51
|
Gao P, Wang D, Liu M, Chen S, Yang Z, Zhang J, Wang H, Niu Y, Wang W, Yang J, Sun G. DNA methylation-mediated repression of exosomal miR-652-5p expression promotes oesophageal squamous cell carcinoma aggressiveness by targeting PARG and VEGF pathways. PLoS Genet 2020; 16:e1008592. [PMID: 32343702 PMCID: PMC7188198 DOI: 10.1371/journal.pgen.1008592] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023] Open
Abstract
Exosomal microRNAs (miRNAs) have been recently shown to play vital regulatory and communication roles in cancers. In this study, we showed that the expression levels of miR-652-5p in tumour tissues and serum samples of oesophageal squamous cell carcinoma (OSCC) patients were lower compared to non-tumorous tissues and serum samples from healthy subjects, respectively. Decreased expression of miR-652-5p was correlated with TNM stages, lymph node metastasis, and short overall survival (OS). More frequent CpG sites hypermethylation in the upstream of miR-652-5p was found in OSCC tissues compared to adjacent normal tissues. Subsequently, miR-652-5p downregulation promoted the proliferation and metastasis of OSCC, and regulated cell cycle both in cells and in vivo. The dual-luciferase reporter assay confirmed that poly (ADP-ribose) glycohydrolase (PARG) and vascular endothelial growth factor A (VEGFA) were the direct targets of miR-652-5p. Moreover, the delivery of miR-652-5p agomir suppressed tumour growth and metastasis, and inhibited the protein expressions of PARG and VEGFA in nude mice. Taken together, our findings provide novel insight into the molecular mechanism underlying OSCC pathogenesis.
Collapse
Affiliation(s)
- Peng Gao
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Dan Wang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Meiyue Liu
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Siyuan Chen
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Zhao Yang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Jie Zhang
- Department of Pathology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Huan Wang
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Yi Niu
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| | - Wei Wang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jilong Yang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Guogui Sun
- Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China
| |
Collapse
|
52
|
Xiao X, Zhang Y, Pan W, Chen F. miR-139-mediated NOTCH1 regulation is crucial for the inhibition of osteosarcoma progression caused by resveratrol. Life Sci 2020; 242:117215. [DOI: 10.1016/j.lfs.2019.117215] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/12/2019] [Accepted: 12/20/2019] [Indexed: 02/04/2023]
|
53
|
Jing QB, Tong HX, Tang WJ, Tian SD. Clinical Significance and Potential Regulatory Mechanisms of Serum Response Factor in 1118 Cases of Thyroid Cancer Based on Gene Chip and RNA-Sequencing Data. Med Sci Monit 2020; 26:e919302. [PMID: 31967986 PMCID: PMC6995247 DOI: 10.12659/msm.919302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Thyroid cancer (TC) is one of the most prevalent endocrine malignancies and there may be many unclarified molecular events and gene types involved in TC. The objective of this study was to assess the clinical implications and potential mechanisms of serum response factor (SRF) in TC. Material/Methods RNA-sequencing and gene chip data with TC expression were collected from The Cancer Genome Atlas/Genotype-Tissue Expression, Gene Expression Omnibus, ArrayExpress, Sequence Read Archive, and Oncomine. SRF expression of all TC and adjacent non-cancerous tissue were calculated using the t test, STATA, and Meta-DiSc. The related pathways of the potential SRF target genes and target miRNAs were explored. Dual-luciferase reporter assay was performed to validate the association between SRF and its putative miRNA. Results One RNA-sequencing and 15 gene chips were collected, and the pooled standardized mean difference of SRF was −1.00. Furthermore, the area under the curve of sROC of SRF in TC was 0.8251, indicating a dramatic decreased expression of SRF in TC tissues based on 1118 cases. The intersection of differentially expressed genes in TC, SRF co-expressed genes, and SRF potential target genes achieved from Cistrome Cancer led to 169 overlapped genes. miR-330-5p was predicted to target SRF, which was further confirmed by dual-luciferase reporter assay. Conclusions The reduction of SRF appears to play a crucial role in the origin of TC. These properties are accomplished by the target genes of SRF, as a transcription factor, or by the axes with the associated miRNAs.
Collapse
Affiliation(s)
- Qiang-Bin Jing
- Center of Medical Oncology, The First People's Hospital of Huaihua, Huaihua, Hunan, China (mainland)
| | - Hai-Xiao Tong
- Center of Medical Oncology, The First People's Hospital of Huaihua, Huaihua, Hunan, China (mainland)
| | - Wei-Jian Tang
- Center of Medical Oncology, The First People's Hospital of Huaihua, Huaihua, Hunan, China (mainland)
| | - Shao-Dong Tian
- Center of Medical Oncology, The First People's Hospital of Huaihua, Huaihua, Hunan, China (mainland)
| |
Collapse
|
54
|
Wu Y, Gao Z, Zhang J. Transcription Factor E2F1 Aggravates Neurological Injury in Ischemic Stroke via microRNA-122-Targeted Sprouty2. Neuropsychiatr Dis Treat 2020; 16:2633-2647. [PMID: 33177827 PMCID: PMC7651997 DOI: 10.2147/ndt.s271320] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND It has been documented that microRNAs (miRs) assume a pivotal role in the development of ischemic stroke (IS). However, it remains poorly identified about the role of miR-122 in IS. Herein, this study was intended to explore the mechanism of E2F1-orchestrated miR-122 in IS. PATIENTS AND METHODS E2F1, miR-122, and SPRY2 expression in serum from patients with IS and oxygen-glucose deprivation (OGD)-treated N2a cells was detected by RT-qPCR. After gain- and loss-of-function approaches in OGD-induced N2a cells, GAFP staining, flow cytometry, and Western blot analysis were adopted to assess neuronal viability, cell cycle and apoptosis, and expression of apoptosis- and autophagy-related proteins, respectively. Meanwhile, mice with IS were induced, in which E2F1, miR-122, and SPRY2 were overexpressed, followed by evaluation of neurological deficit and cerebral infarction area. The MAPK pathway activity in tissues of mice and cells was determined. RESULTS miR-122 was down-regulated, and E2F1 and SPRY2 were up-regulated in IS patients and OGD-induced N2a cells. E2F1 inhibited miR-122 transcription, while miR-122 targeted SPRY2. Overexpression (OE) of miR-122 or down-regulation of E2F1 or SPRY2 increased viability, but decreased apoptosis, cell cycle arrest, and autophagy in OGD-induced N2a cells. In IS mice, the neurological deficit score and cerebral infarction area were elevated, which was aggravated by up-regulating E2F1 or SPRY2 but attenuated by overexpressing miR-122. E2F1/miR-122/SPRY2 axis mediated the MAPK pathway in vivo and in vitro. CONCLUSION Collectively, E2F1 reduced miR-122 transcription to up-regulate SPRY2, which inactivated MAPK pathway and promoted neurological deficit in IS.
Collapse
Affiliation(s)
- Yunxia Wu
- Department of Neurology, Linyi Central Hospital, Linyi, Shandong 276400, People's Republic of China
| | - Zhiqiang Gao
- Department of Neurology, Linyi Central Hospital, Linyi, Shandong 276400, People's Republic of China
| | - Jiang Zhang
- Department of Neurology, Linyi Central Hospital, Linyi, Shandong 276400, People's Republic of China
| |
Collapse
|
55
|
Chen S, Wang J. HAND2-AS1 inhibits invasion and metastasis of cervical cancer cells via microRNA-330-5p-mediated LDOC1. Cancer Cell Int 2019; 19:353. [PMID: 31889905 PMCID: PMC6935066 DOI: 10.1186/s12935-019-1048-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/25/2019] [Indexed: 01/02/2023] Open
Abstract
Background Cervical cancer is a serious disease with complicated pathogenesis and thus there is an urgent need to find novel targets for the treatment. Recently, long non-coding RNAs (lncRNAs) have emerged as critical factors in tumorigenesis. In this study, we aimed to investigate the mechanism of HAND2 antisense RNA 1 (HAND2-AS1) on the invasion and metastasis of cervical cancer cells. Methods The expression patterns of HAND2-AS1, microRNA-330-5p (miR-330-5p) and leucine zipper down-regulated in cancer 1 (LDOC1) in cervical cancer were characterized by RT-qPCR and western blot analysis. Dual luciferase reporter assay and RIP were applied to verify relationship between HAND2-AS1, miR-330-5p and LDOC1. Fluorescence in situ hybridization (FISH) was used to detect the subcellular localization of HAND2-AS1. Besides, viability, invasion and migration ability of HeLa cells were investigated by cell counting kit-8 (CCK-8) and Transwell assays respectively. Hematoxylin-eosin staining was performed for lymph node metastasis detection. In addition, the tumor growth in nude mice was evaluated. Results Low expression of HAND2-AS1 and LDOC1, and high expression of miR-330-5p were detected in cervical cancer tissues and cells. It was found that binding of HAND2-AS1 to miR-330-5p results in upregulation of LDOC1 expression. Also, overexpressed HAND2-AS1 and LDOC1 or down-regulated miR-330-5p inhibited expression of proliferation-associated proteins Ki-67, PCNA, migration-associated proteins N-cad and invasion-related proteins MMP-2, MMP-9 as well as lymph node metastasis. Moreover, HAND2-AS1 inhibited tumor formation and lymph node metastasis by binding to miR-330-5p in vivo. Conclusion HAND2-AS1 promotes LDOC1 expression by competitively binding to miR-330-5p and consequently inhibiting cervical cancer cell invasion and metastasis. This could facilitate development of therapeutic strategies against cervical cancer.
Collapse
Affiliation(s)
- Shengcai Chen
- Department of Gynaecology, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18, Zhongshan Second Road, Youjiang District, Baise, 533000 Guangxi People's Republic of China
| | - Jing Wang
- Department of Gynaecology, Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18, Zhongshan Second Road, Youjiang District, Baise, 533000 Guangxi People's Republic of China
| |
Collapse
|
56
|
Tian Z, Yu T, Wei H, Ning N. Clinical value of LHPP-associated microRNAs combined with protein induced by vitamin K deficiency or antagonist-II in the diagnosis of alpha-fetoprotein-negative hepatocellular carcinoma. J Clin Lab Anal 2019; 34:e23071. [PMID: 31693242 PMCID: PMC7031545 DOI: 10.1002/jcla.23071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/22/2019] [Accepted: 09/29/2019] [Indexed: 12/13/2022] Open
Abstract
Background Alpha‐fetoprotein (AFP) has received extensive attention in the differential diagnosis of hepatocellular carcinoma (HCC), especially for AFP‐negative HCC (AFP‐NHCC). The current study aimed to explore the value of targeted regulation of LHPP expression‐related microRNAs (miRs) and protein induced by vitamin K deficiency or antagonist‐II (PIVKA‐II) in the differential diagnosis of AFP‐NHCC. Methods A retrospective study was conducted on a testing set—including 214 AFP‐NHCC patients, 200 cirrhosis, and 210 controls, and a validation set—including 140 AFP‐NHCC patients, 134 cirrhosis, and 128 controls recruited from The First Affiliated Hospital of Hunan Normal University. Serum miRs were examined using quantitative real‐time PCR method. Serum PIVKA‐II was measured by enzyme‐linked immunosorbent assay. Results Compared with adjacent tissues, LHPP protein levels in cancer tissues were significantly decreased (P < .05). Predictive software and dual‐luciferase reporter assays showed that miR‐363‐5p and miR‐765 can target LHPP expression. Serum miR‐363‐5p, miR‐765, and PIVKA‐II levels were significantly higher in AFP‐HCC patients than in cirrhosis and controls. A logistic regression model combining miR‐363‐5p, miR‐765, and PIVKA‐II was performed. This model presented a high discriminating value (AUC: 0.930, sensitivity/specificity: 79.4%/95.4%) than any single indicator. In the validation set, this model still showed a high discriminating value (AUC: 0.936, sensitivity/specificity: 83.6%/94.7%). Conclusion Current model combining serum miR‐363‐5p, miR‐765, and PIVKA‐II has potential significance for diagnosis of AFP‐NHCC.
Collapse
Affiliation(s)
- Zeyu Tian
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Tanbo Yu
- Department of Pharmacy, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Hongyan Wei
- Department of Pharmacy, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Ning Ning
- Department of Medical Administration, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| |
Collapse
|
57
|
Yun Z, Meng F, Jiang P, Yue M, Li S. microRNA-548b suppresses aggressive phenotypes of hepatocellular carcinoma by directly targeting high-mobility group box 1 mRNA. Cancer Manag Res 2019; 11:5821-5834. [PMID: 31417317 PMCID: PMC6601050 DOI: 10.2147/cmar.s198615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/07/2019] [Indexed: 12/15/2022] Open
Abstract
Background and purpose: An increasing number of studies have revealed that microRNAs (miRNAs) are the main drivers of hepatocarcinogenesis including progression to later stages of liver cancer. Recently, miR-548b was identified as a cancer-related miRNA in glioma and tongue squamous cell carcinoma. Nonetheless, the expression pattern and specific roles of miR-548b in hepatocellular carcinoma (HCC) have not yet been clarified. Methods: Expression levels of miR-548b in HCC tissues and cell lines were measured by reverse-transcription quantitative PCR. In vitro and in vivo functional assays were performed to determine the effects of miR-548b on the malignant phenotypes of HCC cells. In addition, the molecular mechanisms by which miR-548b regulates the initiation and progression of HCC were investigated in detail. Results: miR-548b expression was weak in HCC tissues and cell lines. The low miR-548b expression significantly correlated with tumor size, TNM stage, and venous infiltration of HCC. In addition, exogenous miR-548b expression suppressed HCC cell proliferation, colony formation, and metastasis and induced apoptosis in vitro. Silencing of miR-548b exerted an opposite effect on these characteristics of HCC cells. Furthermore, miR-548b overexpression hindered tumor growth in vivo. Mechanistic analysis identified high-mobility group box 1 (HMGB1) as a direct target gene of miR-548b in HCC cells. Moreover, an HMGB1 knockdown reproduced the effects of miR-548b upregulation on HCC cells. Recovered HMGB1 expression reversed the effects of miR-548b on HCC cells. Notably, miR-548b overexpression deactivated the PI3K–AKT pathway in HCC cells in vitro and in vivo. Conclusion: Our findings provide the first evidence that miR-548b restrains HCC progression, at least partially, by downregulating HMGB1 and deactivating the PI3K–AKT pathway. Thus, miR-548b might be a novel target for the development of new therapies for HCC.
Collapse
Affiliation(s)
- Zhennan Yun
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China
| | - Fanqi Meng
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China
| | - Peiqiang Jiang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China
| | - Meng Yue
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China
| | - Shiquan Li
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China
| |
Collapse
|
58
|
Lu C, Jia S, Zhao S, Shao X. MiR-342 regulates cell proliferation and apoptosis in hepatocellular carcinoma through Wnt/β-catenin signaling pathway. Cancer Biomark 2019; 25:115-126. [PMID: 31006667 DOI: 10.3233/cbm-192399] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chang Lu
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Shengnan Jia
- Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Shutao Zhao
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xue Shao
- Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
59
|
Kawazoe T, Taniguchi K. The Sprouty/Spred family as tumor suppressors: Coming of age. Cancer Sci 2019; 110:1525-1535. [PMID: 30874331 PMCID: PMC6501019 DOI: 10.1111/cas.13999] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 01/04/2023] Open
Abstract
The Ras/Raf/ERK pathway is one of the most frequently dysregulated signaling pathways in various cancers. In some such cancers, Ras and Raf are hotspots for mutations, which cause continuous activation of this pathway. However, in some other cancers, it is known that negative regulators of the Ras/Raf/ERK pathway are responsible for uncontrolled activation. The Sprouty/Spred family is broadly recognized as important negative regulators of the Ras/Raf/ERK pathway, and its expression is downregulated in many malignancies, leading to hyperactivation of the Ras/Raf/ERK pathway. After the discovery of this family, intensive research investigated the mechanism by which it suppresses the Ras/Raf/ERK pathway and its roles in developmental and pathophysiological processes. In this review, we discuss the complicated roles of the Sprouty/Spred family in tumor initiation, promotion, and progression and its future therapeutic potential.
Collapse
Affiliation(s)
- Tetsuro Kawazoe
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan.,Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Taniguchi
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
60
|
Gao J, Wang G, Wu J, Zuo Y, Zhang J, Jin X. Skp2 Expression Is Inhibited by Arsenic Trioxide through the Upregulation of miRNA-330-5p in Pancreatic Cancer Cells. Mol Ther Oncolytics 2019; 12:214-223. [PMID: 30847385 PMCID: PMC6389777 DOI: 10.1016/j.omto.2019.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/27/2019] [Indexed: 12/26/2022] Open
Abstract
Arsenic trioxide (ATO) has been found to exert its anti-cancer activity in various human malignancies. In our previous report, we have shown that ATO inhibited cell growth and invasion via downregulation of Skp2 in pancreatic cancer (PC) cells. It has been extensively demonstrated that microRNAs (miRNAs) play a pivotal role in tumorigenesis. ATO might induce PC cell apoptosis and regulate Skp2 downregulation through the regulation of miRNAs. One study has demonstrated that miR-330-5p exerts a tumor-suppressive function in PC cell lines. Here, we investigated the role of miRNA-330-5p in ATO-mediated anti-tumor activity and explored whether ATO could regulate miR-330-5p in PC cells. We found that ATO treatment upregulated the expression of miR-330-5p. Moreover, miR-330-5p inhibitor rescued the ATO-mediated tumor-suppressive function. The combination of miR-330-5p mimic with ATO reduced cell growth, motility, and invasion, and enhanced apoptosis to a greater degree in PC cells. This study suggests that the combination of miR-330-5p mimic with ATO may be a potential therapeutic strategy for the treatment of PC.
Collapse
Affiliation(s)
- Jiankun Gao
- Department of Basic Medical Science, Sichuan College of Traditional Chinese Medicine, Mianyang, Sichuan 621000, China
- Corresponding author: Jiankun Gao, Department of Basic Medical Science, Sichuan College of Traditional Chinese Medicine, Mianyang, 621000 Sichuan, China.
| | - Gu Wang
- Department of Basic Medical Science, Sichuan College of Traditional Chinese Medicine, Mianyang, Sichuan 621000, China
| | - Jingrong Wu
- Department of Basic Medical Science, Sichuan College of Traditional Chinese Medicine, Mianyang, Sichuan 621000, China
| | - Yu Zuo
- Department of Basic Medical Science, Sichuan College of Traditional Chinese Medicine, Mianyang, Sichuan 621000, China
| | - Jing Zhang
- Department of Basic Medical Science, Sichuan College of Traditional Chinese Medicine, Mianyang, Sichuan 621000, China
| | - Xintian Jin
- Department of Thoracic Oncosurgery, Jilin Province Cancer Hospital, Changchun, Jilin 130012, China
- Corresponding author: Xintian Jin, Department of Thoracic Oncosurgery, Jilin Province Cancer Hospital, Changchun, Jilin 130012, China.
| |
Collapse
|
61
|
Zhang Y, Xiao Y, Dong Q, Ouyang W, Qin Q. Neferine in the Lotus Plumule Potentiates the Antitumor Effect of Imatinib in Primary Chronic Myeloid Leukemia Cells In Vitro. J Food Sci 2019; 84:904-910. [PMID: 30866043 DOI: 10.1111/1750-3841.14484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/19/2022]
Abstract
Imatinib, the prototype BCR-ABL tyrosine kinase inhibitor (TKI), is the first-line treatment for Philadelphia chromosome-positive chronic myeloid leukemia (CML) in the chronic phase. However, a subgroup of patients exhibit poor response or experience relapse. This issue may be overcome by combination therapy using natural compounds. Neferine, a major bisbenzylisoquinoline alkaloid extracted from "lotus plumule" (seed embryo of lotus) commonly used in traditional Chinese medicine and tea, was used herein in the combination treatment of CML. The MTT assay showed that neferine exerted cytotoxicity in primary CML cells in a dose-dependent manner. Moreover, low concentrations of neferine (4 and 8 µM) sensitized primary CML cells to imatinib (CI < 1), and significantly decreased its IC50 from 0.70 ± 0.10 to 0.32 ± 0.06 µM and 0.16 ± 0.02 µM, respectively. Cotreatment of neferine and imatinib significantly decreased the expression of BCR-ABL protein and its molecular chaperone heat shock protein 90 (Hsp90) mRNA and protein levels, and further decreased phospho-extracellular regulated protein kinase 1/2 (p-Erk1/2) and myeloid cell leukemia (Mcl-1) expression. These results suggest that neferine might be a potential imatinib sensitizer in CML treatment. PRACTICAL APPLICATION: In China, Lotus plumule, the green embryo of lotus, is used as a tea and as a source of herbal medicine in the treatment of anxiety, insomnia, spermatorrhea, and thirst. Additional, neferine, a bisbenzylisoquinoline alkaloid extracted from lotus plumule has been shown to have antitumor potential. Herein, the effect of neferine and imatinib cotreatment on primary CML cells obtained from CML patients was assessed, with a synergistic effect being observed between the two compounds. Therefore, neferine might be a promising natural compound to potentiate imatinib in CML patients.
Collapse
Affiliation(s)
- Yalan Zhang
- Xiangya Hospital, Central South Univ., Changsha, China
| | - Yuhang Xiao
- Xiangya Hospital, Central South Univ., Changsha, China
| | - Qixing Dong
- Xiangya Hospital, Central South Univ., Changsha, China
| | | | - Qun Qin
- Xiangya Hospital, Central South Univ., Changsha, China
| |
Collapse
|