51
|
Tang J, Wu X, Mou M, Wang C, Wang L, Li F, Guo M, Yin J, Xie W, Wang X, Wang Y, Ding Y, Xue W, Zhu F. GIMICA: host genetic and immune factors shaping human microbiota. Nucleic Acids Res 2021; 49:D715-D722. [PMID: 33045729 PMCID: PMC7779047 DOI: 10.1093/nar/gkaa851] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/09/2020] [Accepted: 10/08/2020] [Indexed: 01/09/2023] Open
Abstract
Besides the environmental factors having tremendous impacts on the composition of microbial community, the host factors have recently gained extensive attentions on their roles in shaping human microbiota. There are two major types of host factors: host genetic factors (HGFs) and host immune factors (HIFs). These factors of each type are essential for defining the chemical and physical landscapes inhabited by microbiota, and the collective consideration of both types have great implication to serve comprehensive health management. However, no database was available to provide the comprehensive factors of both types. Herein, a database entitled 'Host Genetic and Immune Factors Shaping Human Microbiota (GIMICA)' was constructed. Based on the 4257 microbes confirmed to inhabit nine sites of human body, 2851 HGFs (1368 single nucleotide polymorphisms (SNPs), 186 copy number variations (CNVs), and 1297 non-coding ribonucleic acids (RNAs)) modulating the expression of 370 microbes were collected, and 549 HIFs (126 lymphocytes and phagocytes, 387 immune proteins, and 36 immune pathways) regulating the abundance of 455 microbes were also provided. All in all, GIMICA enabled the collective consideration not only between different types of host factor but also between the host and environmental ones, which is freely accessible without login requirement at: https://idrblab.org/gimica/.
Collapse
Affiliation(s)
- Jing Tang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xianglu Wu
- Joint International Research Lab of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chuan Wang
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lidan Wang
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Maiyuan Guo
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jiayi Yin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenqin Xie
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xiaona Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yingxiong Wang
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China.,Joint International Research Lab of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Yubin Ding
- Joint International Research Lab of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Weiwei Xue
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
52
|
Baghbani T, Nikzad H, Azadbakht J, Izadpanah F, Haddad Kashani H. Dual and mutual interaction between microbiota and viral infections: a possible treat for COVID-19. Microb Cell Fact 2020; 19:217. [PMID: 33243230 PMCID: PMC7689646 DOI: 10.1186/s12934-020-01483-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
All of humans and other mammalian species are colonized by some types of microorganisms such as bacteria, archaea, unicellular eukaryotes like fungi and protozoa, multicellular eukaryotes like helminths, and viruses, which in whole are called microbiota. These microorganisms have multiple different types of interaction with each other. A plethora of evidence suggests that they can regulate immune and digestive systems and also play roles in various diseases, such as mental, cardiovascular, metabolic and some skin diseases. In addition, they take-part in some current health problems like diabetes mellitus, obesity, cancers and infections. Viral infection is one of the most common and problematic health care issues, particularly in recent years that pandemics like SARS and COVID-19 caused a lot of financial and physical damage to the world. There are plenty of articles investigating the interaction between microbiota and infectious diseases. We focused on stimulatory to suppressive effects of microbiota on viral infections, hoping to find a solution to overcome this current pandemic. Then we reviewed mechanistically the effects of both microbiota and probiotics on most of the viruses. But unlike previous studies which concentrated on intestinal microbiota and infection, our focus is on respiratory system's microbiota and respiratory viral infection, bearing in mind that respiratory system is a proper entry site and residence for viruses, and whereby infection, can lead to asymptomatic, mild, self-limiting, severe or even fatal infection. Finally, we overgeneralize the effects of microbiota on COVID-19 infection. In addition, we reviewed the articles about effects of the microbiota on coronaviruses and suggest some new therapeutic measures.
Collapse
Affiliation(s)
- Taha Baghbani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Nikzad
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Javid Azadbakht
- Department of Radiology, Faculty of Medicin, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Izadpanah
- Food and Drug Laboratory Research Center and Food and Drug Reference Control Laboratories Center, Food & Drug Administration of Iran, MOH & ME, Tehran, Iran
| | - Hamed Haddad Kashani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
53
|
Marco-Jiménez F, Borrás S, Garcia-Dominguez X, D'Auria G, Vicente JS, Marin C. Roles of host genetics and sperm microbiota in reproductive success in healthy rabbit. Theriogenology 2020; 158:416-423. [PMID: 33039925 DOI: 10.1016/j.theriogenology.2020.09.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/19/2020] [Accepted: 09/23/2020] [Indexed: 12/28/2022]
Abstract
Although the effects of sperm microbiota and sperm quality have been described previously, recent studies provide evidence that female genital modifications triggered by seminal components could be of significant importance to identify some disturbances associated with fertility. So, sperm microbiota could play a key role in sperm quality, contributing to fertilisation. To understand how sperm microbiota diversity is influenced by the host genetics, the symbiotic bacteria in four inbred lines raised in the same animal facility and their effects on sperm quality and fertility were analysed. Forty healthy rabbits from four selected Spanish commercial lines were used in this research (three based on litter performance, designated A, V and LP, and one selected for daily body weight gain, called R). Significant variations in the seminal concentration, morphology and some motion parameters were found among inbred lines, but sperm motility and viability were similar among inbred lines. After mating, inbred lines selected for litter size had the same fertility rate, significantly higher than inbred line selected for body weight (82 ± 3.3%, 79 ± 3.5% and 89 ± 4.5% versus 61 ± 3.7%, for the A, V and LP vs R lines, respectively, p < 0.05). Bacteria belonging to Proteobacteria, Firmicutes, Fusobacteria and Bacteroidetes were identified in sperm microbiota. At genus level, the bacterial community composition in the sperm microbiota was influenced by host genetics. A total of 35, 16, 34, and 51 genera were accurately detected in the A, V, LP, and R lines, respectively. Moreover, Enhydrobacter, Ferruginibacter, Myroides Paracoccus, Rheinheimera, Tepidiphilus, Tetradesmus obliquus and Thauera genera were present only in the inbred lines selected for litter size. Moreover, the discriminant analysis revealed Lysinibacillus and Flavobacterium genera as potential biomarkers for fertility. Thus, these two genera may play a key role in fertility. Our results demonstrated the existence of a rabbit inbred line-specific variation in bacterial occurrence in sperm microbiota. Moreover, fertility differentials among inbred lines that were not predicted by routine semen analysis could be partly explained by the symbiotic state of the semen microbiota.
Collapse
Affiliation(s)
- Francisco Marco-Jiménez
- Institute of Science and Animal Technology, Laboratorio de Biotecnología de la Reproducción, Universitat Politècnica de València, Valencia, 46022, Spain
| | - Sara Borrás
- Institute of Science and Animal Technology, Laboratorio de Biotecnología de la Reproducción, Universitat Politècnica de València, Valencia, 46022, Spain
| | - Ximo Garcia-Dominguez
- Institute of Science and Animal Technology, Laboratorio de Biotecnología de la Reproducción, Universitat Politècnica de València, Valencia, 46022, Spain
| | - Giuseppe D'Auria
- Servicio de Secuenciación y Bioinformática, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO-Salud Pública), Valencia, Spain
| | - Jose Salvador Vicente
- Institute of Science and Animal Technology, Laboratorio de Biotecnología de la Reproducción, Universitat Politècnica de València, Valencia, 46022, Spain
| | - Clara Marin
- Instituto de Ciencias Biomédicas, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Avenida Seminario S/n, 46113, Moncada, Spain.
| |
Collapse
|
54
|
Strengthening the functional research on the interaction between host genes and microbiota. SCIENCE CHINA-LIFE SCIENCES 2020; 63:929-932. [DOI: 10.1007/s11427-020-1650-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/05/2020] [Indexed: 12/11/2022]
|
55
|
Lee S, Teng L, DiLorenzo N, Weppelmann TA, Jeong KC. Prevalence and Molecular Characteristics of Extended-Spectrum and AmpC β-Lactamase Producing Escherichia coli in Grazing Beef Cattle. Front Microbiol 2020; 10:3076. [PMID: 31998282 PMCID: PMC6962307 DOI: 10.3389/fmicb.2019.03076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/19/2019] [Indexed: 11/23/2022] Open
Abstract
The emergence of extended-spectrum β-lactamase (ESBL) and AmpC β-lactamase producing Escherichia coli represent a contemporary public health threat. ESBL and AmpC β-lactamase genes translocate between chromosomes and plasmids, facilitating rapid spread throughout the environment. In this study, ESBL/AmpC producing bacteria were isolated from beef cattle farms with seldom antibiotic use. Eleven farms out of 17 tested, had ESBL/AmpC producing E. coli in animals, soil, and forage samples. Fifty-nine CTX-M or CMY-2 positive E. coli isolates were further characterized with whole-genome sequencing. The isolates commonly carried CMY-2, TEM, or CTX-M genes, and over half encoded both CTX-M and TEM genes. Using comparative genomics, antimicrobial resistance genes from 12 classes of antimicrobial were identified and confirmed by antibiotic susceptibility test, revealing multidrug resistance against multiple classes of antibiotics. Virulence factors related to adherence, invasion, iron uptake, and bacterial secretion systems were shared by all isolates; some of which were identified as enteropathogenic E. coli. Phylogenetic analyses revealed a pattern of close genetic relatedness, suggesting that ESBL/AmpC producing E. coli were transmitted among farms as well as independent evolution within farms. Our results indicate that ESBL and AmpC β-lactamases prevail in food animal production system regardless antibiotic use and have the characteristics for zoonotic transmission.
Collapse
Affiliation(s)
- Shinyoung Lee
- Department of Animal Sciences, Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.,Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Lin Teng
- Department of Animal Sciences, Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.,Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Nicolas DiLorenzo
- North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Marianna, FL, United States
| | - Thomas A Weppelmann
- Department of Animal Sciences, Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.,Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Kwangcheol Casey Jeong
- Department of Animal Sciences, Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.,Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|