapse
Affiliation(s)
- Emir Hadzijusufovic
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (D.B.); (D.I.); (Y.F.); (P.V.)
- Department/Hospital for Companion Animals and Horses, University Hospital for Small Animals, Internal Medicine Small Animals, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (A.K.); (F.K.M.S.); (C.K.)
| | - Alexandra Keller
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (A.K.); (F.K.M.S.); (C.K.)
| | - Daniela Berger
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (D.B.); (D.I.); (Y.F.); (P.V.)
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (A.K.); (F.K.M.S.); (C.K.)
| | - Georg Greiner
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria; (G.G.); (N.W.); (G.H.)
| | - Bettina Wingelhofer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (B.W.); (H.A.N.); (R.M.)
| | - Nadine Witzeneder
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria; (G.G.); (N.W.); (G.H.)
| | - Daniel Ivanov
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (D.B.); (D.I.); (Y.F.); (P.V.)
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (A.K.); (F.K.M.S.); (C.K.)
| | - Emmanuel Pecnard
- INSERM, ERI-12, Faculté de Pharmacie, Université de Picardie Jules Verne, 80000 Amiens, France; (E.P.); (F.G.)
| | - Harini Nivarthi
- Research Center for Molecular Medicine (CeMM), 1090 Vienna, Austria; (H.N.); (R.K.)
| | - Florian K. M. Schur
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (A.K.); (F.K.M.S.); (C.K.)
| | - Yüksel Filik
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (D.B.); (D.I.); (Y.F.); (P.V.)
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (A.K.); (F.K.M.S.); (C.K.)
| | - Christoph Kornauth
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria; (A.K.); (F.K.M.S.); (C.K.)
| | - Heidi A. Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (B.W.); (H.A.N.); (R.M.)
| | - Leonhard Müllauer
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Gary Tin
- Department of Chemistry, University of Toronto, Toronto, ON M5S 1A1, Canada; (G.T.); (J.P.); (E.D.d.A.); (P.T.G.)
| | - Jisung Park
- Department of Chemistry, University of Toronto, Toronto, ON M5S 1A1, Canada; (G.T.); (J.P.); (E.D.d.A.); (P.T.G.)
| | - Elvin D. de Araujo
- Department of Chemistry, University of Toronto, Toronto, ON M5S 1A1, Canada; (G.T.); (J.P.); (E.D.d.A.); (P.T.G.)
| | - Patrick T. Gunning
- Department of Chemistry, University of Toronto, Toronto, ON M5S 1A1, Canada; (G.T.); (J.P.); (E.D.d.A.); (P.T.G.)
| | - Gregor Hoermann
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria; (G.G.); (N.W.); (G.H.)
| | - Fabrice Gouilleux
- INSERM, ERI-12, Faculté de Pharmacie, Université de Picardie Jules Verne, 80000 Amiens, France; (E.P.); (F.G.)
- CNRS UMR 6239, GICC, Faculté de Médecine, Université François Rabelais, 37020 Tours, France
| | - Robert Kralovics
- Research Center for Molecular Medicine (CeMM), 1090 Vienna, Austria; (H.N.); (R.K.)
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (B.W.); (H.A.N.); (R.M.)
| | - Peter Valent
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (D.B.); (D.I.); (Y.F.); (P.V.)
- Department/Hospital for Companion Animals and Horses, University Hospital for Small Animals, Internal Medicine Small Animals, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
75
|
Zhang R, Huo CH. Long Noncoding RNA SOCS2-AS Promotes Leukemogenesis in FLT3-ITD+ Acute Myeloid Leukemia Through miRNA-221. Onco Targets Ther 2020; 13:2925-2934. [PMID: 32308425 PMCID: PMC7148164 DOI: 10.2147/ott.s222734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 03/15/2020] [Indexed: 12/13/2022] Open
Abstract
Background LncRNAs play an important role in tumorigenesis and development in tumors, but the function of lncRNA SOCS2-AS in acute myeloid leukemia (AML) is unknown. Materials and Methods In the present study, we used RT-PCR to detect the expression of SOCS2-AS in FLT3-ITD+, FLT3-ITD- AML patients and different AML cell lines. The colony formation and CCK-8 assay were performed to analyze the proliferation ability, and the flow cytometry was performed to analyze the capacity of apoptosis in Molm-13 and MV4-11 cells. The Western blot was applied to detect the expression of STAT5 and p-STAT5. The RNA pull-down and luciferase activity were used to investigate the interaction between SOCS2-AS and miR-221. Results The results indicate that SOCS2-AS shows overexpression in FLT3-ITD+ AML patients compared to FLT3-ITD- AML patients. Si-SOCS2-AS can inhibit the proliferation, boost the apoptosis and induce the cycle arrest in Molm-13 cells, and SOCS2-AS overexpression promotes proliferation and colony formation in MV4-11 cells. The miR-221 shows overexpression in FLT3-ITD+ AML patients compared to FLT3-ITD- AML patients. And the expression level of miR-221 and SOCS2-AS shows negative correlation in FLT3-ITD+ AML patients. Functionally, SOCS2-AS could be interacted with miR-221 in AML cells. After SOCS2-AS knockdown, the phosphorylation level of STAT5 was significantly decreased. Moreover, miR-221 inhibitor can rescue the viability in cells after si-SOCS2-AS transfection. And it is stated that SOCS2-AS regulates the STAT5 signal transduction pathway with sponging miR-221. Conclusion In conclusion, this study confirms the molecular mechanism of SOCS2-AS in AML by targeting the miR-221/STAT5 signaling pathway. This indicates SOCS2-AS may serve as a potential therapeutic target for the treatment of AML.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Hematology, Xi'an Gaoxin Hospital, Xi'an 710065, People's Republic of China
| | - Cai-Hong Huo
- Department of Blood Transfusion, Yulin No.2 Hospital, Yulin 719000, People's Republic of China
| |
Collapse
|
76
|
Solum E, Hansen TV, Aesoy R, Herfindal L. New CDK8 inhibitors as potential anti-leukemic agents - Design, synthesis and biological evaluation. Bioorg Med Chem 2020; 28:115461. [PMID: 32245563 DOI: 10.1016/j.bmc.2020.115461] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/17/2020] [Accepted: 03/22/2020] [Indexed: 12/19/2022]
Abstract
Cyclin-dependent kinase 8 (CDK8) plays a vital role in regulating cell transcription either through its association with the mediator complex or by the phosphorylation of transcription factors. CDK8-mediated activation of oncogenes has proved to be important in a variety of cancer types including hematological malignancies. We have designed and synthesized a series of new synthetic steroids. The compounds were evaluated as CDK8 inhibitors in vitro. The three most potent compounds exhibit Kd-values towards CDK8 in the low nanomolar range (3.5-18 nM). Furthermore, the compounds displayed selectivity for CDK8 in a panel of 465 different kinases. The cell studies indicated a selectivity to kill AML-cancer cell lines compared to normal cell lines.
Collapse
Affiliation(s)
- Eirik Solum
- Faculty of Health Sciences, Nord University, 7801 Namsos, Norway; University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway.
| | | | - Reidun Aesoy
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, PO Box 7800, N-5007 Bergen, Norway
| | - Lars Herfindal
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, PO Box 7800, N-5007 Bergen, Norway
| |
Collapse
|
77
|
Shi X, Pan S, Li Y, Ma W, Wang H, Xu C, Li L. Xanthoplanine attenuates macrophage polarization towards M1 and inflammation response via disruption of CrkL-STAT5 complex. Arch Biochem Biophys 2020; 683:108325. [PMID: 32142888 DOI: 10.1016/j.abb.2020.108325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 02/07/2023]
Abstract
Monocyte infiltration and macrophage polarization are widely considered as pivotal steps for the initiation and progression of atherosclerosis. Previous studies suggested that zanthoxylum piperitum had strong analgesic and anti-inflammatory effects. However, it remains unclear whether zanthoxylum piperitum inhibits inflammation via macrophage function. In the present study, we investigated the effects of xanthoplanine (the total alkaloid extract of zanthoxylum piperitum) on macrophage function. CCK-8 kit was performed to determine cell viability and the preferred concentration of xanthoplanine. We assayed the effects of xanthoplanine on markers of macrophage polarization and inflammation via quantitative PCR and enzyme-linked immunosorbent assay, and measured the production of reactive oxygen species (ROS) by flow cytometry. Immunoblots, co-immunoprecipitation, immunofluorescence and Luciferase activity were performed to investigate the molecular mechanism of STAT signaling pathway in response to xanthoplanine. We found that xanthoplanine (50 and 100 μM) significantly reduced M1 polarization and promoted M2 polarization. The contents of inflammatory cytokines measured by ELISA were markedly decreased in macrophages pretreated with xanthoplanine, compared with those induced by LPS and IFN-γ. In parallel, xanthoplanine alleviated the production of ROS in macrophages induced by LPS and IFN-γ. Moreover, xanthoplanine alleviated STAT5 phosphorylation and blocked STAT5 nuclear translocation without alterations in CrkL expression, subsequently interrupting the interaction between p-STAT5 and CrkL. Likewise, xanthoplanine prominently attenuated the transcription activity of STAT5 induced by LPS and IFN-γ but did not affect the transcription activity of STAT1 and STAT3. Xanthoplanine attenuated M1 phenotypic switch and macrophage inflammation via blocking the formation of CrkL-STAT5 complex.
Collapse
Affiliation(s)
- Xiaofeng Shi
- Department of Emergency, Tianjin First Center Hospital, Tianjin, 300192, People's Republic of China
| | - Shuang Pan
- Department of Physiology, School of Basic Medicine, Jinzhou Medicine University, Jinzhou, Liaoning, 121000, People's Republic of China
| | - Yongqi Li
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 3050005, Japan
| | - Wei Ma
- Department of Anatomy, Dalian Medical University, Dalian, Liaoning, 116044, People's Republic of China
| | - Han Wang
- Department of Vascular Surgery, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, 116021, People's Republic of China
| | - Caiming Xu
- Department of General Surgery, The First Affiliated Hospital, Dalian Medical University, Dalian, 116011, Liaoning Province, China
| | - Lei Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116027, People's Republic of China.
| |
Collapse
|
78
|
Hosseini A, Gharibi T, Marofi F, Javadian M, Babaloo Z, Baradaran B. Janus kinase inhibitors: A therapeutic strategy for cancer and autoimmune diseases. J Cell Physiol 2020; 235:5903-5924. [DOI: 10.1002/jcp.29593] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Arezoo Hosseini
- Immunology Research CenterTabriz University of Medical SciencesTabriz Iran
- Department of Immunology, School of MedicineTabriz University of Medical SciencesTabriz Iran
- Student Research CommitteeTabriz University of Medical SciencesTabriz Iran
- Aging Research InstituteTabriz University of Medical SciencesTabriz Iran
| | - Tohid Gharibi
- Immunology Research CenterTabriz University of Medical SciencesTabriz Iran
- Department of Immunology, School of MedicineTabriz University of Medical SciencesTabriz Iran
- Student Research CommitteeTabriz University of Medical SciencesTabriz Iran
- Aging Research InstituteTabriz University of Medical SciencesTabriz Iran
| | - Faroogh Marofi
- Department of Immunology, School of MedicineTabriz University of Medical SciencesTabriz Iran
| | - Mahsa Javadian
- Department of Immunology, School of MedicineTabriz University of Medical SciencesTabriz Iran
| | - Zohreh Babaloo
- Immunology Research CenterTabriz University of Medical SciencesTabriz Iran
- Department of Immunology, School of MedicineTabriz University of Medical SciencesTabriz Iran
| | - Behzad Baradaran
- Immunology Research CenterTabriz University of Medical SciencesTabriz Iran
- Department of Immunology, School of MedicineTabriz University of Medical SciencesTabriz Iran
| |
Collapse
|
79
|
Petri L, Ábrányi-Balogh P, Varga PR, Imre T, Keserű GM. Comparative reactivity analysis of small-molecule thiol surrogates. Bioorg Med Chem 2020; 28:115357. [PMID: 32081630 DOI: 10.1016/j.bmc.2020.115357] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/21/2020] [Accepted: 01/30/2020] [Indexed: 12/12/2022]
Abstract
Targeted covalent inhibitors represent an increasingly popular approach to modulate challenging drug targets. Since covalent and non-covalent interactions are both contributing to the affinity of these compounds, evaluation of their reactivity is a key-step to find feasible warheads. There are well-established HPLC- and NMR-based kinetic assays to tackle this task, however, they use a variety of cysteine-surrogates including cysteamine, cysteine or acetyl-cysteine and GSH. The diverse nature of the thiol sources often makes the results incomparable that prevents compiling a comprehensive knowledge base for the design of covalent inhibitors. To evaluate kinetic measurements from different sources we performed a comparative analysis of the different thiol surrogates against a designed set of electrophilic fragments equipped with a range of warheads. Our study included seven different thiol models and 13 warheads resulting in a reactivity matrix analysed thoroughly. We found that the reactivity profile might be significantly different for various thiol models. Comparing the different warheads, we concluded that - in addition to its human relevance - glutathione (GSH) provided the best estimate of reactivity with highest number of true positives identified.
Collapse
Affiliation(s)
- László Petri
- Research Centre for Natural Sciences, Medicinal Chemistry Research Group, H-1117 Budapest, Magyar tudósok krt 2, Hungary
| | - Péter Ábrányi-Balogh
- Research Centre for Natural Sciences, Medicinal Chemistry Research Group, H-1117 Budapest, Magyar tudósok krt 2, Hungary
| | - Petra Regina Varga
- Research Centre for Natural Sciences, Medicinal Chemistry Research Group, H-1117 Budapest, Magyar tudósok krt 2, Hungary
| | - Tímea Imre
- Research Centre for Natural Sciences, MS Metabolomics Research Group, H-1117 Budapest, Magyar tudósok krt 2, Hungary
| | - György Miklós Keserű
- Research Centre for Natural Sciences, Medicinal Chemistry Research Group, H-1117 Budapest, Magyar tudósok krt 2, Hungary.
| |
Collapse
|
80
|
Sueur G, Boutet A, Gotanègre M, Mansat-De Mas V, Besson A, Manenti S, Bertoli S. STAT5-dependent regulation of CDC25A by miR-16 controls proliferation and differentiation in FLT3-ITD acute myeloid leukemia. Sci Rep 2020; 10:1906. [PMID: 32024878 PMCID: PMC7002454 DOI: 10.1038/s41598-020-58651-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/14/2020] [Indexed: 01/10/2023] Open
Abstract
We recently identified the CDC25A phosphatase as a key actor in proliferation and differentiation in acute myeloid leukemia expressing the FLT3-ITD mutation. In this paper we demonstrate that CDC25A level is controlled by a complex STAT5/miR-16 transcription and translation pathway working downstream of this receptor. First, we established by CHIP analysis that STAT5 is directly involved in FLT3-ITD-dependent CDC25A gene transcription. In addition, we determined that miR-16 expression is repressed by FLT3-ITD activity, and that STAT5 participates in this repression. In accordance with these results, miR-16 expression was significantly reduced in a panel of AML primary samples carrying the FLT3-ITD mutation when compared with FLT3wt cells. The expression of a miR-16 mimic reduced CDC25A protein and mRNA levels, and RNA interference-mediated down modulation of miR-16 restored CDC25A expression in response to FLT3-ITD inhibition. Finally, decreasing miR-16 expression partially restored the proliferation of cells treated with the FLT3 inhibitor AC220, while the expression of miR-16 mimic stopped this proliferation and induced monocytic differentiation of AML cells. In summary, we identified a FLT3-ITD/STAT5/miR-16/CDC25A axis essential for AML cell proliferation and differentiation.
Collapse
Affiliation(s)
- Gabrielle Sueur
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France.,Equipe labellisée La Ligue contre le Cancer 2016, Toulouse, France
| | - Alison Boutet
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France.,Equipe labellisée La Ligue contre le Cancer 2016, Toulouse, France
| | - Mathilde Gotanègre
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France
| | - Véronique Mansat-De Mas
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France.,Equipe labellisée La Ligue contre le Cancer 2016, Toulouse, France.,Laboratoire d'hématologie, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France.,Université Toulouse III Paul Sabatier, Toulouse, France
| | - Arnaud Besson
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, UPS and CNRS, Toulouse, France
| | - Stéphane Manenti
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France. .,Equipe labellisée La Ligue contre le Cancer 2016, Toulouse, France.
| | - Sarah Bertoli
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France. .,Equipe labellisée La Ligue contre le Cancer 2016, Toulouse, France. .,Université Toulouse III Paul Sabatier, Toulouse, France. .,Service d'hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse-Oncopole (IUCT-O), Toulouse, France.
| |
Collapse
|
81
|
Maurer B, Nivarthi H, Wingelhofer B, Pham HTT, Schlederer M, Suske T, Grausenburger R, Schiefer AI, Prchal-Murphy M, Chen D, Winkler S, Merkel O, Kornauth C, Hofbauer M, Hochgatterer B, Hoermann G, Hoelbl-Kovacic A, Prochazkova J, Lobello C, Cumaraswamy AA, Latzka J, Kitzwögerer M, Chott A, Janikova A, Pospíšilova Š, Loizou JI, Kubicek S, Valent P, Kolbe T, Grebien F, Kenner L, Gunning PT, Kralovics R, Herling M, Müller M, Rülicke T, Sexl V, Moriggl R. High activation of STAT5A drives peripheral T-cell lymphoma and leukemia. Haematologica 2020; 105:435-447. [PMID: 31123029 PMCID: PMC7012494 DOI: 10.3324/haematol.2019.216986] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022] Open
Abstract
Recurrent gain-of-function mutations in the transcription factors STAT5A and much more in STAT5B were found in hematopoietic malignancies with the highest proportion in mature T- and natural killer-cell neoplasms (peripheral T-cell lymphoma, PTCL). No targeted therapy exists for these heterogeneous and often aggressive diseases. Given the shortage of models for PTCL, we mimicked graded STAT5A or STAT5B activity by expressing hyperactive Stat5a or STAT5B variants at low or high levels in the hematopoietic system of transgenic mice. Only mice with high activity levels developed a lethal disease resembling human PTCL. Neoplasia displayed massive expansion of CD8+ T cells and destructive organ infiltration. T cells were cytokine-hypersensitive with activated memory CD8+ T-lymphocyte characteristics. Histopathology and mRNA expression profiles revealed close correlation with distinct subtypes of PTCL. Pronounced STAT5 expression and activity in samples from patients with different subsets underline the relevance of JAK/STAT as a therapeutic target. JAK inhibitors or a selective STAT5 SH2 domain inhibitor induced cell death and ruxolitinib blocked T-cell neoplasia in vivo. We conclude that enhanced STAT5A or STAT5B action both drive PTCL development, defining both STAT5 molecules as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Barbara Maurer
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria.,Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Harini Nivarthi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Bettina Wingelhofer
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ha Thi Thanh Pham
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Michaela Schlederer
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Department of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | - Tobias Suske
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Reinhard Grausenburger
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ana-Iris Schiefer
- Department of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | - Michaela Prchal-Murphy
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Doris Chen
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Susanne Winkler
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | - Olaf Merkel
- Department of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | - Christoph Kornauth
- Department of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | | | | | - Gregor Hoermann
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Andrea Hoelbl-Kovacic
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jana Prochazkova
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Cosimo Lobello
- Central European Institute of Technology (CEITEC), Center of Molecular Medicine, Masaryk University, Brno, Czech Republic
| | - Abbarna A Cumaraswamy
- Department of Chemistry, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Johanna Latzka
- Karl Landsteiner Institute of Dermatological Research, St. Poelten, Austria and Department of Dermatology and Venereology, Karl Landsteiner University for Health Sciences, St. Poelten, Austria
| | - Melitta Kitzwögerer
- Department of Clinical Pathology, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Andreas Chott
- Institute of Pathology and Microbiology, Wilheminenspital, Vienna, Austria
| | - Andrea Janikova
- Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Šárka Pospíšilova
- Central European Institute of Technology (CEITEC), Center of Molecular Medicine, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine - Hematology and Oncology, Faculty of Medicine Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Joanna I Loizou
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology and Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - Thomas Kolbe
- Biomodels Austria, University of Veterinary Medicine Vienna, Vienna, Austria.,IFA-Tulln, University of Natural Resources and Applied Life Sciences, Tulln, Austria
| | - Florian Grebien
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Institute of Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Lukas Kenner
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Department of Clinical Pathology, Medical University of Vienna, Vienna, Austria.,Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Patrick T Gunning
- Central European Institute of Technology (CEITEC), Center of Molecular Medicine, Masaryk University, Brno, Czech Republic
| | - Robert Kralovics
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Marco Herling
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Rülicke
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria .,Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria.,Medical University of Vienna, Vienna, Austria
| |
Collapse
|
82
|
Abstract
Tyrosine phosphorylation is a critical component of signal transduction for multicellular organisms, particularly for pathways that regulate cell proliferation and differentiation. While tyrosine kinase inhibitors have become FDA-approved drugs, inhibitors of the other important components of these signaling pathways have been harder to develop. Specifically, direct phosphotyrosine (pTyr) isosteres have been aggressively pursued as inhibitors of Src homology 2 (SH2) domains and protein tyrosine phosphatases (PTPs). Medicinal chemists have produced many classes of peptide and small molecule inhibitors that mimic pTyr. However, balancing affinity with selectivity and cell penetration has made this an extremely difficult space for developing successful clinical candidates. This review will provide a comprehensive picture of the field of pTyr isosteres, from early beginnings to the current state and trajectory. We will also highlight the major protein targets of these medicinal chemistry efforts, the major classes of peptide and small molecule inhibitors that have been developed, and the handful of compounds which have been tested in clinical trials.
Collapse
Affiliation(s)
- Robert A Cerulli
- Cellular, Molecular and Developmental Biology Program, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts 02111, USA
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, USA.
| |
Collapse
|
83
|
Brachet-Botineau M, Polomski M, Neubauer HA, Juen L, Hédou D, Viaud-Massuard MC, Prié G, Gouilleux F. Pharmacological Inhibition of Oncogenic STAT3 and STAT5 Signaling in Hematopoietic Cancers. Cancers (Basel) 2020; 12:E240. [PMID: 31963765 PMCID: PMC7016966 DOI: 10.3390/cancers12010240] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022] Open
Abstract
Signal Transducer and Activator of Transcription (STAT) 3 and 5 are important effectors of cellular transformation, and aberrant STAT3 and STAT5 signaling have been demonstrated in hematopoietic cancers. STAT3 and STAT5 are common targets for different tyrosine kinase oncogenes (TKOs). In addition, STAT3 and STAT5 proteins were shown to contain activating mutations in some rare but aggressive leukemias/lymphomas. Both proteins also contribute to drug resistance in hematopoietic malignancies and are now well recognized as major targets in cancer treatment. The development of inhibitors targeting STAT3 and STAT5 has been the subject of intense investigations during the last decade. This review summarizes the current knowledge of oncogenic STAT3 and STAT5 functions in hematopoietic cancers as well as advances in preclinical and clinical development of pharmacological inhibitors.
Collapse
Affiliation(s)
- Marie Brachet-Botineau
- Leukemic Niche and Oxidative metabolism (LNOx), CNRS ERL 7001, University of Tours, 37000 Tours, France;
| | - Marion Polomski
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Heidi A. Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria;
| | - Ludovic Juen
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Damien Hédou
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Marie-Claude Viaud-Massuard
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Gildas Prié
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Fabrice Gouilleux
- Leukemic Niche and Oxidative metabolism (LNOx), CNRS ERL 7001, University of Tours, 37000 Tours, France;
| |
Collapse
|
84
|
Abdeldayem A, Raouf YS, Constantinescu SN, Moriggl R, Gunning PT. Advances in covalent kinase inhibitors. Chem Soc Rev 2020; 49:2617-2687. [DOI: 10.1039/c9cs00720b] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This comprehensive review details recent advances, challenges and innovations in covalent kinase inhibition within a 10 year period (2007–2018).
Collapse
Affiliation(s)
- Ayah Abdeldayem
- Department of Chemical & Physical Sciences
- University of Toronto
- Mississauga
- Canada
- Department of Chemistry
| | - Yasir S. Raouf
- Department of Chemical & Physical Sciences
- University of Toronto
- Mississauga
- Canada
- Department of Chemistry
| | | | - Richard Moriggl
- Institute of Animal Breeding and Genetics
- University of Veterinary Medicine
- 1210 Vienna
- Austria
| | - Patrick T. Gunning
- Department of Chemical & Physical Sciences
- University of Toronto
- Mississauga
- Canada
- Department of Chemistry
| |
Collapse
|
85
|
Brachet-Botineau M, Deynoux M, Vallet N, Polomski M, Juen L, Hérault O, Mazurier F, Viaud-Massuard MC, Prié G, Gouilleux F. A Novel Inhibitor of STAT5 Signaling Overcomes Chemotherapy Resistance in Myeloid Leukemia Cells. Cancers (Basel) 2019; 11:cancers11122043. [PMID: 31861239 PMCID: PMC6966442 DOI: 10.3390/cancers11122043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/11/2019] [Accepted: 12/14/2019] [Indexed: 01/08/2023] Open
Abstract
Signal transducers and activators of transcription 5A and 5B (STAT5A and STAT5B) are crucial downstream effectors of tyrosine kinase oncogenes (TKO) such as BCR-ABL in chronic myeloid leukemia (CML) and FLT3-ITD in acute myeloid leukemia (AML). Both proteins have been shown to promote the resistance of CML cells to tyrosine kinase inhibitors (TKI) such as imatinib mesylate (IM). We recently synthesized and discovered a new inhibitor (17f) with promising antileukemic activity. 17f selectively inhibits STAT5 signaling in CML and AML cells by interfering with the phosphorylation and transcriptional activity of these proteins. In this study, the effects of 17f were evaluated on CML and AML cell lines that respectively acquired resistance to IM and cytarabine (Ara-C), a conventional therapeutic agent used in AML treatment. We showed that 17f strongly inhibits the growth and survival of resistant CML and AML cells when associated with IM or Ara-C. We also obtained evidence that 17f inhibits STAT5B but not STAT5A protein expression in resistant CML and AML cells. Furthermore, we demonstrated that 17f also targets oncogenic STAT5B N642H mutant in transformed hematopoietic cells.
Collapse
Affiliation(s)
- Marie Brachet-Botineau
- LNOx, GICC, CNRS ERL 7001, University of Tours, 37000 Tours, France; (M.B.-B.); (M.D.); (N.V.); (O.H.); (F.M.)
| | - Margaux Deynoux
- LNOx, GICC, CNRS ERL 7001, University of Tours, 37000 Tours, France; (M.B.-B.); (M.D.); (N.V.); (O.H.); (F.M.)
| | - Nicolas Vallet
- LNOx, GICC, CNRS ERL 7001, University of Tours, 37000 Tours, France; (M.B.-B.); (M.D.); (N.V.); (O.H.); (F.M.)
- Service d’Hématologie et Thérapie Cellulaire, CHRU de Tours, 37000 Tours, France
| | - Marion Polomski
- IMT, GICC, EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (M.-C.V.-M.); (G.P.)
| | - Ludovic Juen
- IMT, GICC, EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (M.-C.V.-M.); (G.P.)
| | - Olivier Hérault
- LNOx, GICC, CNRS ERL 7001, University of Tours, 37000 Tours, France; (M.B.-B.); (M.D.); (N.V.); (O.H.); (F.M.)
- Service d’Hematologie Biologique, CHRU de Tours, 37000 Tours, France
| | - Frédéric Mazurier
- LNOx, GICC, CNRS ERL 7001, University of Tours, 37000 Tours, France; (M.B.-B.); (M.D.); (N.V.); (O.H.); (F.M.)
| | | | - Gildas Prié
- IMT, GICC, EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (M.-C.V.-M.); (G.P.)
| | - Fabrice Gouilleux
- LNOx, GICC, CNRS ERL 7001, University of Tours, 37000 Tours, France; (M.B.-B.); (M.D.); (N.V.); (O.H.); (F.M.)
- Correspondence: ; Tel.: +33-(2)-47-36-62-91
| |
Collapse
|
86
|
Orlova A, Wagner C, de Araujo ED, Bajusz D, Neubauer HA, Herling M, Gunning PT, Keserű GM, Moriggl R. Direct Targeting Options for STAT3 and STAT5 in Cancer. Cancers (Basel) 2019; 11:E1930. [PMID: 31817042 PMCID: PMC6966570 DOI: 10.3390/cancers11121930] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/22/2019] [Accepted: 11/29/2019] [Indexed: 12/21/2022] Open
Abstract
Signal transducer and activator of transcription (STAT)3 and STAT5 are important transcription factors that are able to mediate or even drive cancer progression through hyperactivation or gain-of-function mutations. Mutated STAT3 is mainly associated with large granular lymphocytic T-cell leukemia, whereas mutated STAT5B is associated with T-cell prolymphocytic leukemia, T-cell acute lymphoblastic leukemia and γδ T-cell-derived lymphomas. Hyperactive STAT3 and STAT5 are also implicated in various hematopoietic and solid malignancies, such as chronic and acute myeloid leukemia, melanoma or prostate cancer. Classical understanding of STAT functions is linked to their phosphorylated parallel dimer conformation, in which they induce gene transcription. However, the functions of STAT proteins are not limited to their phosphorylated dimerization form. In this review, we discuss the functions and the roles of unphosphorylated STAT3/5 in the context of chromatin remodeling, as well as the impact of STAT5 oligomerization on differential gene expression in hematopoietic neoplasms. The central involvement of STAT3/5 in cancer has made these molecules attractive targets for small-molecule drug development, but currently there are no direct STAT3/5 inhibitors of clinical grade available. We summarize the development of inhibitors against the SH2 domains of STAT3/5 and discuss their applicability as cancer therapeutics.
Collapse
Affiliation(s)
- Anna Orlova
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, 1210 Vienna, Austria; (A.O.); (C.W.); (H.A.N.)
| | - Christina Wagner
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, 1210 Vienna, Austria; (A.O.); (C.W.); (H.A.N.)
| | - Elvin D. de Araujo
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; (E.D.d.A.); (P.T.G.)
- Centre for Medicinal Chemistry, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Dávid Bajusz
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (D.B.); (G.M.K.)
| | - Heidi A. Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, 1210 Vienna, Austria; (A.O.); (C.W.); (H.A.N.)
| | - Marco Herling
- Department I of Internal Medicine, Center for Integrated Oncology (CIO), Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), and Center for Molecular Medicine Cologne (CMMC), Cologne University, 50937 Cologne, Germany;
| | - Patrick T. Gunning
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; (E.D.d.A.); (P.T.G.)
- Centre for Medicinal Chemistry, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - György M. Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (D.B.); (G.M.K.)
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, 1210 Vienna, Austria; (A.O.); (C.W.); (H.A.N.)
| |
Collapse
|
87
|
Natarajan K, Müller-Klieser D, Rubner S, Berg T. Stafia-1: a STAT5a-Selective Inhibitor Developed via Docking-Based Screening of in Silico O-Phosphorylated Fragments. Chemistry 2019; 26:148-154. [PMID: 31503360 PMCID: PMC6973011 DOI: 10.1002/chem.201904147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Indexed: 01/27/2023]
Abstract
We present a new approach for the identification of inhibitors of phosphorylation-dependent protein-protein interaction domains, in which phenolic fragments are adapted by in silico O-phosphorylation before docking-based screening. From a database of 10 369 180 compounds, we identified 85 021 natural product-derived phenolic fragments, which were virtually O-phosphorylated and screened for in silico binding to the STAT3 SH2 domain. Nine screening hits were then synthesized, eight of which showed a degree of in vitro inhibition of STAT3. After analysis of its selectivity profile, the most potent inhibitor was then developed to Stafia-1, the first small molecule shown to preferentially inhibit the STAT family member STAT5a over the close homologue STAT5b. A phosphonate prodrug based on Stafia-1 inhibited STAT5a with selectivity over STAT5b in human leukemia cells, providing the first demonstration of selective in vitro and intracellular inhibition of STAT5a by a small-molecule inhibitor.
Collapse
Affiliation(s)
- Kalaiselvi Natarajan
- Institute of Organic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Daniel Müller-Klieser
- Institute of Organic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Stefan Rubner
- Institute of Organic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Thorsten Berg
- Institute of Organic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| |
Collapse
|
88
|
JAK/STAT-Activating Genomic Alterations Are a Hallmark of T-PLL. Cancers (Basel) 2019; 11:cancers11121833. [PMID: 31766351 PMCID: PMC6966610 DOI: 10.3390/cancers11121833] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
T-cell prolymphocytic leukemia (T-PLL) is a rare and poor-prognostic mature T-cell leukemia. Recent studies detected genomic aberrations affecting JAK and STAT genes in T-PLL. Due to the limited number of primary patient samples available, genomic analyses of the JAK/STAT pathway have been performed in rather small cohorts. Therefore, we conducted—via a primary-data based pipeline—a meta-analysis that re-evaluated the genomic landscape of T-PLL. It included all available data sets with sequence information on JAK or STAT gene loci in 275 T-PLL. We eliminated overlapping cases and determined a cumulative rate of 62.1% of cases with mutated JAK or STAT genes. Most frequently, JAK1 (6.3%), JAK3 (36.4%), and STAT5B (18.8%) carried somatic single-nucleotide variants (SNVs), with missense mutations in the SH2 or pseudokinase domains as most prevalent. Importantly, these lesions were predominantly subclonal. We did not detect any strong association between mutations of a JAK or STAT gene with clinical characteristics. Irrespective of the presence of gain-of-function (GOF) SNVs, basal phosphorylation of STAT5B was elevated in all analyzed T-PLL. Fittingly, a significant proportion of genes encoding for potential negative regulators of STAT5B showed genomic losses (in 71.4% of T-PLL in total, in 68.4% of T-PLL without any JAK or STAT mutations). They included DUSP4, CD45, TCPTP, SHP1, SOCS1, SOCS3, and HDAC9. Overall, considering such losses of negative regulators and the GOF mutations in JAK and STAT genes, a total of 89.8% of T-PLL revealed a genomic aberration potentially explaining enhanced STAT5B activity. In essence, we present a comprehensive meta-analysis on the highly prevalent genomic lesions that affect genes encoding JAK/STAT signaling components. This provides an overview of possible modes of activation of this pathway in a large cohort of T-PLL. In light of new advances in JAK/STAT inhibitor development, we also outline translational contexts for harnessing active JAK/STAT signaling, which has emerged as a ‘secondary’ hallmark of T-PLL.
Collapse
|
89
|
de Araujo ED, Orlova A, Neubauer HA, Bajusz D, Seo HS, Dhe-Paganon S, Keserű GM, Moriggl R, Gunning PT. Structural Implications of STAT3 and STAT5 SH2 Domain Mutations. Cancers (Basel) 2019; 11:E1757. [PMID: 31717342 PMCID: PMC6895964 DOI: 10.3390/cancers11111757] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/02/2019] [Accepted: 11/05/2019] [Indexed: 01/13/2023] Open
Abstract
Src Homology 2 (SH2) domains arose within metazoan signaling pathways and are involved in protein regulation of multiple pleiotropic cascades. In signal transducer and activator of transcription (STAT) proteins, SH2 domain interactions are critical for molecular activation and nuclear accumulation of phosphorylated STAT dimers to drive transcription. Sequencing analysis of patient samples has revealed the SH2 domain as a hotspot in the mutational landscape of STAT proteins although the functional impact for the vast majority of these mutations remains poorly characterized. Despite several well resolved structures for SH2 domain-containing proteins, structural data regarding the distinctive STAT-type SH2 domain is limited. Here, we review the unique features of STAT-type SH2 domains in the context of all currently reported STAT3 and STAT5 SH2 domain clinical mutations. The genetic volatility of specific regions in the SH2 domain can result in either activating or deactivating mutations at the same site in the domain, underscoring the delicate evolutionary balance of wild type STAT structural motifs in maintaining precise levels of cellular activity. Understanding the molecular and biophysical impact of these disease-associated mutations can uncover convergent mechanisms of action for mutations localized within the STAT SH2 domain to facilitate the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Elvin D. de Araujo
- Centre for Medicinal Chemistry, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada;
- Department of Chemical & Physical Sciences, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Anna Orlova
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, A-1210 Vienna, Austria; (A.O.); (H.A.N.); (R.M.)
| | - Heidi A. Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, A-1210 Vienna, Austria; (A.O.); (H.A.N.); (R.M.)
| | - Dávid Bajusz
- Medicinal Chemistry Research Group, Research Center for Natural Sciences, 1117 Budapest, Hungary; (D.B.); (G.M.K.)
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; (H.-S.S.); (S.D.-P.)
- Department of Biological Chemistry, Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; (H.-S.S.); (S.D.-P.)
- Department of Biological Chemistry, Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - György M. Keserű
- Medicinal Chemistry Research Group, Research Center for Natural Sciences, 1117 Budapest, Hungary; (D.B.); (G.M.K.)
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, A-1210 Vienna, Austria; (A.O.); (H.A.N.); (R.M.)
| | - Patrick T. Gunning
- Centre for Medicinal Chemistry, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada;
- Department of Chemical & Physical Sciences, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
90
|
Maurer B, Kollmann S, Pickem J, Hoelbl-Kovacic A, Sexl V. STAT5A and STAT5B-Twins with Different Personalities in Hematopoiesis and Leukemia. Cancers (Basel) 2019; 11:E1726. [PMID: 31690038 PMCID: PMC6895831 DOI: 10.3390/cancers11111726] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/25/2019] [Accepted: 11/01/2019] [Indexed: 12/14/2022] Open
Abstract
The transcription factors STAT5A and STAT5B have essential roles in survival and proliferation of hematopoietic cells-which have been considered largely redundant. Mutations of upstream kinases, copy number gains, or activating mutations in STAT5A, or more frequently in STAT5B, cause altered hematopoiesis and cancer. Interfering with their activity by pharmacological intervention is an up-and-coming therapeutic avenue. Precision medicine requests detailed knowledge of STAT5A's and STAT5B's individual functions. Recent evidence highlights the privileged role for STAT5B over STAT5A in normal and malignant hematopoiesis. Here, we provide an overview on their individual functions within the hematopoietic system.
Collapse
Affiliation(s)
- Barbara Maurer
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria.
| | - Sebastian Kollmann
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Judith Pickem
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Andrea Hoelbl-Kovacic
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
91
|
Polak KL, Chernosky NM, Smigiel JM, Tamagno I, Jackson MW. Balancing STAT Activity as a Therapeutic Strategy. Cancers (Basel) 2019; 11:cancers11111716. [PMID: 31684144 PMCID: PMC6895889 DOI: 10.3390/cancers11111716] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/23/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
Driven by dysregulated IL-6 family member cytokine signaling in the tumor microenvironment (TME), aberrant signal transducer and activator of transcription (STAT3) and (STAT5) activation have been identified as key contributors to tumorigenesis. Following transformation, persistent STAT3 activation drives the emergence of mesenchymal/cancer-stem cell (CSC) properties, important determinants of metastatic potential and therapy failure. Moreover, STAT3 signaling within tumor-associated macrophages and neutrophils drives secretion of factors that facilitate metastasis and suppress immune cell function. Persistent STAT5 activation is responsible for cancer cell maintenance through suppression of apoptosis and tumor suppressor signaling. Furthermore, STAT5-mediated CD4+/CD25+ regulatory T cells (Tregs) have been implicated in suppression of immunosurveillance. We discuss these roles for STAT3 and STAT5, and weigh the attractiveness of different modes of targeting each cancer therapy. Moreover, we discuss how anti-tumorigenic STATs, including STAT1 and STAT2, may be leveraged to suppress the pro-tumorigenic functions of STAT3/STAT5 signaling.
Collapse
Affiliation(s)
- Kelsey L Polak
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| | - Noah M Chernosky
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| | - Jacob M Smigiel
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| | - Ilaria Tamagno
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| | - Mark W Jackson
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
92
|
JAKs to STATs: A tantalizing therapeutic target in acute myeloid leukemia. Blood Rev 2019; 40:100634. [PMID: 31677846 DOI: 10.1016/j.blre.2019.100634] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 09/11/2019] [Accepted: 10/08/2019] [Indexed: 01/12/2023]
Abstract
The Janus Associated Kinase-Signal Transducers and Activators of Transcription (JAK-STAT) signaling pathway plays a pivotal role in hematopoietic growth factor signaling. Hyperactive JAK-STAT signaling is implicated in the pathogenesis of myeloid malignancies, including acute myeloid leukemia (AML). The significant headway in understanding the biology of AML has led to an explosion of novel therapeutics with mechanistic rationale for the treatment of newly diagnosed and relapsed/refractory (R/R) AML. Most importantly, selective targeting of the JAK-STAT pathway has proven to be an effective therapeutic strategy in myeloproliferative neoplasms and is also being evaluated in related myeloid malignancies, including AML. This comprehensive review will focus on the apparent and evolving potential of JAK-STAT pathway inhibition in AML with emphasis on JAK inhibitors, highlighting both success and failure with this experimental approach in the clinic, and identifying rationally based combinatorial approaches.
Collapse
|
93
|
Orlova A, Neubauer HA, Moriggl R. The stromal microenvironment provides an escape route from FLT3 inhibitors through the GAS6-AXL-STAT5 axis. Haematologica 2019; 104:1907-1909. [PMID: 31575669 PMCID: PMC6886418 DOI: 10.3324/haematol.2019.225862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Anna Orlova
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine
| | - Heidi A. Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine
- Medical University Vienna, Vienna, Austria
| |
Collapse
|
94
|
Tolomeo M, Meli M, Grimaudo S. STAT5 and STAT5 Inhibitors in Hematological Malignancies. Anticancer Agents Med Chem 2019; 19:2036-2046. [PMID: 31490767 DOI: 10.2174/1871520619666190906160848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/09/2019] [Accepted: 07/18/2019] [Indexed: 11/22/2022]
Abstract
The JAK-STAT pathway is an important physiologic regulator of different cellular functions including proliferation, apoptosis, differentiation, and immunological responses. Out of six different STAT proteins, STAT5 plays its main role in hematopoiesis and constitutive STAT5 activation seems to be a key event in the pathogenesis of several hematological malignancies. This has led many researchers to develop compounds capable of inhibiting STAT5 activation or interfering with its functions. Several anti-STAT5 molecules have shown potent STAT5 inhibitory activity in vitro. However, compared to the large amount of clinical studies with JAK inhibitors that are currently widely used in the clinics to treat myeloproliferative disorders, the clinical trials with STAT5 inhibitors are very limited. At present, a few STAT5 inhibitors are in phase I or II clinical trials for the treatment of leukemias and graft vs host disease. These studies seem to indicate that such compounds could be well tolerated and useful in reducing the occurrence of resistance to tyrosine kinase inhibitors in chronic myeloid leukemia. Of interest, STAT5 seems to play an important role in the regulation of hematopoietic stem cell self-renewal suggesting that combination therapies including STAT5 inhibitors can erode the cancer stem cell pool and possibly open the way for the complete cancer eradication. In this review, we discuss the implication of STAT5 in hematological malignancies and the results obtained with the novel STAT5 inhibitors.
Collapse
Affiliation(s)
- Manlio Tolomeo
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Maria Meli
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Stefania Grimaudo
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| |
Collapse
|
95
|
Memarzadeh K, Savage DJ, Bean AJ. Low UBE4B expression increases sensitivity of chemoresistant neuroblastoma cells to EGFR and STAT5 inhibition. Cancer Biol Ther 2019; 20:1416-1429. [PMID: 31475882 PMCID: PMC6804809 DOI: 10.1080/15384047.2019.1647049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 05/24/2019] [Accepted: 06/23/2019] [Indexed: 12/15/2022] Open
Abstract
Neuroblastoma is the most common malignancy in infants. Overexpression of the epidermal growth factor receptor (EGFR) in neuroblastoma tumors underlies resistance to chemotherapeutics. UBE4B, an E3/E4 ubiquitin ligase involved in EGFR degradation, is located on chromosome 1p36, a region in which loss of heterozygosity is observed in approximately one-third of neuroblastoma tumors and is correlated with poor prognosis. In chemoresistant neuroblastoma cells, depletion of UBE4B yielded significantly reduced cell proliferation and migration, and enhanced apoptosis in response to EGFR inhibitor, Cetuximab. We have previously shown that UBE4B levels are inversely correlated with EGFR levels in neuroblastoma tumors. We searched for additional targets of UBE4B that mediate cellular alterations associated with tumorogenesis in chemoresistant neuroblastoma cells depleted of UBE4B using reverse phase protein arrays. The expression of STAT5a, an effector protein downstream of EGFR, doubled in the absence of UBE4B, and verified by quantitative immunoblotting. Chemoresistant neuroblastoma cells were treated with SH-4-54, a STAT5 inhibitor, and observed insignificant effects on cell proliferation, migration, and apoptosis. However, SH-4-54 significantly enhanced the anti-proliferative and anti-migratory effects of Cetuximab in naïve SK-N-AS neuroblastoma cells. Interestingly, in UBE4B depleted SK-N-AS cells, SH-4-54 significantly potentiated the effect of Cetuximab rendering cells increasingly sensitive an otherwise minimally effective Cetuximab concentration. Thus, neuroblastoma cells with low UBE4B levels were significantly more sensitive to combined EGFR and STAT5 inhibition than parental cells. These findings may have potential therapeutic implications for patients with 1p36 chromosome LOH and low tumor UBE4B expression.
Collapse
Affiliation(s)
- Kimiya Memarzadeh
- Program in Neuroscience, University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - David J. Savage
- Program in Neuroscience, University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Andrew J. Bean
- Program in Neuroscience, University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, TX, USA
- Program in Neuroscience, Cell Biology and Biochemistry, University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
96
|
Schobert R, Biersack B. Chemical and Biological Aspects of Garcinol and Isogarcinol: Recent Developments. Chem Biodivers 2019; 16:e1900366. [PMID: 31386266 DOI: 10.1002/cbdv.201900366] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/06/2019] [Indexed: 11/08/2022]
Abstract
The natural polyisoprenylated benzophenone derivatives garcinol and isogarcinol are secondary plant metabolites isolated from various Garcinia species including Garcinia indica. This review takes stock of the recent chemical and biological research into these interesting natural compounds over the last five years. New biological sources and chemical syntheses are discussed followed by new insights into the activity of garcinol and isogarcinol against cancer, pathogenic bacteria, parasite infections and various inflammatory diseases.
Collapse
Affiliation(s)
- Rainer Schobert
- Organic Chemistry Laboratory, University of Bayreuth, 95447, Bayreuth, Germany
| | - Bernhard Biersack
- Organic Chemistry Laboratory, University of Bayreuth, 95447, Bayreuth, Germany
| |
Collapse
|
97
|
STAT5a/b Deficiency Delays, but does not Prevent, Prolactin-Driven Prostate Tumorigenesis in Mice. Cancers (Basel) 2019; 11:cancers11070929. [PMID: 31269779 PMCID: PMC6678910 DOI: 10.3390/cancers11070929] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 11/28/2022] Open
Abstract
The canonical prolactin (PRL) Signal Transducer and Activator of Transcription (STAT) 5 pathway has been suggested to contribute to human prostate tumorigenesis via an autocrine/paracrine mechanism. The probasin (Pb)-PRL transgenic mouse models this mechanism by overexpressing PRL specifically in the prostate epithelium leading to strong STAT5 activation in luminal cells. These mice exhibit hypertrophic prostates harboring various pre-neoplastic lesions that aggravate with age and accumulation of castration-resistant stem/progenitor cells. As STAT5 signaling is largely predominant over other classical PRL-triggered pathways in Pb-PRL prostates, we reasoned that Pb-Cre recombinase-driven genetic deletion of a floxed Stat5a/b locus should prevent prostate tumorigenesis in so-called Pb-PRLΔSTAT5 mice. Anterior and dorsal prostate lobes displayed the highest Stat5a/b deletion efficiency with no overt compensatory activation of other PRLR signaling cascade at 6 months of age; hence the development of tumor hallmarks was markedly reduced. Stat5a/b deletion also reversed the accumulation of stem/progenitor cells, indicating that STAT5 signaling regulates prostate epithelial cell hierarchy. Interestingly, ERK1/2 and AKT, but not STAT3 and androgen signaling, emerged as escape mechanisms leading to delayed tumor development in aged Pb-PRLΔSTAT5 mice. Unexpectedly, we found that Pb-PRL prostates spontaneously exhibited age-dependent decline of STAT5 signaling, also to the benefit of AKT and ERK1/2 signaling. As a consequence, both Pb-PRL and Pb-PRLΔSTAT5 mice ultimately displayed similar pathological prostate phenotypes at 18 months of age. This preclinical study provides insight on STAT5-dependent mechanisms of PRL-induced prostate tumorigenesis and alternative pathways bypassing STAT5 signaling down-regulation upon prostate neoplasia progression.
Collapse
|
98
|
Erdman VV, Nasibullin TR, Tuktarova IA, Somova RS, Mustafina OE. Association Analysis of Polymorphic Gene Variants in the JAK/STAT Signaling Pathway with Aging and Longevity. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419050077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
99
|
Tallis E, Borthakur G. Novel treatments for relapsed/refractory acute myeloid leukemia with FLT3 mutations. Expert Rev Hematol 2019; 12:621-640. [PMID: 31232619 DOI: 10.1080/17474086.2019.1635882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Introduction: Mutations in the gene encoding for the FMS-like tyrosine kinase 3 (FLT3) are present in about 30% of adults with AML and are associated with shorter disease-free and overall survival after initial therapy. Prognosis of relapsed/refractory AML with FLT3 mutations is even more dismal with median overall survival of a few months only. Areas covered: This review will cover current and emerging treatments for relapsed/refractory AML with FLT3 mutations, preclinical rationale and clinical trials with new encouraging data for this particularly challenging population. The authors discuss mechanisms of resistance to FLT3 inhibitors and how these insights serve to identify current and future treatments. As allogeneic stem cell transplant in the first remission is the preferred therapy for newly diagnosed AML patients with FLT3 mutations, the authors discuss the role of maintenance after SCT for the prevention of relapse. Expert opinion: Relapsed/refractory AML with FLT3 mutations remains a therapeutic challenge with currently available treatments. However, the evolution of targeted therapies with next-generation FLT3 inhibitors and their combinations with chemotherapy is showing much promise. Moreover, growing understanding of the pathways of resistance to treatment has led to the identification of various targeted therapies currently being explored, which in time will improve outcomes.
Collapse
Affiliation(s)
- Eran Tallis
- a Department of Leukemia, The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Gautam Borthakur
- a Department of Leukemia, The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
100
|
Nguyen CH, Glüxam T, Schlerka A, Bauer K, Grandits AM, Hackl H, Dovey O, Zöchbauer-Müller S, Cooper JL, Vassiliou GS, Stoiber D, Wieser R, Heller G. SOCS2 is part of a highly prognostic 4-gene signature in AML and promotes disease aggressiveness. Sci Rep 2019; 9:9139. [PMID: 31235852 PMCID: PMC6591510 DOI: 10.1038/s41598-019-45579-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease with respect to its genetic and molecular basis and to patients´ outcome. Clinical, cytogenetic, and mutational data are used to classify patients into risk groups with different survival, however, within-group heterogeneity is still an issue. Here, we used a robust likelihood-based survival modeling approach and publicly available gene expression data to identify a minimal number of genes whose combined expression values were prognostic of overall survival. The resulting gene expression signature (4-GES) consisted of 4 genes (SOCS2, IL2RA, NPDC1, PHGDH), predicted patient survival as an independent prognostic parameter in several cohorts of AML patients (total, 1272 patients), and further refined prognostication based on the European Leukemia Net classification. An oncogenic role of the top scoring gene in this signature, SOCS2, was investigated using MLL-AF9 and Flt3-ITD/NPM1c driven mouse models of AML. SOCS2 promoted leukemogenesis as well as the abundance, quiescence, and activity of AML stem cells. Overall, the 4-GES represents a highly discriminating prognostic parameter in AML, whose clinical applicability is greatly enhanced by its small number of genes. The newly established role of SOCS2 in leukemia aggressiveness and stemness raises the possibility that the signature might even be exploitable therapeutically.
Collapse
Affiliation(s)
- Chi Huu Nguyen
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Vienna, Austria
| | - Tobias Glüxam
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Vienna, Austria
| | - Angela Schlerka
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Vienna, Austria
| | - Katharina Bauer
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Vienna, Austria
- Institute of Science and Technology Austria, Vienna, Austria
| | - Alexander M Grandits
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Vienna, Austria
| | - Hubert Hackl
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Oliver Dovey
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Sabine Zöchbauer-Müller
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Vienna, Austria
| | - Jonathan L Cooper
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - George S Vassiliou
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Dagmar Stoiber
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Rotraud Wieser
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria.
- Comprehensive Cancer Center, Vienna, Austria.
| | - Gerwin Heller
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria.
- Comprehensive Cancer Center, Vienna, Austria.
- Institute of Pharmacology and Toxicology, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|