51
|
Kostlan RJ, Phoenix JT, Budreika A, Ferrari MG, Khurana N, Cho JE, Juckette K, McCollum BL, Moskal R, Mannan R, Qiao Y, Griend DJV, Chinnaiyan AM, Kregel S. Clinically relevant humanized mouse models of metastatic prostate cancer to evaluate cancer therapies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.13.562280. [PMID: 37904960 PMCID: PMC10614761 DOI: 10.1101/2023.10.13.562280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
There is tremendous need for improved prostate cancer (PCa) models. The mouse prostate does not spontaneously form tumors and is anatomically and developmentally different from the human prostate. Engineered mouse models lack the heterogeneity of human cancer and rarely establish metastatic growth. Human xenografts represent an alternative but rely on an immunocompromised host. Accordingly, we generated PCa murine xenograft models with an intact human immune system (huNOG and huNOG-EXL mice) to test whether humanizing tumor-immune interactions would improve modeling of metastatic PCa and the impact of hormonal and immunotherapies. These mice maintain multiple human cell lineages, including functional human T-cells and myeloid cells. In 22Rv1 xenografts, subcutaneous tumor size was not significantly altered across conditions; however, metastasis to secondary sites differed in castrate huNOG vs background-matched immunocompromised mice treated with enzalutamide (enza). VCaP xenograft tumors showed decreases in growth with enza and anti-Programed-Death-1 treatments in huNOG mice, and no effect was seen with treatment in NOG mice. Enza responses in huNOG and NOG mice were distinct and associated with increased T-cells within tumors of enza treated huNOG mice, and increased T-cell activation. In huNOG-EXL mice, which support human myeloid development, there was a strong population of immunosuppressive regulatory T-cells and Myeloid-Derived-Suppressor-Cells (MDSCs), and enza treatment showed no difference in metastasis. Results illustrate, to our knowledge, the first model of human PCa that metastasizes to clinically relevant locations, has an intact human immune system, responds appropriately to standard-of-care hormonal therapies, and can model both an immunosuppressive and checkpoint-inhibition responsive immune microenvironment.
Collapse
Affiliation(s)
- Raymond J. Kostlan
- Department of Cancer Biology, Loyola University Chicago, Maywood, IL 60153
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL, USA
| | - John T. Phoenix
- Department of Cancer Biology, Loyola University Chicago, Maywood, IL 60153
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL, USA
| | - Audris Budreika
- Department of Cancer Biology, Loyola University Chicago, Maywood, IL 60153
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL, USA
| | - Marina G. Ferrari
- Department of Cancer Biology, Loyola University Chicago, Maywood, IL 60153
| | - Neetika Khurana
- Department of Cancer Biology, Loyola University Chicago, Maywood, IL 60153
| | - Jae Eun Cho
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Kristin Juckette
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Brooke L. McCollum
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Russell Moskal
- Department of Cancer Biology, Loyola University Chicago, Maywood, IL 60153
| | - Rahul Mannan
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yuanyuan Qiao
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Arul M. Chinnaiyan
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Steven Kregel
- Department of Cancer Biology, Loyola University Chicago, Maywood, IL 60153
| |
Collapse
|
52
|
Graham MK, Wang R, Chikarmane R, Wodu B, Vaghasia A, Gupta A, Zheng Q, Hicks J, Sysa-Shah P, Pan X, Castagna N, Liu J, Meyers J, Skaist A, Zhang Y, Schuebel K, Simons BW, Bieberich CJ, Nelson WG, Lupold SE, DeWeese TL, De Marzo AM, Yegnasubramanian S. Convergent alterations in the tumor microenvironment of MYC-driven human and murine prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.07.553268. [PMID: 37905029 PMCID: PMC10614732 DOI: 10.1101/2023.09.07.553268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The tissue microenvironment in prostate cancer is profoundly altered. While such alterations have been implicated in driving prostate cancer initiation and progression to aggressive disease, how prostate cancer cells and their precursors mediate those changes is unclear, in part due to the inability to longitudinally study the disease evolution in human tissues. To overcome this limitation, we performed extensive single-cell RNA-sequencing (scRNA-seq) and rigorous molecular pathology of the comparative biology between human prostate cancer and key time points in the disease evolution of a genetically engineered mouse model (GEMM) of prostate cancer. Our studies of human tissues, with validation in a large external data set, revealed that cancer cell-intrinsic activation of MYC signaling was the top up-regulated pathway in human cancers, representing a common denominator across the well-known molecular and pathological heterogeneity of human prostate cancer. Likewise, numerous non-malignant cell states in the tumor microenvironment (TME), including non-cancerous epithelial, immune, and fibroblast cell compartments, were conserved across individuals, raising the possibility that these cell types may be a sequelae of the convergent MYC activation in the cancer cells. To test this hypothesis, we employed a GEMM of prostate epithelial cell-specific MYC activation in two mouse strains. Cell communication network and pathway analyses suggested that MYC oncogene-expressing neoplastic cells, directly and indirectly, reprogrammed the TME during carcinogenesis, leading to the emergence of cascading cell state alterations in neighboring epithelial, immune, and fibroblast cell types that paralleled key findings in human prostate cancer. Importantly, among these changes, the progression from a precursor-enriched to invasive-cancer-enriched state was accompanied by a cell-intrinsic switch from pro-immunogenic to immunosuppressive transcriptional programs with coinciding enrichment of immunosuppressive myeloid and Treg cells in the immune microenvironment. These findings implicate activation of MYC signaling in reshaping convergent aspects of the TME of prostate cancer as a common denominator across the otherwise well-documented molecular heterogeneity of human prostate cancer.
Collapse
|
53
|
Lv T, Li Z, Wang D, Guo X, Zhang X, Cao J, Wang Z. Role of exosomes in prostate cancer bone metastasis. Arch Biochem Biophys 2023; 748:109784. [PMID: 37816420 DOI: 10.1016/j.abb.2023.109784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/12/2023]
Abstract
Bone is a preferred metastatic site of prostate cancer (PCa), and most patients with PCa metastases develop osteogenic bone metastasis, which manifests as disturbed bone structure and poor bone quality. However, the underlying mechanisms of PCa bone metastasis remain unclear. In recent years, increasing evidence has implicated extracellular vesicles, especially exosomes, in PCa bone metastasis. Exosomes are 30-150 nm in diameter, enclosing a cargo of biomolecules, such as DNA, RNA, and proteins. Exosomes play a functional role in intercellular communication, modulate the functions of recipient cells, and potentially modulate bone microenvironment changes, thereby influencing the development of PCa bone metastasis. This review summarizes the involvement of exosomes in the imbalance between bone resorption and formation, and establishing a pre-metastatic niche in bone marrow, as well as potential clinical applications of exosomes in therapeutic strategies for treating patients with advanced PCa with bone metastasis.
Collapse
Affiliation(s)
- Tingting Lv
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, PR China
| | - Zijie Li
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, PR China
| | - Dehua Wang
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, PR China
| | - Xiaojin Guo
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, PR China
| | - Xiaokuan Zhang
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, PR China
| | - Jing Cao
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, PR China
| | - Zhiyu Wang
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, PR China.
| |
Collapse
|
54
|
Zedan AH, Nederby L, Volmer LM, Madsen CV, Sørensen BE, Hansen TF. Natural killer cell activity in metastatic castration resistant prostate cancer patients treated with enzalutamide. Sci Rep 2023; 13:17144. [PMID: 37816781 PMCID: PMC10564750 DOI: 10.1038/s41598-023-43937-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/30/2023] [Indexed: 10/12/2023] Open
Abstract
Metastatic castration resistant prostate cancer (mCRPC) is still the lethal stage for the whole spectrum of prostate cancer disease. Even though different treatment options have been introduced in the last decade with a significant survival improvement for this population, a lack of more reliable prognostic and predictive markers is still one of the main clinical challenges in management of mCRPC. The aim of this study was to investigate the correlation between Natural Killer cell activity (NKA) and both treatment effect and outcomes in patients with mCRPC treated with enzalutamide. A total of 87 patients with mCRPC treated with enzalutamide as the first line treatment were enrolled. NKA was estimated at baseline and prior to each treatment cycle. Endpoints included both treatment effect with biochemical response (BR), biochemical progression (BP) and radiological progression (RP), as well as outcome data with overall survival (OS), radiologic progression free survival (rPFS), and time to next treatment (TTT). At the time of BR, interferon-gamma (IFNγ) decreased significantly compared to levels detected at baseline (z-score = 2.33, p = 0.019). Regarding outcome data, the whole cohort was divided into four groups according to the change of IFNγ level during the first 3 cycles of enzalutamide treatment. In group 1 (n = 42) the IFNγ level remained within a normal range (≥ 250 pg/mL),while in group 2 (n = 7) it increased from an abnormal (< 250 pg/mL) to a normal level. In group 3 (n = 13) it dropped to an abnormal level, and it remained at an abnormal level during treatment in group 4 (n = 17). Patients in group 2 showed the worst prognosis with shorter both rPFS and TTT (HR 4.30, p = 0.037; and HR 6.82, p = 0.011, respectively). In this study inverse correlations between NKA and both treatment response and outcomes was observed in mCRPC patients receiving enzalutamide, suggesting an unfavourable role of NK cells in the late stage of PCa.
Collapse
Affiliation(s)
- A H Zedan
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark.
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark.
| | - L Nederby
- Department of Biochemistry and Immunology, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - L M Volmer
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - C V Madsen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - B E Sørensen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - T F Hansen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
55
|
Chen JY, Huang XY, Lin F, You Q, Xue YT, Lin B, Zheng QS, Wei Y, Xue XY, Li XD, Chen DN, Xu N. A tumor-associated macrophages related model for predicting biochemical recurrence and tumor immune environment in prostate cancer. Genomics 2023; 115:110691. [PMID: 37516327 DOI: 10.1016/j.ygeno.2023.110691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/17/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
OBJECTIVE To identify tumor-associated macrophages (TAMs) related molecular subtypes and develop a TAMs related prognostic model for prostate cancer (PCa). METHODS Consensus clustering analysis was used to identify TAMs related molecular clusters. A TAMs related prognostic model was developed using univariate and multivariate Cox analysis. RESULTS Three TAMs related molecular clusters were identified and were confirmed to be associated with prognosis, clinicopathological characteristics, PD-L1 expression levels and tumor microenvironment. A TAMs related prognostic model was constructed. Patients in low-risk group all showed a more appreciable biochemical recurrence-free survival (BCRFS) than patients in high-risk group in train cohort, test cohort, entire TCGA cohort and validation cohort. SLC26A3 attenuated progression of PCa and prevented macrophage polarizing to TAMs phenotype, which was initially verified. CONCLUSIONS We successfully identified molecular clusters related to TAMs. Additionally, we developed a prognostic model involving TAMs that exhibits excellent predictive performance for biochemical recurrence-free survival in PCa.
Collapse
Affiliation(s)
- Jia-Yin Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Xu-Yun Huang
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Fei Lin
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Qi You
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Yu-Ting Xue
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Bin Lin
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Qing-Shui Zheng
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Yong Wei
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Xue-Yi Xue
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Xiao-Dong Li
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Dong-Ning Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| | - Ning Xu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China; Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.
| |
Collapse
|
56
|
Bhinder B, Ferguson A, Sigouros M, Uppal M, Elsaeed AG, Bareja R, Alnajar H, Eng KW, Conteduca V, Sboner A, Mosquera JM, Elemento O, Beltran H. Immunogenomic Landscape of Neuroendocrine Prostate Cancer. Clin Cancer Res 2023; 29:2933-2943. [PMID: 37223924 PMCID: PMC10524949 DOI: 10.1158/1078-0432.ccr-22-3743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/29/2023] [Accepted: 05/16/2023] [Indexed: 05/25/2023]
Abstract
PURPOSE Patients with neuroendocrine prostate cancer (NEPC) are often managed with immunotherapy regimens extrapolated from small-cell lung cancer (SCLC). We sought to evaluate the tumor immune landscape of NEPC compared with other prostate cancer types and SCLC. EXPERIMENTAL DESIGN In this retrospective study, a cohort of 170 patients with 230 RNA-sequencing and 104 matched whole-exome sequencing data were analyzed. Differences in immune and stromal constituents, frequency of genomic alterations, and associations with outcomes were evaluated. RESULTS In our cohort, 36% of the prostate tumors were identified as CD8+ T-cell inflamed, whereas the remaining 64% were T-cell depleted. T-cell-inflamed tumors were enriched in anti-inflammatory M2 macrophages and exhausted T cells and associated with shorter overall survival relative to T-cell-depleted tumors (HR, 2.62; P < 0.05). Among all prostate cancer types in the cohort, NEPC was identified to be the most immune depleted, wherein only 9 out of the 36 total NEPC tumors were classified as T-cell inflamed. These inflamed NEPC cases were enriched in IFN gamma signaling and PD-1 signaling compared with other NEPC tumors. Comparison of NEPC with SCLC revealed that NEPC had poor immune content and less mutations compared with SCLC, but expression of checkpoint genes PD-L1 and CTLA-4 was comparable between NEPC and SCLC. CONCLUSIONS NEPC is characterized by a relatively immune-depleted tumor immune microenvironment compared with other primary and metastatic prostate adenocarcinoma except in a minority of cases. These findings may inform development of immunotherapy strategies for patients with advanced prostate cancer.
Collapse
Affiliation(s)
- Bhavneet Bhinder
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Alison Ferguson
- Department for BioMedical Research, University of Bern, 3012 Bern, Switzerland
| | - Michael Sigouros
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Manik Uppal
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ahmed G. Elsaeed
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Rohan Bareja
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Hussein Alnajar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Kenneth Wha Eng
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Vincenza Conteduca
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Medical and Surgical Sciences, Unit of Medical Oncology and Biomolecular Therapy, University of Foggia, Policlinico Riuniti, 71122 Foggia, Italy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215 USA
| | - Andrea Sboner
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Juan Miguel Mosquera
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Himisha Beltran
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215 USA
| |
Collapse
|
57
|
Kan L, Huang Y, Liu Z. WITHDRAWN: JUN and ATF3 are deficient in prostate cancer patients and their delivery in vivo via lipid nanoparticles has therapeutic efficacy by enhancing immune surveillance. Pharmacol Res 2023; 194:106753. [PMID: 37011775 DOI: 10.1016/j.phrs.2023.106753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/03/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.
Collapse
Affiliation(s)
- Liang Kan
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, PR China
| | - Yongye Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, 110169, Liaoning, PR China
| | - Zhongyuan Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, PR China.
| |
Collapse
|
58
|
Puig-Saenz C, Pearson JRD, Thomas JE, McArdle SEB. A Holistic Approach to Hard-to-Treat Cancers: The Future of Immunotherapy for Glioblastoma, Triple Negative Breast Cancer, and Advanced Prostate Cancer. Biomedicines 2023; 11:2100. [PMID: 37626597 PMCID: PMC10452459 DOI: 10.3390/biomedicines11082100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Immunotherapy represents an attractive avenue for cancer therapy due to its tumour specificity and relatively low frequency of adverse effects compared to other treatment modalities. Despite many advances being made in the field of cancer immunotherapy, very few immunotherapeutic treatments have been approved for difficult-to-treat solid tumours such as triple negative breast cancer (TNBC), glioblastoma multiforme (GBM), and advanced prostate cancer (PCa). The anatomical location of some of these cancers may also make them more difficult to treat. Many trials focus solely on immunotherapy and have failed to consider or manipulate, prior to the immunotherapeutic intervention, important factors such as the microbiota, which itself is directly linked to lifestyle factors, diet, stress, social support, exercise, sleep, and oral hygiene. This review summarises the most recent treatments for hard-to-treat cancers whilst factoring in the less conventional interventions which could tilt the balance of treatment in favour of success for these malignancies.
Collapse
Affiliation(s)
- Carles Puig-Saenz
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, College Drive, Clifton, Nottingham NG11 8NS, UK; (C.P.-S.); (J.R.D.P.); (J.E.T.)
- Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, College Drive, Clifton, Nottingham NG11 8NS, UK
| | - Joshua R. D. Pearson
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, College Drive, Clifton, Nottingham NG11 8NS, UK; (C.P.-S.); (J.R.D.P.); (J.E.T.)
- Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, College Drive, Clifton, Nottingham NG11 8NS, UK
| | - Jubini E. Thomas
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, College Drive, Clifton, Nottingham NG11 8NS, UK; (C.P.-S.); (J.R.D.P.); (J.E.T.)
- Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, College Drive, Clifton, Nottingham NG11 8NS, UK
| | - Stéphanie E. B. McArdle
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, College Drive, Clifton, Nottingham NG11 8NS, UK; (C.P.-S.); (J.R.D.P.); (J.E.T.)
- Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, College Drive, Clifton, Nottingham NG11 8NS, UK
| |
Collapse
|
59
|
Hawlina S, Zorec R, Chowdhury HH. Potential of Personalized Dendritic Cell-Based Immunohybridoma Vaccines to Treat Prostate Cancer. Life (Basel) 2023; 13:1498. [PMID: 37511873 PMCID: PMC10382052 DOI: 10.3390/life13071498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Prostate cancer (PCa) is the most commonly diagnosed cancer and the second most common cause of death due to cancer. About 30% of patients with PCa who have been castrated develop a castration-resistant form of the disease (CRPC), which is incurable. In the last decade, new treatments that control the disease have emerged, slowing progression and spread and prolonging survival while maintaining the quality of life. These include immunotherapies; however, we do not yet know the optimal combination and sequence of these therapies with the standard ones. All therapies are not always suitable for every patient due to co-morbidities or adverse effects of therapies or both, so there is an urgent need for further work on new therapeutic options. Advances in cancer immunotherapy with an immune checkpoint inhibition mechanism (e.g., ipilimumab, an anti-CTLA-4 inhibitor) have not shown a survival benefit in patients with CRPC. Other immunological approaches have also not given clear results, which has indirectly prevented breakthrough for this type of therapeutic strategy into clinical use. Currently, the only approved form of immunotherapy for patients with CRPC is a cell-based medicine, but it is only available to patients in some parts of the world. Based on what was gained from recently completed clinical research on immunotherapy with dendritic cell-based immunohybridomas, the aHyC dendritic cell vaccine for patients with CRPC, we highlight the current status and possible alternatives that should be considered in the future.
Collapse
Affiliation(s)
- Simon Hawlina
- Clinical Department of Urology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Department of Surgery, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Cell Engineering, Celica Biomedical, 1000 Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Helena H Chowdhury
- Laboratory of Cell Engineering, Celica Biomedical, 1000 Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
60
|
Jotatsu Y, Shigemura K, Arbiser JL, Moriwaki M, Hirata Y, Maeda K, Yang YM, Fujisawa M. Intralesional Chemotherapy for Prostate Cancer: In vivo Proof of Principle. Oncology 2023; 101:645-654. [PMID: 37364538 DOI: 10.1159/000531494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION Prostate cancer (PCA) is one of the most common cancers in the world, and current therapies are debilitating to patients. To develop a novel modality for the treatment of PCA, we evaluated the efficacy of intralesional administration of the Sirt3 activator Honokiol (HK) and the NADPH oxidase inhibitor Dibenzolium (DIB). METHODS We used a well-established transgenic adenocarcinoma mouse prostate (TRAMP-C2) model of hormone-independent PCA. MTS assay, apoptosis assay, wound healing assay, transwell invasion assay, RT-qPCR, and Western blotting were conducted in vitro, and HK and DIB were intratumorally administered to mice bearing TRAMP-C2 tumors. Tumor size and weight were observed over time. After removing tumors, H-E staining and immunohistochemistry (IHC) staining were conducted. RESULTS Treatment by HK or DIB showed an inhibitory effect on cell proliferation and migration in PCA cells. Poor ability to induce apoptosis in vitro, insufficient expression of caspase-3 on IHC staining, and increased necrotic areas on H-E staining indicated that necrosis plays an important role in cell death in treating groups by HK or DIB. RT-PCR, Western blotting, and IHC staining for epithelial mesenchymal transition (EMT) markers suggested that EMT was suppressed by HK and DIB individually. In addition, HK induced activation of CD3. Mouse experiments showed safe antitumor effects in vivo. CONCLUSIONS HK and DIB suppressed PCA proliferation and migration. Further research will explore the effects of HK and DIB at the molecular level to reveal new mechanisms that can be exploited as therapeutic modalities.
Collapse
Affiliation(s)
- Yura Jotatsu
- Department of International Health, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Katsumi Shigemura
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Medical Innovation Engineering, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | - Michika Moriwaki
- Department of International Health, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Yuto Hirata
- Department of International Health, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Koki Maeda
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Young-Min Yang
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masato Fujisawa
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
61
|
Krebs M, Chatterjee M, Kübler H, Kalogirou C. [New forms of immunotherapy in uro-oncology : HLA-independent therapeutic approaches with bispecific antibodies and CAR T cells]. UROLOGIE (HEIDELBERG, GERMANY) 2023:10.1007/s00120-023-02117-1. [PMID: 37341719 DOI: 10.1007/s00120-023-02117-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Accepted: 05/10/2023] [Indexed: 06/22/2023]
Abstract
Immunotherapies using bispecific antibodies and chimeric antigen receptor (CAR) T cells do not depend on previous activation of T cells by the human leukocyte antigen (HLA) system. These HLA-independent approaches displayed groundbreaking clinical results in hematological malignancies-leading to drug approvals for diseases like acute lymphocytic leukemia (ALL), B-cell Non-Hodgkin's lymphoma and multiple myeloma. Currently, several phase I/II trials are investigating the transferability of these results to solid tumors-especially prostate cancer. Compared to established immune checkpoint blockade, bispecific antibodies and CAR T cells have novel and heterogenous side effects such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Treating these side effects and identifying suitable trial participants requires an interdisciplinary treatment approach.
Collapse
Affiliation(s)
- Markus Krebs
- Klinik und Poliklinik für Urologie und Kinderurologie, Universitätsklinikum Würzburg, Julius-Maximilians-Universität Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Deutschland
- Comprehensive Cancer Center Mainfranken, Universitätsklinikum Würzburg, Würzburg, Deutschland
| | - Manik Chatterjee
- Early Clinical Trial Unit (ECTU), Comprehensive Cancer Center Mainfranken, Universitätsklinikum Würzburg, Würzburg, Deutschland
| | - Hubert Kübler
- Klinik und Poliklinik für Urologie und Kinderurologie, Universitätsklinikum Würzburg, Julius-Maximilians-Universität Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Deutschland
| | - Charis Kalogirou
- Klinik und Poliklinik für Urologie und Kinderurologie, Universitätsklinikum Würzburg, Julius-Maximilians-Universität Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Deutschland.
| |
Collapse
|
62
|
Li D, Xu W, Chang Y, Xiao Y, He Y, Ren S. Advances in landscape and related therapeutic targets of the prostate tumor microenvironment. Acta Biochim Biophys Sin (Shanghai) 2023. [PMID: 37294106 DOI: 10.3724/abbs.2023092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
The distinct tumor microenvironment (TME) of prostate cancer (PCa), which promotes tumor proliferation and progression, consists of various stromal cells, immune cells, and a dense extracellular matrix (ECM). The understanding of the prostate TME extends to tertiary lymphoid structures (TLSs) and metastasis niches to provide a more concise comprehension of tumor metastasis. These constituents collectively structure the hallmarks of the pro-tumor TME, including immunosuppressive, acidic, and hypoxic niches, neuronal innervation, and metabolic rewiring. In combination with the knowledge of the tumor microenvironment and the advancement of emerging therapeutic technologies, several therapeutic strategies have been developed, and some of them have been tested in clinical trials. This review elaborates on PCa TME components, summarizes various TME-targeted therapies, and provides insights into PCa carcinogenesis, progression, and therapeutic strategies.
Collapse
Affiliation(s)
- Duocai Li
- Department of Urology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Weidong Xu
- Department of Urology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Yifan Chang
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yutian Xiao
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yundong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Shancheng Ren
- Department of Urology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| |
Collapse
|
63
|
Zaalberg A, Minnee E, Mayayo-Peralta I, Schuurman K, Gregoricchio S, van Schaik TA, Hoekman L, Li D, Corey E, Janssen H, Lieftink C, Prekovic S, Altelaar M, Nelson PS, Beijersbergen RL, Zwart W, Bergman A. A genome-wide CRISPR screen in human prostate cancer cells reveals drivers of macrophage-mediated cell killing and positions AR as a tumor-intrinsic immunomodulator. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543873. [PMID: 37333335 PMCID: PMC10274642 DOI: 10.1101/2023.06.06.543873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The crosstalk between prostate cancer (PCa) cells and the tumor microenvironment plays a pivotal role in disease progression and metastasis and could provide novel opportunities for patient treatment. Macrophages are the most abundant immune cells in the prostate tumor microenvironment (TME) and are capable of killing tumor cells. To identify genes in the tumor cells that are critical for macrophage-mediated killing, we performed a genome-wide co-culture CRISPR screen and identified AR, PRKCD, and multiple components of the NF-κB pathway as hits, whose expression in the tumor cell are essential for being targeted and killed by macrophages. These data position AR signaling as an immunomodulator, and confirmed by androgen-deprivation experiments, that rendered hormone-deprived tumor cells resistant to macrophage-mediated killing. Proteomic analyses showed a downregulation of oxidative phosphorylation in the PRKCD- and IKBKG-KO cells compared to the control, suggesting impaired mitochondrial function, which was confirmed by electron microscopy analyses. Furthermore, phosphoproteomic analyses revealed that all hits impaired ferroptosis signaling, which was validated transcriptionally using samples from a neoadjuvant clinical trial with the AR-inhibitor enzalutamide. Collectively, our data demonstrate that AR functions together with the PRKCD and the NF-κB pathway to evade macrophage-mediated killing. As hormonal intervention represents the mainstay therapy for treatment of prostate cancer patients, our findings may have direct implications and provide a plausible explanation for the clinically observed persistence of tumor cells despite androgen deprivation therapy.
Collapse
|
64
|
Lim EA, Schweizer MT, Chi KN, Aggarwal R, Agarwal N, Gulley J, Attiyeh E, Greger J, Wu S, Jaiprasart P, Loffredo J, Bandyopadhyay N, Xie H, Hansen AR. Phase 1 Study of Safety and Preliminary Clinical Activity of JNJ-63898081, a PSMA and CD3 Bispecific Antibody, for Metastatic Castration-Resistant Prostate Cancer. Clin Genitourin Cancer 2023; 21:366-375. [PMID: 36948922 PMCID: PMC10219845 DOI: 10.1016/j.clgc.2023.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/24/2023]
Abstract
INTRODUCTION Cancer immunotherapies have limited efficacy in prostate cancer due to the immunosuppressive prostate microenvironment. Prostate specific membrane antigen (PSMA) expression is prevalent in prostate cancer, preserved during malignant transformation, and increases in response to anti-androgen therapies, making it a commonly targeted tumor associated antigen for prostate cancer. JNJ-63898081 (JNJ-081) is a bispecific antibody targeting PSMA-expressing tumor cells and CD3-expressing T cells, aiming to overcome immunosuppression and promoting antitumor activity. PATIENTS AND METHODS We conducted a phase 1 dose escalation study of JNJ-081 in patients with metastatic castration-resistance prostate cancer (mCRPC). Eligible patients included those receiving ≥1 prior line treatment with either novel androgen receptor targeted therapy or taxane for mCRPC. Safety, pharmacokinetics, and pharmacodynamics of JNJ-081, and preliminary antitumor response to treatment were evaluated. JNJ-081 was administered initially by intravenous (IV) then by subcutaneous (SC) route. RESULTS Thirty-nine patients in 10 dosing cohorts received JNJ-081 ranging from 0.3 µg/kg to 3.0 µg/kg IV and 3.0 µg/kg to 60 µg/kg SC (with step-up priming used at higher SC doses). All 39 patients experienced ≥1 treatment-emergent AE, and no treatment-related deaths were reported. Dose-limiting toxicities were observed in 4 patients. Cytokine release syndrome (CRS) was observed at higher doses with JNJ-081 IV or SC; however, CRS and infusion-related reaction (IRR) were reduced with SC dosing and step-up priming at higher doses. Treatment doses >30 µg/kg SC led to transient PSA decreases. No radiographic responses were observed. Anti-drug antibody responses were observed in 19 patients receiving JNJ-081 IV or SC. CONCLUSION JNJ-081 dosing led to transient declines in PSA in patients with mCRPC. CRS and IRR could be partially mitigated by SC dosing, step-up priming, and a combination of both strategies. T cell redirection for prostate cancer is feasible and PSMA is a potential therapeutic target for T cell redirection in prostate cancer.
Collapse
Affiliation(s)
| | | | - Kim N Chi
- BC Cancer- Vancouver Centre, Vancouver, BC, Canada
| | - Rahul Aggarwal
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA
| | - Neeraj Agarwal
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - James Gulley
- National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | - James Greger
- Janssen Research & Development, Spring House, PA
| | - Shujian Wu
- Janssen Research & Development, Horsham, PA
| | | | | | | | - Hong Xie
- Janssen Research & Development, Spring House, PA
| | - Aaron R Hansen
- Princess Alexandria Hospital, Queensland Health, Brisbane, QLD, Australia.
| |
Collapse
|
65
|
Kurt Z, Çimen D, Denizli A, Bereli N. Development of Optical-Based Molecularly Imprinted Nanosensors for Adenosine Detection. ACS OMEGA 2023; 8:18839-18850. [PMID: 37273602 PMCID: PMC10233842 DOI: 10.1021/acsomega.3c01028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/28/2023] [Indexed: 06/06/2023]
Abstract
Adenosine nucleoside is an important molecule in human physiology. The levels of adenosine nucleoside in urine and plasma are directly or indirectly related to diseases such as neurodegenerative diseases and cancer. In the present study, adenosine-imprinted and non-imprinted poly(2-hydroxyethyl methacrylate-methacrylic acid) (poly(HEMA-MAA)) surface plasmon resonance (SPR) nanosensors were prepared for the determination of adenosine nucleoside. First, MAA/adenosine pre-polymerization complexes were prepared at different molar ratios using adenosine as a template molecule and methacrylic acid (MAA) as a monomer, and SPR nanosensor surfaces were optimized by determining the highest imprinting factor of the chip surfaces. The surfaces of adenosine-imprinted and non-imprinted SPR nanosensors were characterized by using atomic force microscopy, ellipsometry, and contact angle measurements. Kinetic analyses were made with different concentrations in the range of 0.5-400.0 nM for the detection range with a pH 7.4 phosphate buffer solution. The limit of detection in adenosine aqueous solutions, artificial plasma, and artificial urine was determined to be 0.018, 0.015, and 0.013 nM, respectively. In the selectivity analysis of the developed nanosensors, the selectivity of adenosine SPR nanosensors in solutions at different concentrations was determined by using guanosine and cytidine nucleosides. The relative selectivity coefficients of adenosine-imprinted SPR nanosensors for adenosine/cytidine and adenosine/guanosine are 3.836 and 3.427, respectively. Since adenosine-imprinted SPR nanosensors are intended to be used in medical analysis and research, adenosine analysis has also been studied in artificial urine and artificial plasma samples.
Collapse
Affiliation(s)
- Zehra
Tuğçe Kurt
- Bioengineering
Division, Hacettepe University, Ankara 06230, Turkey
| | - Duygu Çimen
- Department
of Chemistry, Hacettepe University, Ankara 06800, Turkey
| | - Adil Denizli
- Department
of Chemistry, Hacettepe University, Ankara 06800, Turkey
| | - Nilay Bereli
- Department
of Chemistry, Hacettepe University, Ankara 06800, Turkey
| |
Collapse
|
66
|
Sorrentino C, Di Carlo E. Molecular Targeted Therapies in Metastatic Prostate Cancer: Recent Advances and Future Challenges. Cancers (Basel) 2023; 15:2885. [PMID: 37296848 PMCID: PMC10251915 DOI: 10.3390/cancers15112885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Prostate cancer is the most frequent malignant tumor in men, and, despite the great improvements in survival in patients with localized cancer, the prognosis for metastatic disease remains poor. Novel molecular targeted therapies, which block specific molecules or signaling pathways in tumor cells or in their microenvironment, have shown encouraging results in metastatic castration-resistant prostate cancer. Among these therapeutic approaches, prostate-specific membrane antigen-targeted radionuclide therapies and DNA repair inhibitors represent the most promising ones, with some therapeutic protocols already approved by the FDA, whereas therapies targeting tumor neovascularization and immune checkpoint inhibitors have not yet demonstrated clear clinical benefits. In this review, the most relevant studies and clinical trials on this topic are illustrated and discussed, together with future research directions and challenges.
Collapse
Affiliation(s)
- Carlo Sorrentino
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
67
|
Pagadala M, Sears TJ, Wu VH, Pérez-Guijarro E, Kim H, Castro A, Talwar JV, Gonzalez-Colin C, Cao S, Schmiedel BJ, Goudarzi S, Kirani D, Au J, Zhang T, Landi T, Salem RM, Morris GP, Harismendy O, Patel SP, Alexandrov LB, Mesirov JP, Zanetti M, Day CP, Fan CC, Thompson WK, Merlino G, Gutkind JS, Vijayanand P, Carter H. Germline modifiers of the tumor immune microenvironment implicate drivers of cancer risk and immunotherapy response. Nat Commun 2023; 14:2744. [PMID: 37173324 PMCID: PMC10182072 DOI: 10.1038/s41467-023-38271-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
With the continued promise of immunotherapy for treating cancer, understanding how host genetics contributes to the tumor immune microenvironment (TIME) is essential to tailoring cancer screening and treatment strategies. Here, we study 1084 eQTLs affecting the TIME found through analysis of The Cancer Genome Atlas and literature curation. These TIME eQTLs are enriched in areas of active transcription, and associate with gene expression in specific immune cell subsets, such as macrophages and dendritic cells. Polygenic score models built with TIME eQTLs reproducibly stratify cancer risk, survival and immune checkpoint blockade (ICB) response across independent cohorts. To assess whether an eQTL-informed approach could reveal potential cancer immunotherapy targets, we inhibit CTSS, a gene implicated by cancer risk and ICB response-associated polygenic models; CTSS inhibition results in slowed tumor growth and extended survival in vivo. These results validate the potential of integrating germline variation and TIME characteristics for uncovering potential targets for immunotherapy.
Collapse
Affiliation(s)
- Meghana Pagadala
- Biomedical Sciences Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Timothy J Sears
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Victoria H Wu
- Department of Pharmacology, UCSD Moores Cancer Center, La Jolla, CA, 92093, USA
| | - Eva Pérez-Guijarro
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Hyo Kim
- Undergraduate Bioengineering Program, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Andrea Castro
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - James V Talwar
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - Steven Cao
- Division of Epidemiology, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, 92093, USA
| | | | | | - Divya Kirani
- Undergraduate Biology and Bioinformatics Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jessica Au
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Rany M Salem
- Division of Epidemiology, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, 92093, USA
| | - Gerald P Morris
- Department of Pathology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Olivier Harismendy
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Sandip Pravin Patel
- Center for Personalized Cancer Therapy, Division of Hematology and Oncology, UC San Diego Moores Cancer Center, San Diego, CA, 92037, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jill P Mesirov
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Maurizio Zanetti
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
- The Laboratory of Immunology and Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Chun Chieh Fan
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK, 74136, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Wesley K Thompson
- Division of Biostatistics, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, 92093, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - J Silvio Gutkind
- Department of Pharmacology, UCSD Moores Cancer Center, La Jolla, CA, 92093, USA
| | | | - Hannah Carter
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
68
|
Al Salhi Y, Sequi MB, Valenzi FM, Fuschi A, Martoccia A, Suraci PP, Carbone A, Tema G, Lombardo R, Cicione A, Pastore AL, De Nunzio C. Cancer Stem Cells and Prostate Cancer: A Narrative Review. Int J Mol Sci 2023; 24:ijms24097746. [PMID: 37175453 PMCID: PMC10178135 DOI: 10.3390/ijms24097746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer stem cells (CSCs) are a small and elusive subpopulation of self-renewing cancer cells with the remarkable ability to initiate, propagate, and spread malignant disease. In the past years, several authors have focused on the possible role of CSCs in PCa development and progression. PCa CSCs typically originate from a luminal prostate cell. Three main pathways are involved in the CSC development, including the Wnt, Sonic Hedgehog, and Notch signaling pathways. Studies have observed an important role for epithelial mesenchymal transition in this process as well as for some specific miRNA. These studies led to the development of studies targeting these specific pathways to improve the management of PCa development and progression. CSCs in prostate cancer represent an actual and promising field of research.
Collapse
Affiliation(s)
- Yazan Al Salhi
- Urology Unit, Department of Medico-Surgical Sciences & Biotechnologies, Faculty of Pharmacy & Medicine, Sapienza University of Rome, 04100 Latina, Italy
| | - Manfredi Bruno Sequi
- Urology Unit, Department of Medico-Surgical Sciences & Biotechnologies, Faculty of Pharmacy & Medicine, Sapienza University of Rome, 04100 Latina, Italy
| | - Fabio Maria Valenzi
- Urology Unit, Department of Medico-Surgical Sciences & Biotechnologies, Faculty of Pharmacy & Medicine, Sapienza University of Rome, 04100 Latina, Italy
| | - Andrea Fuschi
- Urology Unit, Department of Medico-Surgical Sciences & Biotechnologies, Faculty of Pharmacy & Medicine, Sapienza University of Rome, 04100 Latina, Italy
| | - Alessia Martoccia
- Urology Unit, Department of Medico-Surgical Sciences & Biotechnologies, Faculty of Pharmacy & Medicine, Sapienza University of Rome, 04100 Latina, Italy
| | - Paolo Pietro Suraci
- Urology Unit, Department of Medico-Surgical Sciences & Biotechnologies, Faculty of Pharmacy & Medicine, Sapienza University of Rome, 04100 Latina, Italy
| | - Antonio Carbone
- Urology Unit, Department of Medico-Surgical Sciences & Biotechnologies, Faculty of Pharmacy & Medicine, Sapienza University of Rome, 04100 Latina, Italy
| | - Giorgia Tema
- Urology Unit, Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Riccardo Lombardo
- Urology Unit, Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Antonio Cicione
- Urology Unit, Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | - Antonio Luigi Pastore
- Urology Unit, Department of Medico-Surgical Sciences & Biotechnologies, Faculty of Pharmacy & Medicine, Sapienza University of Rome, 04100 Latina, Italy
| | - Cosimo De Nunzio
- Urology Unit, Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| |
Collapse
|
69
|
Wang D, Cheng C, Chen X, Wang J, Liu K, Jing N, Xu P, Xi X, Sun Y, Ji Z, Zhao H, He Y, Zhang K, Du X, Dong B, Fang Y, Zhang P, Qian X, Xue W, Gao WQ, Zhu HH. IL-1β Is an Androgen-Responsive Target in Macrophages for Immunotherapy of Prostate Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2206889. [PMID: 37092583 DOI: 10.1002/advs.202206889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/03/2023] [Indexed: 05/03/2023]
Abstract
Great attention is paid to the role of androgen receptor (AR) as a central transcriptional factor in driving the growth of prostate cancer (PCa) epithelial cells. However, the understanding of the role of androgen in PCa-infiltrated immune cells and the impact of androgen deprivation therapy (ADT), the first-line treatment for advanced PCa, on the PCa immune microenvironment remains limited. On the other hand, immune checkpoint blockade has revolutionized the treatment of certain cancer types, but fails to achieve any benefit in advanced PCa, due to an immune suppressive environment. In this study, it is reported that AR signaling pathway is evidently activated in tumor-associated macrophages (TAMs) of PCa both in mice and humans. AR acts as a transcriptional repressor for IL1B in TAMs. ADT releases the restraint of AR on IL1B and therefore leads to an excessive expression and secretion of IL-1β in TAMs. IL-1β induces myeloid-derived suppressor cells (MDSCs) accumulation that inhibits the activation of cytotoxic T cells, leading to the immune suppressive microenvironment. Critically, anti-IL-1β antibody coupled with ADT and the immune checkpoint inhibitor anti-PD-1 antibody exerts a stronger anticancer effect on PCa following castration. Together, IL-1β is an important androgen-responsive immunotherapeutic target for advanced PCa.
Collapse
Affiliation(s)
- Deng Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Chaping Cheng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Xinyu Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Jinming Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Kaiyuan Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Na Jing
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Penghui Xu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Xialian Xi
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Yujiao Sun
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Zhongzhong Ji
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Huifang Zhao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Yuman He
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Kai Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Xinxing Du
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Baijun Dong
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Yuxiang Fang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Pengcheng Zhang
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Xueming Qian
- Mabspace Biosciences (Suzhou) Co. Limited, Suzhou, 215123, P. R. China
| | - Wei Xue
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| |
Collapse
|
70
|
Pakula H, Omar M, Carelli R, Pederzoli F, Fanelli GN, Pannellini T, Van Emmenis L, Rodrigues S, Fidalgo-Ribeiro C, Nuzzo PV, Brady NJ, Jere M, Unkenholz C, Alexanderani MK, Khani F, de Almeida FN, Abate-Shen C, Greenblatt MB, Rickman DS, Barbieri CE, Robinson BD, Marchionni L, Loda M. Distinct mesenchymal cell states mediate prostate cancer progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534769. [PMID: 37034687 PMCID: PMC10081210 DOI: 10.1101/2023.03.29.534769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Alterations in tumor stroma influence prostate cancer progression and metastatic potential. However, the molecular underpinnings of this stromal-epithelial crosstalk are largely unknown. Here, we compare mesenchymal cells from four genetically engineered mouse models (GEMMs) of prostate cancer representing different stages of the disease to their wild-type (WT) counterparts by single-cell RNA sequencing (scRNA-seq) and, ultimately, to human tumors with comparable genotypes. We identified 8 transcriptionally and functionally distinct stromal populations responsible for common and GEMM-specific transcriptional programs. We show that stromal responses are conserved in mouse models and human prostate cancers with the same genomic alterations. We noted striking similarities between the transcriptional profiles of the stroma of murine models of advanced disease and those of of human prostate cancer bone metastases. These profiles were then used to build a robust gene signature that can predict metastatic progression in prostate cancer patients with localized disease and is also associated with progression-free survival independent of Gleason score. Taken together, this offers new evidence that stromal microenvironment mediates prostate cancer progression, further identifying tissue-based biomarkers and potential therapeutic targets of aggressive and metastatic disease.
Collapse
Affiliation(s)
- Hubert Pakula
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Mohamed Omar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ryan Carelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Filippo Pederzoli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Giuseppe Nicolò Fanelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Laboratory Medicine, Pisa University Hospital, Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56126, Italy
| | - Tania Pannellini
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lucie Van Emmenis
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Silvia Rodrigues
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Caroline Fidalgo-Ribeiro
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Pier V. Nuzzo
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Nicholas J. Brady
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Madhavi Jere
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Caitlin Unkenholz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Mohammad K. Alexanderani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Francesca Khani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY 10021, USA
- Department of Urology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Francisca Nunes de Almeida
- Departments of Molecular Pharmacology and Therapeutics, Urology, Medicine, Pathology & Cell Biology and Systems Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Cory Abate-Shen
- Departments of Molecular Pharmacology and Therapeutics, Urology, Medicine, Pathology & Cell Biology and Systems Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - David S. Rickman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Christopher E. Barbieri
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY 10021, USA
- Department of Urology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Brian D. Robinson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY 10021, USA
- Department of Urology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY 10021, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Ave, Boston, MA, 02215, USA
| |
Collapse
|
71
|
Błaszczuk A, Sikora D, Kiś J, Stępień E, Drop B, Polz-Dacewicz M. Humoral Response after SARS-CoV-2 Vaccination in Prostate Cancer Patients. Vaccines (Basel) 2023; 11:vaccines11040770. [PMID: 37112682 PMCID: PMC10144447 DOI: 10.3390/vaccines11040770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Cancer is an important public health problem. Prostate cancer is one of the most common cancers among men. In Poland, the incidence of this type of cancer is constantly growing. Considering the appearance of a new coronavirus in December 2019 (SARS-CoV-2) and the fact that oncology patients, including those with prostate cancer, are particularly vulnerable to infection, it is recommended to get vaccinated against COVID-19. In our study, we determined the level and prevalence of antibodies against SARS-CoV-2 IgG in patients with prostate cancer compared to the control group and whether the patients’ ages affected the level of antibodies. PCa patients and controls were divided into two age groups: 50–59 years and 60–70 years. We also analyzed the level of antibodies in patients belonging to the relevant risk groups for prostate cancer (the European Society of Urology risk group classification of prostate cancer). For the study, we used the Microblot-Array COVID-19 IgG test to detect antibodies against the three main SARS-CoV-2 antigens: NCP, RBD, and S2. Our results showed that prostate cancer patients had significantly lower levels of anti-SARS-CoV-2 IgG antibodies compared to controls. In addition, age also affected the decrease in the number of IgG antibodies. The level of antibodies in the intermediate/high-risk group was lower compared to the low-risk group.
Collapse
Affiliation(s)
- Agata Błaszczuk
- SARS Laboratory, Department of Virology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Dominika Sikora
- SARS Laboratory, Department of Virology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Jacek Kiś
- 1st Clinical Military Hospital with Outpatient Clinic in Lublin, 20-049 Lublin, Poland
| | - Ewa Stępień
- SARS Laboratory, Department of Virology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Bartłomiej Drop
- Department of Computer Science and Medical Statistics with the e-Health Laboratory, Medical University of Lublin, 20-090 Lublin, Poland
| | | |
Collapse
|
72
|
Sun Y, Cronin MF, Mendonça MCP, Guo J, O'Driscoll CM. Sialic Acid-Targeted Cyclodextrin-Based Nanoparticles Deliver CSF-1R siRNA and Reprogram Tumour-Associated Macrophages for Immunotherapy of Prostate Cancer. Eur J Pharm Sci 2023; 185:106427. [PMID: 36948408 DOI: 10.1016/j.ejps.2023.106427] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/03/2023] [Accepted: 03/19/2023] [Indexed: 03/24/2023]
Abstract
Prostate cancer remains a serious condition threatening the health of men. Due to the complicated nature of the tumour microenvironment (TME), conventional treatments face challenges including poor prognosis and tumour resistance, therefore new therapeutic strategies are urgently needed. Small interfering RNA (siRNA), a double-stranded non-coding RNA, regulates specific gene expression through RNA interference. Tumour-associated macrophages (TAMs) are a potential therapeutic target in cancer immunotherapy. Colony stimulating factor-1/colony stimulating factor-1 receptor (CSF-1/CSF-1R) signaling pathway plays a crucial role in the polarization of the immunosuppressive TAMs, M2 macrophages. Downregulation of CSF-1R is known to reprogram the immunosuppressive TAMs, M2 macrophages, to the immunostimulatory phenotype, M1 macrophages. Sialic acid is a ligand for Siglec-1 (CD169) which is overexpressed on M2 macrophages with little expression in other phenotypes. Therefore, a sialic acid-targeted cyclodextrin-based nanoparticle was developed to specifically deliver CSF-1R siRNA to M2 macrophages. The nanoparticles were studied in vitro using both human and mouse prostate cancer cell lines. Results show that the targeted nanoparticles achieved cell specific delivery to M2 macrophages via the sialic acid-CD169 axis. The expression of CSF-1R was significantly downregulated in M2 macrophages (29.64% for targeted vs 19.31% for non-targeted nanoparticles in THP-1-derived M2 macrophages and 38.94% for targeted vs 18.51% for non-targeted nanoparticles in RAW 264.7-derived M2 macrophages, n = 4, p < 0.01). The resulting reprograming of M2 macrophages to M1 enhanced the level of apoptosis in the prostate cancer cells in a Transwell model (49.17% for targeted vs 37.68% for non-targeted nanoparticles in PC-3 cells and 69.15% for targeted vs 44.73% for non-targeted nanoparticles in TRAMP C1 cells, n = 3, p < 0.01). Thus, this targeted cyclodextrin-based siRNA drug delivery system provides a potential strategy for prostate cancer immunotherapy.
Collapse
Affiliation(s)
- Yao Sun
- School of Pharmacy, University College Cork, Ireland
| | | | | | - Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, China.
| | | |
Collapse
|
73
|
Bedeschi M, Marino N, Cavassi E, Piccinini F, Tesei A. Cancer-Associated Fibroblast: Role in Prostate Cancer Progression to Metastatic Disease and Therapeutic Resistance. Cells 2023; 12:cells12050802. [PMID: 36899938 PMCID: PMC10000679 DOI: 10.3390/cells12050802] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Prostate cancer (PCa) is one of the most common cancers in European males. Although therapeutic approaches have changed in recent years, and several new drugs have been approved by the Food and Drug Administration (FDA), androgen deprivation therapy (ADT) remains the standard of care. Currently, PCa represents a clinical and economic burden due to the development of resistance to ADT, paving the way to cancer progression, metastasis, and to long-term side effects induced by ADT and radio-chemotherapeutic regimens. In light of this, a growing number of studies are focusing on the tumor microenvironment (TME) because of its role in supporting tumor growth. Cancer-associated fibroblasts (CAFs) have a central function in the TME because they communicate with prostate cancer cells, altering their metabolism and sensitivity to drugs; hence, targeted therapy against the TME, and, in particular, CAFs, could represent an alternative therapeutic approach to defeat therapy resistance in PCa. In this review, we focus on different CAF origins, subsets, and functions to highlight their potential in future therapeutic strategies for prostate cancer.
Collapse
Affiliation(s)
- Martina Bedeschi
- BioScience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
- Correspondence: (M.B.); (A.T.); Tel.: +39-0543739932 (A.T.)
| | - Noemi Marino
- BioScience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Elena Cavassi
- BioScience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Filippo Piccinini
- BioScience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Anna Tesei
- BioScience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
- Correspondence: (M.B.); (A.T.); Tel.: +39-0543739932 (A.T.)
| |
Collapse
|
74
|
Nguyen HM, Gaikwad S, Oladejo M, Agrawal MY, Srivastava SK, Wood LM. Interferon stimulated gene 15 (ISG15) in cancer: An update. Cancer Lett 2023; 556:216080. [PMID: 36736853 DOI: 10.1016/j.canlet.2023.216080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/17/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023]
Abstract
Among the plethora of defense mechanisms which a host elicits after pathogen invasion, type 1 interferons play a central role in regulating the immune system's response. They induce several interferon-stimulated genes (ISGs) which play a diverse role once activated. Over the past few decades, there have been several studies exploring the role of ISGs in cancer and ISG15 is among the most studied for its pro and anti-tumorigenic role. In this review, we aim to provide an update on the recent observations and findings related to ISG15 in cancer. We provide a brief overview about the initial observations and important historical findings which helped scientists understand structure and function of ISG15. We aim to provide an overview of ISG15 in cancer with an emphasis on studies which delve into the molecular mechanism of ISG15 in modulating the tumor microenvironment. Further, the dysregulation of ISG15 in cancer and the molecular mechanisms associated with its pro and anti-tumor roles are discussed in respective cancer types. Finally, we discuss multiple therapeutic applications of ISG15 in current cancer therapy.
Collapse
Affiliation(s)
- Hong-My Nguyen
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Abilene, TX, 79601, USA; Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA
| | - Shreyas Gaikwad
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Abilene, TX, 79601, USA; Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA
| | - Mariam Oladejo
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Abilene, TX, 79601, USA; Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA
| | - Manas Yogendra Agrawal
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Abilene, TX, 79601, USA; Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA
| | - Sanjay K Srivastava
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Abilene, TX, 79601, USA; Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA
| | - Laurence M Wood
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Abilene, TX, 79601, USA; Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA.
| |
Collapse
|
75
|
Govindarajan B, Sbrissa D, Pressprich M, Kim S, Vaishampayan U, Cher ML, Chinni S. Adaptor proteins mediate CXCR4 and PI4KA crosstalk in prostate cancer cells and the significance of PI4KA in bone tumor growth. RESEARCH SQUARE 2023:rs.3.rs-2590830. [PMID: 36865146 PMCID: PMC9980273 DOI: 10.21203/rs.3.rs-2590830/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The chemokine receptor, CXCR4 signaling regulates cell growth, invasion, and metastasis to the bone-marrow niche in prostate cancer (PCa). Previously, we established that CXCR4 interacts with phosphatidylinositol 4-kinase IIIα (PI4KIIIα encoded by PI4KA) through its adaptor proteins and PI4KA overexpressed in the PCa metastasis. To further characterize how the CXCR4-PI4KIIIα axis promotes PCa metastasis, here we identify CXCR4 binds to PI4KIIIα adaptor proteins TTC7 and this interaction induce plasma membrane PI4P production in prostate cancer cells. Inhibiting PI4KIIIα or TTC7 reduces plasma membrane PI4P production, cellular invasion, and bone tumor growth. Using metastatic biopsy sequencing, we found PI4KA expression in tumors correlated with overall survival and contributes to immunosuppressive bone tumor microenvironment through preferentially enriching non-activated and immunosuppressive macrophage populations. Altogether we have characterized the chemokine signaling axis through CXCR4-PI4KIIIα interaction contributing to the growth of prostate cancer bone metastasis.
Collapse
|
76
|
Tolcher AW, Gordon M, Mahoney KM, Seto A, Zavodovskaya M, Hsueh CH, Zhai S, Tarnowski T, Jürgensmeier JM, Stinson S, Othman AA, Chen T, Strauss J. Phase 1 first-in-human study of dalutrafusp alfa, an anti-CD73-TGF-β-trap bifunctional antibody, in patients with advanced solid tumors. J Immunother Cancer 2023; 11:jitc-2022-005267. [PMID: 36746510 PMCID: PMC9906379 DOI: 10.1136/jitc-2022-005267] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cluster of differentiation (CD)73-adenosine and transforming growth factor (TGF)-β pathways are involved in abrogated antitumor immune responses and can lead to protumor conditions. This Phase 1 study (NCT03954704) evaluated the safety, pharmacokinetics, pharmacodynamics, and efficacy of dalutrafusp alfa (also known as GS-1423 and AGEN1423), a bifunctional, humanized, aglycosylated immunoglobulin G1 kappa antibody that selectively inhibits CD73-adenosine production and neutralizes active TGF-β signaling in patients with advanced solid tumors. METHODS Dose escalation started with an accelerated titration followed by a 3+3 design. Patients received dalutrafusp alfa (0.3, 1, 3, 10, 20, 30, or 45 mg/kg) intravenously every 2 weeks (Q2W) up to 1 year or until progressive disease (PD) or unacceptable toxicity. RESULTS In total, 21/22 patients received at least one dose of dalutrafusp alfa. The median number of dalutrafusp alfa doses administered was 3 (range 1-14). All patients had at least one adverse event (AE), most commonly fatigue (47.6%), nausea (33.3%), diarrhea (28.6%), and vomiting (28.6%). Nine (42.9%) patients had a Grade 3 or 4 AE; two had Grade 5 AEs of pulmonary embolism and PD, both unrelated to dalutrafusp alfa. Target-mediated drug disposition appears to be saturated at dalutrafusp alfa doses above 20 mg/kg. Complete CD73 target occupancy on B cells and CD8+ T cells was observed, and TGF-β 1/2/3 levels were undetectable at dalutrafusp alfa doses of 20 mg/kg and higher. Free soluble (s)CD73 levels and sCD73 activity increased with dalutrafusp alfa treatment. Seventeen patients reached the first response assessment, with complete response, partial response, stable disease, and PD in 0, 1 (4.8%), 7 (33.3%), and 9 (42.9%) patients, respectively. CONCLUSIONS Dalutrafusp alfa doses up to 45 mg/kg Q2W were well tolerated in patients with advanced solid tumors. Additional evaluation of dalutrafusp alfa could further elucidate the clinical utility of targeting CD73-adenosine and TGF-β pathways in oncology.
Collapse
Affiliation(s)
| | - Michael Gordon
- HonorHealth Research Institute, Scottsdale, Arizona, USA
| | | | - Anna Seto
- Gilead Sciences Inc, Foster City, California, USA
| | | | | | - Shuyan Zhai
- Gilead Sciences Inc, Foster City, California, USA
| | | | | | | | | | | | - James Strauss
- Mary Crowley Cancer Research Center, Dallas, Texas, USA
| |
Collapse
|
77
|
Messex JK, Liou GY. Impact of Immune Cells in the Tumor Microenvironment of Prostate Cancer Metastasis. Life (Basel) 2023; 13:333. [PMID: 36836690 PMCID: PMC9967893 DOI: 10.3390/life13020333] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Prostate cancer is the most prevalent type of cancer in senior American men. Currently, the five-year survival rate after the initial diagnosis of prostate cancer is close to 100%. However, it is also the second leading cause of cancer death in senior men due to the dissemination of prostate cancer cells outside of the prostate causing growth in other organs, known as metastatic prostate cancer. The tumor microenvironment (TME) plays a critical role in the development, progression and metastasis of prostate cancer. One of the major components of the TME contains various types of immune cells, often recruited by cancer cells to the cancer formation areas. The interactions among prostate cancer cells and the infiltrating immune cells affect the outcome of prostate cancer. Here, we summarize the mechanisms various infiltrating immune cells use to regulate prostate cancer metastasis and possibly lead to the development of treatment strategies. Furthermore, the information here may also give rise to preventative strategies that focus on targeting the TME of prostate cancer patients.
Collapse
Affiliation(s)
- Justin K. Messex
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Geou-Yarh Liou
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
- Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA
| |
Collapse
|
78
|
Mathiesen A, Haynes B, Huyck R, Brown M, Dobrian A. Adipose Tissue-Derived Extracellular Vesicles Contribute to Phenotypic Plasticity of Prostate Cancer Cells. Int J Mol Sci 2023; 24:1229. [PMID: 36674745 PMCID: PMC9864182 DOI: 10.3390/ijms24021229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Metastatic prostate cancer is one of the leading causes of male cancer deaths in the western world. Obesity significantly increases the risk of metastatic disease and is associated with a higher mortality rate. Systemic chronic inflammation can result from a variety of conditions, including obesity, where adipose tissue inflammation is a major contributor. Adipose tissue endothelial cells (EC) exposed to inflammation become dysfunctional and produce a secretome, including extracellular vesicles (EV), that can impact function of cells in distant tissues, including malignant cells. The aim of this study was to explore the potential role of EVs produced by obese adipose tissue and the ECs exposed to pro-inflammatory cytokines on prostate cancer phenotypic plasticity in vitro. We demonstrate that PC3ML metastatic prostate cancer cells exposed to EVs from adipose tissue ECs and to EVs from human adipose tissue total explants display reduced invasion and increased proliferation. The latter functional changes could be attributed to the EV miRNA cargo. We also show that the functional shift is TWIST1-dependent and is consistent with mesenchymal-to-epithelial transition, which is key to establishment of secondary tumor growth. Understanding the complex effects of EVs on prostate cancer cells of different phenotypes is key before their intended use as therapeutics.
Collapse
Affiliation(s)
- Allison Mathiesen
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Bronson Haynes
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Ryan Huyck
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Michael Brown
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Anca Dobrian
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| |
Collapse
|
79
|
Muacevic A, Adler JR, Magalhães H, Reis F, Mesquita A. Tumor-Infiltrating Lymphocytes in Localized Prostate Cancer: Do They Play an Important Role? Cureus 2023; 15:e34007. [PMID: 36811045 PMCID: PMC9939077 DOI: 10.7759/cureus.34007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 01/21/2023] Open
Abstract
Background Localized prostate cancer is a heterogeneous entity, and new biomarkers are required for risk stratification. This study aimed to characterize tumor-infiltrating lymphocytes (TILs) in localized prostate cancer and assess their potential prognostic markers. Methodology Radical prostatectomy specimens were analyzed to determine infiltration levels of CD4+, CD8+, T cells, and B cells (characterized by CD20+ cells) in the tumor tissue using immunohistochemistry and the recommendations of the International TILs Working Group 2014. The clinical endpoint was biochemical recurrence (BCR), and the study sample was divided into two cohorts (cohort 1: without BCR; cohort 2: with BCR). Prognostic markers were assessed using Kaplan-Meier and univariate/multivariate Cox regression analysis using SPSS version 25 (IBM Corp., Armonk, NY, USA). Results We included 96 patients in this study. BCR occurred in 51% of the patients. Normal TILs infiltration was found in most of the patients (41/31, 87%/63%). T CD4+ infiltration was statistically superior in cohort 2. This enrichment was associated with BCR (p < 0.05; log-rank test). After adjustment for routine clinical variables and Gleason grade groups (grade group ≤2 and grade group ≥3), it remained an independent prognostic variable of early BCR (p < 0.05; multivariate Cox regression). Conclusions This study showed that immune cell infiltration appears to be an important prognostic variable for early recurrence in localized prostate cancer.
Collapse
|
80
|
Erlandsson A, Lundholm M, Watz J, Bergh A, Petrova E, Alamdari F, Helleday T, Davidsson S, Andren O, Tarish F. Infiltrating immune cells in prostate cancer tissue after androgen deprivation and radiotherapy. Int J Immunopathol Pharmacol 2023; 37:3946320231158025. [PMID: 36880147 PMCID: PMC9996739 DOI: 10.1177/03946320231158025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
OBJECTIVES Androgen deprivation therapy (ADT) has long been a cornerstone in treatment of advanced prostate cancer (PCa), and is known to improve the results of radiotherapy (RT) for high-risk disease. The purpose of our study was to use a multiplexed immunohistochemical (mIHC) approach to investigate the infiltration of immune cells in PCa tissue after eight weeks of ADT and/or RT with 10 Gy. METHODS From a cohort of 48 patients divided into two treatment arms, we obtained biopsies before and after treatment and used a mIHC method with multispectral imaging to analyze the infiltration of immune cells in tumor stroma and tumor epithelium, focusing on areas with high infiltration. RESULTS Tumor stroma showed a significantly higher infiltration of immune cells compared to tumor epithelium. The most prominent immune cells were CD20+ B-lymphocytes, followed by CD68+ macrophages, CD8+ cytotoxic T-cells, FOXP3+ regulatory T-cells (Tregs), and T-bet+ Th1-cells. Neoadjuvant ADT followed by RT significantly increased the infiltration of all five immune cells. Numbers of Th1-cells and Tregs significantly increased after single treatment with ADT or RT. In addition, ADT alone increased the number of cytotoxic T-cells and RT increased the number of B-cells. CONCLUSIONS Neoadjuvant ADT in combination with RT results in a higher inflammatory response compared to RT or ADT alone. The mIHC method may be a useful tool for investigating infiltrating immune cells in PCa biopsies to understand how immunotherapeutic approaches can be combined with current PCa therapies.
Collapse
Affiliation(s)
- Ann Erlandsson
- Department of Urology, Faculty of Medicine and Health, 59566Örebro University, Örebro, Sweden.,Department of Environmental and Life Sciences/Biology, 101086Karlstad University, Karlstad, Sweden
| | - Marie Lundholm
- Department of Medical Biosciences, 377074Umeå University, Umeå, Sweden
| | - Johan Watz
- Department of Environmental and Life Sciences/Biology, 101086Karlstad University, Karlstad, Sweden
| | - Anders Bergh
- Department of Medical Biosciences, 377074Umeå University, Umeå, Sweden
| | - Elitsa Petrova
- Department of Clinical Pathology and Cytology, 59594Central Hospital Karlstad, Karlstad, Sweden
| | - Farhood Alamdari
- Department of Urology, 370894Västmanlands Hospital, Västerås, Sweden
| | - Thomas Helleday
- Department of Oncology-Pathology, Karolinska Institutet, 463758Science for Life Laboratory, Stockholm, Sweden
| | - Sabina Davidsson
- Department of Urology, Faculty of Medicine and Health, 59566Örebro University, Örebro, Sweden
| | - Ove Andren
- Department of Urology, Faculty of Medicine and Health, 59566Örebro University, Örebro, Sweden
| | - Firas Tarish
- Department of Oncology-Pathology, Karolinska Institutet, 463758Science for Life Laboratory, Stockholm, Sweden
| |
Collapse
|
81
|
Owen JS, Clayton A, Pearson HB. Cancer-Associated Fibroblast Heterogeneity, Activation and Function: Implications for Prostate Cancer. Biomolecules 2022; 13:67. [PMID: 36671452 PMCID: PMC9856041 DOI: 10.3390/biom13010067] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
The continuous remodeling of the tumor microenvironment (TME) during prostate tumorigenesis is emerging as a critical event that facilitates cancer growth, progression and drug-resistance. Recent advances have identified extensive communication networks that enable tumor-stroma cross-talk, and emphasized the functional importance of diverse, heterogeneous stromal fibroblast populations during malignant growth. Cancer-associated fibroblasts (CAFs) are a vital component of the TME, which mediate key oncogenic events including angiogenesis, immunosuppression, metastatic progression and therapeutic resistance, thus presenting an attractive therapeutic target. Nevertheless, how fibroblast heterogeneity, recruitment, cell-of-origin and differential functions contribute to prostate cancer remains to be fully delineated. Developing our molecular understanding of these processes is fundamental to developing new therapies and biomarkers that can ultimately improve clinical outcomes. In this review, we explore the current challenges surrounding fibroblast identification, discuss new mechanistic insights into fibroblast functions during normal prostate tissue homeostasis and tumorigenesis, and illustrate the diverse nature of fibroblast recruitment and CAF generation. We also highlight the promise of CAF-targeted therapies for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Jasmine S. Owen
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Aled Clayton
- Tissue Microenvironment Group, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Helen B. Pearson
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| |
Collapse
|
82
|
Prevalence of mismatch repair genes mutations and clinical activity of PD-1 therapy in Chinese prostate cancer patients. Cancer Immunol Immunother 2022; 72:1541-1551. [DOI: 10.1007/s00262-022-03347-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
|
83
|
Germanos AA, Arora S, Zheng Y, Goddard ET, Coleman IM, Ku AT, Wilkinson S, Song H, Brady NJ, Amezquita RA, Zager M, Long A, Yang YC, Bielas JH, Gottardo R, Rickman DS, Huang FW, Ghajar CM, Nelson PS, Sowalsky AG, Setty M, Hsieh AC. Defining cellular population dynamics at single-cell resolution during prostate cancer progression. eLife 2022; 11:e79076. [PMID: 36511483 PMCID: PMC9747158 DOI: 10.7554/elife.79076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 11/27/2022] [Indexed: 12/13/2022] Open
Abstract
Advanced prostate malignancies are a leading cause of cancer-related deaths in men, in large part due to our incomplete understanding of cellular drivers of disease progression. We investigate prostate cancer cell dynamics at single-cell resolution from disease onset to the development of androgen independence in an in vivo murine model. We observe an expansion of a castration-resistant intermediate luminal cell type that correlates with treatment resistance and poor prognosis in human patients. Moreover, transformed epithelial cells and associated fibroblasts create a microenvironment conducive to pro-tumorigenic immune infiltration, which is partially androgen responsive. Androgen-independent prostate cancer leads to significant diversification of intermediate luminal cell populations characterized by a range of androgen signaling activity, which is inversely correlated with proliferation and mRNA translation. Accordingly, distinct epithelial populations are exquisitely sensitive to translation inhibition, which leads to epithelial cell death, loss of pro-tumorigenic signaling, and decreased tumor heterogeneity. Our findings reveal a complex tumor environment largely dominated by castration-resistant luminal cells and immunosuppressive infiltrates.
Collapse
Affiliation(s)
- Alexandre A Germanos
- Division of Human Biology, Fred Hutchinson Cancer CenterSeattleUnited States
- University of Washington Molecular and Cellular Biology ProgramSeattleUnited States
| | - Sonali Arora
- Division of Human Biology, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Ye Zheng
- Division of Vaccine and infectious Diseases, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Erica T Goddard
- Division of Public Health Sciences, Translational Research Program, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Ilsa M Coleman
- Division of Human Biology, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Anson T Ku
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIHBethesdaUnited States
| | - Scott Wilkinson
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIHBethesdaUnited States
| | - Hanbing Song
- Division of Hematology/Oncology, Department of Medicine, University of California, San FranciscoSan FranciscoUnited States
| | - Nicholas J Brady
- Department of Pathology and Laboratory Medicine, Weill Cornell MedicineNew YorkUnited States
| | - Robert A Amezquita
- Division of Vaccine and infectious Diseases, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Michael Zager
- Center for Data Visualization, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Annalysa Long
- Division of Public Health Sciences, Translational Research Program, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Yu Chi Yang
- Division of Human Biology, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Jason H Bielas
- Division of Public Health Sciences, Translational Research Program, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Raphael Gottardo
- Division of Vaccine and infectious Diseases, Fred Hutchinson Cancer CenterSeattleUnited States
- Division of Public Health Sciences, Translational Research Program, Fred Hutchinson Cancer CenterSeattleUnited States
| | - David S Rickman
- Department of Pathology and Laboratory Medicine, Weill Cornell MedicineNew YorkUnited States
| | - Franklin W Huang
- Division of Hematology/Oncology, Department of Medicine, University of California, San FranciscoSan FranciscoUnited States
| | - Cyrus M Ghajar
- Division of Human Biology, Fred Hutchinson Cancer CenterSeattleUnited States
- Division of Public Health Sciences, Translational Research Program, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer CenterSeattleUnited States
- University of Washington Departments of Medicine and Genome SciencesSeattleUnited States
| | - Adam G Sowalsky
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIHBethesdaUnited States
| | - Manu Setty
- Translational Data Science Integrated Research Center, Fred Hutchinson Cancer CenterSeattleUnited States
- Division of Basic Sciences, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Andrew C Hsieh
- Division of Human Biology, Fred Hutchinson Cancer CenterSeattleUnited States
- University of Washington Departments of Medicine and Genome SciencesSeattleUnited States
| |
Collapse
|
84
|
Schauer T, Djurhuus SS, Simonsen C, Brasso K, Christensen JF. The effects of acute exercise and inflammation on immune function in early-stage prostate cancer. Brain Behav Immun Health 2022; 25:100508. [PMID: 36133956 PMCID: PMC9483738 DOI: 10.1016/j.bbih.2022.100508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/02/2022] [Accepted: 09/04/2022] [Indexed: 11/30/2022] Open
Abstract
Background The immune system plays a vital role in cancer development and progression. Strategies mobilizing cytotoxic cells of the immune system to combat immunosuppression in cancer may help to improve the treatment response of patients. To this end, we aimed to characterize the anti-cancer effect of acute exercise, including the involvement of inflammatory signals. Patients and methods Twenty patients with early-stage prostate cancer (PCa) scheduled to undergo prostatectomy performed one bout of acute exercise consisting of a watt-max test and four high-intensity intervals. Natural Killer (NK), NKT-like and T cell phenotype, NK cell cytotoxic activity (NKCA), and NKCA per-cell against cell lines of leukemia (K562) and prostate cancer origin (LNCaP and PC-3) were assessed. Inflammatory markers (TNF-α, IL-6, and CRP) were measured in plasma. Results Exercise increased NK, NKT-like, and CD8 T cell concentration in the circulation. Furthermore, exercise shifted immune cells towards a mature and cytotoxic phenotype e.g., NK cells exhibited higher CD57 as well as lower NKG2A expression. NKT-like and CD8 cells exhibited elevated CD57, TIGIT and Granzyme-B expression. Exercise significantly improved NKCA against K562 (+16% [5%; 27%]; p = 0.002) and LNCaP (+24% [14%; 34%]; p < 0.001) but not PC-3. NKCA per NK cell decreased during exercise and increased 1-h post exercise compared to baseline in K562, LNCap, and PC-3 cell lines. Baseline IL-6 correlated with lymphocyte, monocyte and T cell concentration pre-exercise and inversely correlated with the fold-change of mobilized lymphocytes and CD8 T cells during exercise. Furthermore, baseline IL-6 and TNF-α inversely correlated with NKCA against PC-3 cells during exercise. Conclusions Acute exercise mobilized cytotoxic immune cells and improved NKCA in patients with PCa whereas low-grade inflammation might impair the response. Whether the observed improvements impact long-term outcomes warrant further investigation. Clinical trial number NCT03675529.
Collapse
Affiliation(s)
- Tim Schauer
- Centre for Physical Activity Research, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Casper Simonsen
- Centre for Physical Activity Research, Copenhagen University Hospital, Copenhagen, Denmark
| | - Klaus Brasso
- Copenhagen Prostate Cancer Center, Department of Urology, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Jesper Frank Christensen
- Centre for Physical Activity Research, Copenhagen University Hospital, Copenhagen, Denmark
- Institute of Exercise and Biomechanics, University of Southern Denmark, Denmark
- Digestive Disease Center, Bispebjerg Hospital, Copenhagen, Denmark
| |
Collapse
|
85
|
Choi SYC, Ribeiro CF, Wang Y, Loda M, Plymate SR, Uo T. Druggable Metabolic Vulnerabilities Are Exposed and Masked during Progression to Castration Resistant Prostate Cancer. Biomolecules 2022; 12:1590. [PMID: 36358940 PMCID: PMC9687810 DOI: 10.3390/biom12111590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 08/27/2023] Open
Abstract
There is an urgent need for exploring new actionable targets other than androgen receptor to improve outcome from lethal castration-resistant prostate cancer. Tumor metabolism has reemerged as a hallmark of cancer that drives and supports oncogenesis. In this regard, it is important to understand the relationship between distinctive metabolic features, androgen receptor signaling, genetic drivers in prostate cancer, and the tumor microenvironment (symbiotic and competitive metabolic interactions) to identify metabolic vulnerabilities. We explore the links between metabolism and gene regulation, and thus the unique metabolic signatures that define the malignant phenotypes at given stages of prostate tumor progression. We also provide an overview of current metabolism-based pharmacological strategies to be developed or repurposed for metabolism-based therapeutics for castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Stephen Y. C. Choi
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Caroline Fidalgo Ribeiro
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY 10021, USA
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY 10021, USA
- New York Genome Center, New York, NY 10013, USA
| | - Stephen R. Plymate
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
- Geriatrics Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Takuma Uo
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
| |
Collapse
|
86
|
Qu C, Zhang H, Cao H, Tang L, Mo H, Liu F, Zhang L, Yi Z, Long L, Yan L, Wang Z, Zhang N, Luo P, Zhang J, Liu Z, Ye W, Liu Z, Cheng Q. Tumor buster - where will the CAR-T cell therapy 'missile' go? Mol Cancer 2022; 21:201. [PMID: 36261831 PMCID: PMC9580202 DOI: 10.1186/s12943-022-01669-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell (CAR-T cell) therapy based on gene editing technology represents a significant breakthrough in personalized immunotherapy for human cancer. This strategy uses genetic modification to enable T cells to target tumor-specific antigens, attack specific cancer cells, and bypass tumor cell apoptosis avoidance mechanisms to some extent. This method has been extensively used to treat hematologic diseases, but the therapeutic effect in solid tumors is not ideal. Tumor antigen escape, treatment-related toxicity, and the immunosuppressive tumor microenvironment (TME) limit their use of it. Target selection is the most critical aspect in determining the prognosis of patients receiving this treatment. This review provides a comprehensive summary of all therapeutic targets used in the clinic or shown promising potential. We summarize CAR-T cell therapies’ clinical trials, applications, research frontiers, and limitations in treating different cancers. We also explore coping strategies when encountering sub-optimal tumor-associated antigens (TAA) or TAA loss. Moreover, the importance of CAR-T cell therapy in cancer immunotherapy is emphasized.
Collapse
Affiliation(s)
- Chunrun Qu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,XiangYa School of Medicine, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hui Cao
- Department of Psychiatry, The Second People's Hospital of Hunan Province, The Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China.,The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lanhua Tang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haoyang Mo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,XiangYa School of Medicine, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,XiangYa School of Medicine, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lifu Long
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,XiangYa School of Medicine, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Luzhe Yan
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Nan Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,One-third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Weijie Ye
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
87
|
Interplay between fat cells and immune cells in bone: Impact on malignant progression and therapeutic response. Pharmacol Ther 2022; 238:108274. [DOI: 10.1016/j.pharmthera.2022.108274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/11/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022]
|
88
|
Xu W, Sun T, Wang J, Li H, Chen B, Zhou Y, Wang T, Wang S, Liu J, Jiang H. LMO3 downregulation in PCa: A prospective biomarker associated with immune infiltration. Front Genet 2022; 13:945151. [PMID: 36199576 PMCID: PMC9527341 DOI: 10.3389/fgene.2022.945151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Prostate cancer is the third leading cause of new cancer cases and the second most common tumor type in men globally. LMO3 has been stated to play a vital role in some cancers; however, the prognostic value of LMO3 in PCa remains vague. Here, we utilized various web databases to elucidate in detail the prognostic value and molecular functions of LMO3 in PCa. LMO3 expression was significantly decreased in PCa. Low LMO3 expression was associated with gender, age, and TNM grade and predicted a poor prognosis in PCa patients. Functional enrichment analysis suggested that LMO3 is engaged in the extracellular matrix and immune response. Moreover, LMO3 was positively correlated with immune infiltration levels and numerous immune markers. LMO3 may function as a prospective biomarker of immune infiltration in PCa.
Collapse
Affiliation(s)
- Wenchao Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Taotao Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaxin Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingliang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingjian Zhou
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jihong Liu, ; Hongyang Jiang,
| | - Hongyang Jiang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jihong Liu, ; Hongyang Jiang,
| |
Collapse
|
89
|
Prostate Cancer Tumor Stroma: Responsibility in Tumor Biology, Diagnosis and Treatment. Cancers (Basel) 2022; 14:cancers14184412. [PMID: 36139572 PMCID: PMC9496870 DOI: 10.3390/cancers14184412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary The crosstalk between prostate stroma and its epithelium is essential to tissue homeostasis. Likewise, reciprocal signaling between tumor cells and the stromal compartment is required in tumor progression to facilitate or stimulate key processes such as cell proliferation and invasion. The aim of the present work was to review the current state of knowledge on the significance of tumor stroma in the genesis, progression and therapeutic response of prostate carcinoma. Additionally, we addressed the future therapeutic opportunities. Abstract Prostate cancer (PCa) is a common cancer among males globally, and its occurrence is growing worldwide. Clinical decisions about the combination of therapies are becoming highly relevant. However, this is a heterogeneous disease, ranging widely in prognosis. Therefore, new approaches are needed based on tumor biology, from which further prognostic assessments can be established and complementary strategies can be identified. The knowledge of both the morphological structure and functional biology of the PCa stroma compartment can provide new diagnostic, prognostic or therapeutic possibilities. In the present review, we analyzed the aspects related to the tumor stromal component (both acellular and cellular) in PCa, their influence on tumor behavior and the therapeutic response and their consideration as a new therapeutic target.
Collapse
|
90
|
Boosting the Immune Response—Combining Local and Immune Therapy for Prostate Cancer Treatment. Cells 2022; 11:cells11182793. [PMID: 36139368 PMCID: PMC9496996 DOI: 10.3390/cells11182793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
Due to its slow progression and susceptibility to radical forms of treatment, low-grade PC is associated with high overall survival (OS). With the clinical progression of PC, the therapy is becoming more complex. The immunosuppressive tumor microenvironment (TME) makes PC a difficult target for most immunotherapeutics. Its general immune resistance is established by e.g., immune evasion through Treg cells, synthesis of immunosuppressive mediators, and the defective expression of surface neoantigens. The success of sipuleucel-T in clinical trials initiated several other clinical studies that specifically target the immune escape of tumors and eliminate the immunosuppressive properties of the TME. In the settings of PC treatment, this can be commonly achieved with radiation therapy (RT). In addition, focal therapies usually applied for localized PC, such as high-intensity focused ultrasound (HIFU) therapy, cryotherapy, photodynamic therapy (PDT), and irreversible electroporation (IRE) were shown to boost the anti-cancer response. Nevertheless, the present guidelines restrict their application to the context of a clinical trial or a prospective cohort study. This review explains how RT and focal therapies enhance the immune response. We also provide data supporting the combination of RT and focal treatments with immune therapies.
Collapse
|
91
|
Chandran E, Meininger L, Karzai F, Madan RA. Signaling new therapeutic opportunities: cytokines in prostate cancer. Expert Opin Biol Ther 2022; 22:1233-1243. [PMID: 35930001 DOI: 10.1080/14712598.2022.2108701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Despite FDA approval of sipuleucel-T in 2010, endeavors to use immune checkpoint inhibitors in unselected prostate cancer patients have not improved clinical outcomes. These efforts include studies with anti-PD1/PD-L1 and anti-CTLA-4 alone and in combination with existing standards of care. These strategies are generally T-cell centric and disregard the broader complex and pleiotropic components of the prostate cancer tumor microenvironment such as natural killer cells, myeloid-derived suppressor cells and tumor associated macrophages. AREAS COVERED We performed an online literature search and undertook a review of existing pre-clinical and clinical literature for cytokine-based therapy relating to prostate cancer, specifically on interleukin (IL)-2, IL-15, IL-12, IL-23, IL-8 and transforming growth factor (TGF)-β. EXPERT OPINION Cytokine-based therapies present an alternative immune strategy to target the pleiotropic prostate cancer tumor microenvironment beyond T-cells. Future immunotherapy strategies in prostate cancer should address these immune cell populations which may play more important roles in the prostate cancer tumor microenvironment.
Collapse
Affiliation(s)
- Elias Chandran
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Luke Meininger
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Fatima Karzai
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ravi A Madan
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
92
|
Developing New Treatment Options for Castration-Resistant Prostate Cancer and Recurrent Disease. Biomedicines 2022; 10:biomedicines10081872. [PMID: 36009418 PMCID: PMC9405166 DOI: 10.3390/biomedicines10081872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer (PCa) is a major diagnosed cancer among men globally, and about 20% of patients develop metastatic prostate cancer (mPCa) in the initial diagnosis. PCa is a typical androgen-dependent disease; thus, hormonal therapy is commonly used as a standard care for mPCa by inhibiting androgen receptor (AR) activities, or androgen metabolism. Inevitably, almost all PCa will acquire resistance and become castration-resistant PCa (CRPC) that is associated with AR gene mutations or amplification, the presence of AR variants, loss of AR expression toward neuroendocrine phenotype, or other hormonal receptors. Treating CRPC poses a great challenge to clinicians. Research efforts in the last decade have come up with several new anti-androgen agents to prolong overall survival of CRPC patients. In addition, many potential targeting agents have been at the stage of being able to translate many preclinical discoveries into clinical practices. At this juncture, it is important to highlight the emerging strategies including small-molecule inhibitors to AR variants, DNA repair enzymes, cell survival pathway, neuroendocrine differentiation pathway, radiotherapy, CRPC-specific theranostics and immune therapy that are underway or have recently been completed.
Collapse
|
93
|
Abu el Maaty MA, Terzic J, Keime C, Rovito D, Lutzing R, Yanushko D, Parisotto M, Grelet E, Namer IJ, Lindner V, Laverny G, Metzger D. Hypoxia-mediated stabilization of HIF1A in prostatic intraepithelial neoplasia promotes cell plasticity and malignant progression. SCIENCE ADVANCES 2022; 8:eabo2295. [PMID: 35867798 PMCID: PMC9307253 DOI: 10.1126/sciadv.abo2295] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Prostate cancer (PCa) is a leading cause of cancer-related deaths. The slow evolution of precancerous lesions to malignant tumors provides a broad time frame for preventing PCa. To characterize prostatic intraepithelial neoplasia (PIN) progression, we conducted longitudinal studies on Pten(i)pe-/- mice that recapitulate prostate carcinogenesis in humans. We found that early PINs are hypoxic and that hypoxia-inducible factor 1 alpha (HIF1A) signaling is activated in luminal cells, thus enhancing malignant progression. Luminal HIF1A dampens immune surveillance and drives luminal plasticity, leading to the emergence of cells that overexpress Transglutaminase 2 (TGM2) and have impaired androgen signaling. Elevated TGM2 levels in patients with PCa are associated with shortened progression-free survival after prostatectomy. Last, we show that pharmacologically inhibiting HIF1A impairs cell proliferation and induces apoptosis in PINs. Therefore, our study demonstrates that HIF1A is a target for PCa prevention and that TGM2 is a promising prognostic biomarker of early relapse after prostatectomy.
Collapse
Affiliation(s)
- Mohamed A. Abu el Maaty
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Julie Terzic
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Céline Keime
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Daniela Rovito
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Régis Lutzing
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Darya Yanushko
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Maxime Parisotto
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Elise Grelet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Izzie Jacques Namer
- Université de Strasbourg, Strasbourg, France
- ICube, CNRS, UMR 7357, Strasbourg, France
| | - Véronique Lindner
- Département de Pathologie, Les Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Gilles Laverny
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
- Corresponding author. (D.M.); (G.L.)
| | - Daniel Metzger
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
- Corresponding author. (D.M.); (G.L.)
| |
Collapse
|
94
|
Bao X, Xie L. Targeting purinergic pathway to enhance radiotherapy-induced immunogenic cancer cell death. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:222. [PMID: 35836249 PMCID: PMC9284706 DOI: 10.1186/s13046-022-02430-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/02/2022] [Indexed: 01/09/2023]
Abstract
Emerging evidence has demonstrated that radiotherapy (RT) can not only cause direct damage to cancer cells but also lead to immunogenic cell death (ICD), which involves the activation of host antitumor immune response in tumor immune microenvironment (TIME). RT-induced ICD comprises the release of damage-associated molecular patterns (DAMPs) from dying cancer cells that result in the activation of tumor-specific immunity to elicit long-term antitumor efficacy in both original and abscopal tumor sites. Adenosine triphosphate (ATP), as an important DAMP released by irradiated cancer cells and an essential factor within purinergic pathway, can be further hydrolyzed to adenosine (ADO) by two key ectonucleotidases, CD39 and CD73, to further modulate the antitumor immunity in TIME through purinergic signaling via the interaction to its specific receptors such as adenosine 2A receptor (A2AR) and A2BR widely expressed on the surface of the components in TIME, including cancer cells and many immune effector cells. In this review, we first introduced key components in purinergic pathway including ATP, ADO, their receptors, and essential ectonucleotidases. Then we reviewed the regulation of ATP and ADO levels and their main mechanisms by which they promote tumor growth and broadly suppress antitumor immunity through inhibiting the pro-inflammatory response of dendritic cells, cytotoxic T lymphocytes, and natural killer cells, while improving the anti-inflammatory response of regulatory T cells, macrophages, and myeloid-derived suppressor cells in TIME, especially after irradiation. Finally, we presented an overview of dozens of promising therapeutics including pharmacological antagonists and specific antibodies targeting ADO receptors and ectonucleotidases CD39 or CD73 investigated in the clinic for cancer treatment, especially focusing on the preclinical studies and clinical trials being explored for blocking the purinergic signaling to enhance RT as a combination antitumor therapeutic strategy, which has a robust potential to be translated to the clinic in the future.
Collapse
Affiliation(s)
- Xuhui Bao
- Institute of Therapeutic Cancer Vaccines, Fudan University Pudong Medical Center, 2800 Gongwei Rd, Shanghai, China. .,Department of Oncology, Fudan University Pudong Medical Center, Shanghai, China. .,Department of Pathology, Duke University Medical Center, Durham, NC, USA.
| | - Liyi Xie
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Rd, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
95
|
Siemińska I, Baran J. Myeloid-Derived Suppressor Cells as Key Players and Promising Therapy Targets in Prostate Cancer. Front Oncol 2022; 12:862416. [PMID: 35860573 PMCID: PMC9289201 DOI: 10.3389/fonc.2022.862416] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/06/2022] [Indexed: 12/27/2022] Open
Abstract
Prostate cancer (PC) is the second most often diagnosed malignancy in men and one of the major causes of cancer death worldwide. Despite genetic predispositions, environmental factors, including a high-fat diet, obesity, a sedentary lifestyle, infections of the prostate, and exposure to chemicals or ionizing radiation, play a crucial role in PC development. Moreover, due to a lack of, or insufficient T-cell infiltration and its immunosuppressive microenvironment, PC is frequently classified as a “cold” tumor. This is related to the absence of tumor-associated antigens, the lack of T-cell activation and their homing into the tumor bed, and the presence of immunological cells with regulatory functions, including myeloid-derived suppressor cells (MDSCs), regulatory T cells (Treg), and tumor-associated macrophages (TAMs). All of them, by a variety of means, hamper anti-tumor immune response in the tumor microenvironment (TME), stimulating tumor growth and the formation of metastases. Therefore, they emerge as potential anti-cancer therapy targets. This article is focused on the function and role of MDSCs in the initiation and progression of PC. Clinical trials directly targeting this cell population or affecting its biological functions, thus limiting its pro-tumorigenic activity, are also presented.
Collapse
Affiliation(s)
- Izabela Siemińska
- Department of Clinical Immunology, Jagiellonian University Medical College, Cracow, Poland
- University Centre of Veterinary Medicine, Jagiellonian University - University of Agriculture, Cracow, Poland
| | - Jarek Baran
- Department of Clinical Immunology, Jagiellonian University Medical College, Cracow, Poland
- *Correspondence: Jarek Baran,
| |
Collapse
|
96
|
Cabozantinib in combination with atezolizumab in patients with metastatic castration-resistant prostate cancer: results from an expansion cohort of a multicentre, open-label, phase 1b trial (COSMIC-021). Lancet Oncol 2022; 23:899-909. [DOI: 10.1016/s1470-2045(22)00278-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/30/2022]
|
97
|
Sommer U, Ebersbach C, Beier AMK, Baretton GB, Thomas C, Borkowetz A, Erb HHH. Influence of Androgen Deprivation Therapy on the PD-L1 Expression and Immune Activity in Prostate Cancer Tissue. Front Mol Biosci 2022; 9:878353. [PMID: 35836932 PMCID: PMC9273856 DOI: 10.3389/fmolb.2022.878353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/17/2022] [Indexed: 12/19/2022] Open
Abstract
Immune checkpoint inhibitors have become a promising new therapy for cancer treatment. However, due to prostate cancer’s high heterogeneity and immune-suppressive tumour microenvironment, clinical trials with immune checkpoint inhibitors for prostate cancer resulted in low or no response. This descriptive and retrospective study investigates the influence of androgen deprivation therapy (ADT) on PD-L1 expression and CD8+ T-cell tumour infiltration and activity in primary prostate cancer tissue. Therefore, immunohistochemistry was used to assess PD-L1, CD8+ T-cell, and the immune activation marker Granzyme B (GrB) in PCa tissue before and under ADT. In line with previous studies, few prostate cancer tissues showed PD-L1 expression and CD8+ T-cell infiltration. However, PD-L1 expression levels on tumour cells or infiltrating immune cells above 5% generated an immune-suppressive tumour microenvironment harbouring hypofunctional CD8+ T-cells. Moreover, analysis of a longitudinal patient cohort before and under ADT revealed that ADT increased hypofunctional CD8+ T cells in the tumour area suggesting a tumour immune milieu optimal for targeting with immunotherapy.
Collapse
Affiliation(s)
- Ulrich Sommer
- Institute of Pathology, Universitätsklinikum Carl Gustav Carus Dresden, Dresden, Germany
- National Center for Tumor Diseases Partner Site Dresden and German Cancer Center Heidelberg, Dresden, Germany
- Tumor and Normal Tissue Bank of the University Cancer Center (UCC), University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- *Correspondence: Ulrich Sommer, ; Holger H. H. Erb,
| | - Celina Ebersbach
- Department of Urology, Technische Universität Dresden, Dresden, Germany
- Department of Urology, Mildred Scheel Early Career Center, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Alicia-Marie K. Beier
- Department of Urology, Technische Universität Dresden, Dresden, Germany
- Department of Urology, Mildred Scheel Early Career Center, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Gustavo B. Baretton
- Institute of Pathology, Universitätsklinikum Carl Gustav Carus Dresden, Dresden, Germany
- National Center for Tumor Diseases Partner Site Dresden and German Cancer Center Heidelberg, Dresden, Germany
- Tumor and Normal Tissue Bank of the University Cancer Center (UCC), University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christian Thomas
- National Center for Tumor Diseases Partner Site Dresden and German Cancer Center Heidelberg, Dresden, Germany
- Department of Urology, Technische Universität Dresden, Dresden, Germany
| | | | - Holger H. H. Erb
- Department of Urology, Technische Universität Dresden, Dresden, Germany
- *Correspondence: Ulrich Sommer, ; Holger H. H. Erb,
| |
Collapse
|
98
|
Moreira-Silva F, Henrique R, Jerónimo C. From Therapy Resistance to Targeted Therapies in Prostate Cancer. Front Oncol 2022; 12:877379. [PMID: 35686097 PMCID: PMC9170957 DOI: 10.3389/fonc.2022.877379] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is the second most common malignancy among men worldwide. Although early-stage disease is curable, advanced stage PCa is mostly incurable and eventually becomes resistant to standard therapeutic options. Different genetic and epigenetic alterations are associated with the development of therapy resistant PCa, with specific players being particularly involved in this process. Therefore, identification and targeting of these molecules with selective inhibitors might result in anti-tumoral effects. Herein, we describe the mechanisms underlying therapy resistance in PCa, focusing on the most relevant molecules, aiming to enlighten the current state of targeted therapies in PCa. We suggest that selective drug targeting, either alone or in combination with standard treatment options, might improve therapeutic sensitivity of resistant PCa. Moreover, an individualized analysis of tumor biology in each PCa patient might improve treatment selection and therapeutic response, enabling better disease management.
Collapse
Affiliation(s)
- Filipa Moreira-Silva
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (He-alth Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (He-alth Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences of the University of Porto (ICBAS-UP), Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (He-alth Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), Porto, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences of the University of Porto (ICBAS-UP), Porto, Portugal
| |
Collapse
|
99
|
Mulvey A, Muggeo-Bertin E, Berthold DR, Herrera FG. Overcoming Immune Resistance With Radiation Therapy in Prostate Cancer. Front Immunol 2022; 13:859785. [PMID: 35603186 PMCID: PMC9115849 DOI: 10.3389/fimmu.2022.859785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/31/2022] [Indexed: 01/13/2023] Open
Abstract
Prostate cancer is the second most common cancer in men and represents a significant healthcare burden worldwide. Therapeutic options in the metastatic castration-resistant setting remain limited, despite advances in androgen deprivation therapy, precision medicine and targeted therapies. In this review, we summarize the role of immunotherapy in prostate cancer and offer perspectives on opportunities for future development, based on current knowledge of the immunosuppressive tumor microenvironment. Furthermore, we discuss the potential for synergistic therapeutic strategies with modern radiotherapy, through modulation of the tumor microenvironment. Emerging clinical and pre-clinical data suggest that radiation can convert immune desert tumors into an inflamed immunological hub, potentially sensitive to immunotherapy.
Collapse
Affiliation(s)
- Arthur Mulvey
- Department of Oncology, Medical Oncology Service, Lausanne University Hospital, Lausanne, Switzerland.,Department of Oncology, Immuno-Oncology Service, Lausanne University Hospital, Lausanne, Switzerland
| | - Emilien Muggeo-Bertin
- Department of Oncology, Radiation Oncology Service, Lausanne University Hospital, Lausanne, Switzerland
| | - Dominik R Berthold
- Department of Oncology, Medical Oncology Service, Lausanne University Hospital, Lausanne, Switzerland
| | - Fernanda G Herrera
- Department of Oncology, Immuno-Oncology Service, Lausanne University Hospital, Lausanne, Switzerland.,Department of Oncology, Radiation Oncology Service, Lausanne University Hospital, Lausanne, Switzerland.,Ludwig Institute for Cancer Research - Lausanne Branch, Lausanne, Switzerland
| |
Collapse
|
100
|
Abstract
PURPOSE OF REVIEW Although most studies focus on the tumour component of prostate cancer (PCa), increasing attention is being paid to the prostatic tumour microenvironment (TME) and its role in diagnosis, prognosis, and therapy development. Herein, we review the prognostic capability of tumour and nontumour derived biomarkers, the immunomodulatory effects of focal therapy (FT) on TME, and its potential as part of a multidisciplinary approach to PCa treatment. RECENT FINDINGS Tumour cells have always been the natural candidates to explore new biomarkers, but recent evidence highlights the prognostic contribution of TME cell markers. TME plays a critical role in PCa progression and tumours may escape from the immune system by establishing a microenvironment that suppresses effective antitumour immunity. It has been demonstrated that FT has an immunomodulatory effect and may elicit an immune response that can either favour or inhibit tumorigenesis. TME shows to be an additional target to enhance oncological control. SUMMARY A better understanding of TME has the potential to reliably elucidate PCa heterogeneity and assign a prognostic profile in accordance with prostate tumour foci. The joint contribution of biomarkers derived from both tumour and TME compartments may improve patient selection for FT by accurately stratifying disease aggressivity according to the characteristics of tumour foci. Preclinical studies have suggested that FT may act as a TME modulator, highlighting its promising role in multimodal therapeutic management.
Collapse
|