51
|
Shi M, Chai Y, Zhang J, Chen X. Endoplasmic Reticulum Stress-Associated Neuronal Death and Innate Immune Response in Neurological Diseases. Front Immunol 2022; 12:794580. [PMID: 35082783 PMCID: PMC8784382 DOI: 10.3389/fimmu.2021.794580] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
Neuronal death and inflammatory response are two common pathological hallmarks of acute central nervous system injury and chronic degenerative disorders, both of which are closely related to cognitive and motor dysfunction associated with various neurological diseases. Neurological diseases are highly heterogeneous; however, they share a common pathogenesis, that is, the aberrant accumulation of misfolded/unfolded proteins within the endoplasmic reticulum (ER). Fortunately, the cell has intrinsic quality control mechanisms to maintain the proteostasis network, such as chaperone-mediated folding and ER-associated degradation. However, when these control mechanisms fail, misfolded/unfolded proteins accumulate in the ER lumen and contribute to ER stress. ER stress has been implicated in nearly all neurological diseases. ER stress initiates the unfolded protein response to restore proteostasis, and if the damage is irreversible, it elicits intracellular cascades of death and inflammation. With the growing appreciation of a functional association between ER stress and neurological diseases and with the improved understanding of the multiple underlying molecular mechanisms, pharmacological and genetic targeting of ER stress are beginning to emerge as therapeutic approaches for neurological diseases.
Collapse
Affiliation(s)
- Mingming Shi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Yan Chai
- Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| |
Collapse
|
52
|
Trang NM, Kim EN, Lee HS, Jeong GS. Effect on Osteoclast Differentiation and ER Stress Downregulation by Amygdalin and RANKL Binding Interaction. Biomolecules 2022; 12:biom12020256. [PMID: 35204757 PMCID: PMC8961616 DOI: 10.3390/biom12020256] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Bone diseases such as osteoporosis are the result of osteoclast over-activation. There are many therapeutic agents from natural compounds inhibiting the formation of osteoclast that have been reported and are continuously being interested. Amygdalin (AD) is isolated from seeds of Prunus armeniaca L. which has many pharmaceutical effects; however, the effect of AD on osteoclast formation and function remains unknown. Therefore, the underlying mechanism of AD on RANKL-induced osteoclast in RAW 264.7 cells was investigated. Molecular docking simulation revealed that AD can bind to the active sites of RANKL with negative binding affinities. Through TRAP activity, bone resorption, and migration, AD effectively inhibited osteoclast differentiation and function. Expression of transcription factors, such as NFATc1, c-fos, and osteospecific genes (including dcstamp, acp5, ATP6v0d2, and ctsk results) showed an osteoclast differentiated inhibitory effect by AD treatment. In addition, RANKL-induced activation of MAPK, ER stress, and ROS levels in RANKL-induced osteoclast was significantly inhibited while antioxidant enzymes were recovered in the presence of AD. These results suggest that AD may be a potential candidate derived from natural sources for the treatment of osteoclast bone-related diseases.
Collapse
Affiliation(s)
- Nguyen Minh Trang
- College of Pharmacy, Keimyung University, Daegu 42601, Korea; (N.M.T.); (E.-N.K.)
| | - Eun-Nam Kim
- College of Pharmacy, Keimyung University, Daegu 42601, Korea; (N.M.T.); (E.-N.K.)
| | - Hyun-Su Lee
- School of Medicine, Kyungpook National University, Daegu 41566, Korea;
| | - Gil-Saeng Jeong
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
- Correspondence:
| |
Collapse
|
53
|
Wen Z, Sun Q, Shan Y, Xie W, Ding Y, Wang W, Ye R, Xiao W, Li Y. Endoplasmic Reticulum Stress in Osteoarthritis: A Novel Perspective on the Pathogenesis and Treatment. Aging Dis 2022; 14:283-286. [PMID: 37008062 PMCID: PMC10017163 DOI: 10.14336/ad.2022.0725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
Osteoarthritis (OA), the most common degenerative joint disease, causes an enormous socioeconomic burden due to its disabling properties and high prevalence. Increasing evidence suggests that OA is a whole-joint disease involving cartilage degradation, synovitis, meniscal lesions, and subchondral bone remodeling. Endoplasmic reticulum (ER) stress is the accumulation of misfolded/unfolded proteins in the ER. Recent studies have found that ER stress is involved in the OA pathological changes by influencing the physiological function and survival of chondrocytes, fibroblast-like synoviocytes, synovial macrophages, meniscus cells, osteoblasts, osteoclasts, osteocytes, and bone marrow mesenchymal stem cells. Therefore, ER stress is an attractive and promising target for OA. However, although targeting ER stress has been proven to alleviate OA progression in vitro and in vivo, the treatments for OA remain in preclinical stage and require further investigation.
Collapse
Affiliation(s)
- Zeqin Wen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.
- Xiangya School of Medicine, Central South University, Changsha, China.
| | - Qi Sun
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Yunhan Shan
- Xiangya School of Medicine, Central South University, Changsha, China.
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Yilan Ding
- Xiangya School of Medicine, Central South University, Changsha, China.
| | - Weiyang Wang
- Xiangya School of Medicine, Central South University, Changsha, China.
| | - Ruixi Ye
- Xiangya School of Medicine, Central South University, Changsha, China.
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- Correspondence should be addressed to: Dr. Wen-feng Xiao () and Yu-sheng Li (), Xiangya Hospital of Central South University, Changsha 410008, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- Correspondence should be addressed to: Dr. Wen-feng Xiao () and Yu-sheng Li (), Xiangya Hospital of Central South University, Changsha 410008, China
| |
Collapse
|
54
|
Zhang J, Xie S, Chen Y, Zhou X, Zheng Z, Yang L, Li Y. Comprehensive analysis of endoplasmic reticulum stress and immune infiltration in major depressive disorder. Front Psychiatry 2022; 13:1008124. [PMID: 36353576 PMCID: PMC9638134 DOI: 10.3389/fpsyt.2022.1008124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a life-threatening, debilitating mental health condition. An important factor in the development of depression is endoplasmic reticulum stress (ERS). However, their roles in MDD have not yet been established. The goal of this study was to examine ERS and its underlying molecular mechanisms in MDD. METHODS We used data from two microarray datasets (GSE98793 and GSE39653) and the GeneCards database to examine the reticulum stress-related differentially expressed genes (ERSR-DEGs) associated with MDD. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Set Enrichment Analysis (GSEA), and Gene Set Variation Analysis (GSVA) were used to further investigate the function and mechanism of ERS in MDD. Moreover, we constructed protein-protein interaction (PPI) networks to identify hub genes as well as the regulatory network of microRNAs (miRNAs), transcription factors (TFs), and potential drugs related to ERSR-DEGs. CIBERSORT was then used to evaluate the immune activity of MDD samples and conduct a correlation analysis between the hub genes and immune cells. RESULTS In total, 37 ERSR-DEGs and five hub genes were identified (NCF1, MAPK14, CASP1, CYBA, and TNF). Functional enrichment analysis revealed that ERSR-DEGs were predominantly enriched in inflammation-and immunity-related pathways, such as tumor necrosis factor signaling, NF-κB signaling, and Toll-like receptor signaling pathways. Additionally, 179 miRNAs, 25 TFs, and 15 potential drugs were tested for their interactions with the ERSR-DEGs. CIBERSORT found high proportions of Tregs, monocytes, and macrophages M0 in the MDD samples. Among these, hub genes showed a significant correlation with immune cell infiltration in patients with MDD. CONCLUSIONS NCF1, MAPK14, CASP1, CYBA, and TNF are potential ERS-related biomarkers for the diagnosis of MDD. Our research has revealed a significant correlation between immune cells and ERS-related genes with MDD. Not only did our study contribute to a better understanding of the regulatory mechanisms of ERS in underlying MDD pathology, but it also established a paradigm for future studies on ERS.
Collapse
Affiliation(s)
- Jing Zhang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shujun Xie
- Department of Internal Medicine Teaching and Research, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yujia Chen
- Department of Internal Medicine Teaching and Research, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin Zhou
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhuanfang Zheng
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingling Yang
- Department of Psychological Sleep, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yan Li
- Department of Psychological Sleep, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
55
|
Zhu S, Pang Y, Xu J, Chen X, Zhang C, Wu B, Gao J. Endocrine Regulation on Bone by Thyroid. Front Endocrinol (Lausanne) 2022; 13:873820. [PMID: 35464058 PMCID: PMC9020229 DOI: 10.3389/fendo.2022.873820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND As an endocrine organ, the thyroid acts on the entire body by secreting a series of hormones, and bone is one of the main target organs of the thyroid. SUMMARY This review highlights the roles of thyroid hormones and thyroid diseases in bone homeostasis. CONCLUSION Thyroid hormones play significant roles in the growth and development of bone, and imbalance of thyroid hormones can impair bone homeostasis.
Collapse
Affiliation(s)
- Siyuan Zhu
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yidan Pang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jun Xu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xiaoyi Chen
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Changqing Zhang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Junjie Gao, ; Bo Wu, ; Changqing Zhang,
| | - Bo Wu
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Junjie Gao, ; Bo Wu, ; Changqing Zhang,
| | - Junjie Gao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
- *Correspondence: Junjie Gao, ; Bo Wu, ; Changqing Zhang,
| |
Collapse
|
56
|
Yang B, Sun H, Jia M, He Y, Luo Y, Wang T, Wu Y, Wang J. DNA damage-inducible transcript 3 restrains osteoclast differentiation and function. Bone 2021; 153:116162. [PMID: 34455116 DOI: 10.1016/j.bone.2021.116162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 02/05/2023]
Abstract
DNA damage-inducible transcript 3 (DDIT3), a member of the CCAAT/enhancer-binding protein (C/EBP) family, is involved in cellular apoptosis and differentiation. DDIT3 participates in the regulation of adipogenesis and osteogenesis in vitro and in vivo. However, the role of DDIT3 in osteoclastogenesis is not yet known. In this study, the involvement of DDIT3 in osteoclast differentiation and function was reported for the first time. CRISPR/Cas9-mediated DDIT3 knockout (KO) mice were generated for functional assessment. Tartrate-resistant acid phosphatase (TRAP) staining of distal femurs showed increased positive cells in DDIT3 KO mice. DDIT3 expression was downregulated during the receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation of bone marrow-derived macrophages (BMMs). The loss of DDIT3 increased the expression of osteoclast-specific markers, including nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), TRAP, cathepsin K (CTSK), and dendritic cell-specific transmembrane protein (DC-STAMP) and promoted the formation of TRAP-positive multinucleated osteoclasts. The actin ring number and resorption area of bone slices were also increased in DDIT3 KO BMMs. Lentivirus-mediated DDIT3 overexpression significantly inhibited the osteoclast differentiation of RAW264.7 cells. In the tumor necrosis factor-α-induced osteolysis model, DDIT3 deficiency enhanced osteoclast formation and aggravated bone resorption. DDIT3 inhibited osteoclast differentiation by regulating the C/EBPα-CTSK axis. Furthermore, DDIT3 KO intensified the RANKL-triggered activation of the MAPKs and Akt signaling pathways. Taken together, the results revealed the essential role of DDIT3 in osteoclastogenesis in vitro and in vivo and its close relationship with osteoclast-associated transcription factors and pathways.
Collapse
Affiliation(s)
- Beining Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| | - Hualing Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| | - Meie Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| | - Ying He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| | - Yao Luo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| | - Tianqi Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| | - Yanru Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China.
| | - Jiawei Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China.
| |
Collapse
|
57
|
Liang P, Saqib HSA, Lin Z, Zheng R, Qiu Y, Xie Y, Ma D, Shen Y. RNA-seq analyses of Marine Medaka (Oryzias melastigma) reveals salinity responsive transcriptomes in the gills and livers. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 240:105970. [PMID: 34562875 DOI: 10.1016/j.aquatox.2021.105970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Increasing salinity levels in marine and estuarine ecosystems greatly influence developmental, physiological and molecular activities of inhabiting fauna. Marine medaka (Oryzias melastigma), a euryhaline research model, has extraordinary abilities to survive in a wide range of aquatic salinity. To elucidate how marine medaka copes with salinity differences, the responses of Oryzias melastigma after being transferred to different salt concentrations [0 practical salinity units (psu), 15 psu, 30 psu (control), 45 psu] were studied at developmental, histochemical and transcriptome levels in the gill and liver tissues. A greater number of gills differentially expressed genes (DEG) under 0 psu (609) than 15 psu (157) and 45 psu (312), indicating transcriptomic adjustments in gills were more sensitive to the extreme hypotonic environment. A greater number of livers DEGs were observed in 45 psu (1,664) than 0 psu (87) and L15 psu (512), suggesting that liver was more susceptible to hypertonic environment. Further functional analyses of DEGs showed that gills have a more immediate response, mainly in adjusting ion balance, immune and signal transduction. In contrast, DEGs in livers were involved in protein synthesis and processing. We also identified common DEGs in both gill and liver and found they were mostly involved in osmotic regulation of amino sugar and nucleotide sugar metabolism and steroid biosynthesis. Additionally, salinity stresses showed no significant effects on most developmental and histochemical parameters except increased heartbeat with increasing salinity and decreased glycogen after transferred from stable conditions (30 psu) to other salinity environments. These findings suggested that salinity-stress induced changes in gene expressions could reduce the effects on developmental and histochemical parameters. Overall, this study provides a useful resource for understanding the molecular mechanisms of fish responses to salinity stresses.
Collapse
Affiliation(s)
- Pingping Liang
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Hafiz Sohaib Ahmed Saqib
- Guangdong Provincial Key Laboratory of Marine Biology, College of Science, Shantou University, Shantou 515063, China
| | - Zeyang Lin
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Ruping Zheng
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Yuting Qiu
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Yuting Xie
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Dongna Ma
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Yingjia Shen
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
58
|
The ameliorative effect of terpinen-4-ol on ER stress-induced vascular calcification depends on SIRT1-mediated regulation of PERK acetylation. Pharmacol Res 2021; 170:105629. [PMID: 34089864 DOI: 10.1016/j.phrs.2021.105629] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/31/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022]
Abstract
Endoplasmic reticulum (ER) stress-mediated phenotypic switching of vascular smooth muscle cells (VSMCs) is key to vascular calcification (VC) in patients with chronic kidney disease (CKD). Studies have shown that activation/upregulation of SIRT1 has a protective effect on CKD-VC. Meanwhile, although terpinen-4-ol has been shown to exert a protective effect against cardiovascular disease, its role and underlying mechanism in VC remain unclear. Herein, we explored whether terpinen-4-ol alleviates ER stress-mediated VC through sirtuin 1 (SIRT1) and elucidated its mechanism to provide evidence for its application in the clinical prevention and treatment of VC. To this end, a CKD-related VC animal model and β-glycerophosphate (β-GP)-induced VSMC calcification model were established to investigate the role of terpinen-4-ol in ER stress-induced VC, in vitro and in vivo. Additionally, to evaluate the involvement of SIRT1, mouse and VSMC Sirt1-knockdown models were established. Results show that terpinen-4-ol inhibits calcium deposition, phenotypic switching, and ER stress in VSMCs in vitro and in vivo. Furthermore, pre-incubation of VSMCs with terpinen-4-ol or a SIRT1 agonist, decreased β-GP-induced calcium salt deposition, increased SIRT1 protein level, and inhibited PERK-eIF2α-ATF4 pathway activation, thus, alleviating VC. Similar results were observed in VSMCs induced to overexpress SIRT1 via lentivirus transcription. Meanwhile, the opposite results were obtained in SIRT1-knockdown models. Further, results suggest that SIRT1 physically interacts with, and deacetylates PERK. Specifically, mass spectrometry analysis identified lysine K889 as the acetylation site of SIRT1, which regulates PERK. Finally, inhibition of SIRT1 reduced the effect of terpinen-4-ol on the deacetylation of PERK in vitro and in vivo and weakened the inhibitory effect of terpinen-4-ol against ER stress-mediated VC. Cumulatively, terpinen-4-ol was found to inhibit post-translational modification of PERK at the K889 acetylation site by upregulating SIRT1 expression, thereby ameliorating VC by regulating ER stress. This study provides insights into the underlying molecular mechanism of terpinen-4-ol, supporting its development as a promising therapeutic agent for CKD-VC.
Collapse
|
59
|
Jiang C, Ma Q, Wang S, Shen Y, Qin A, Fan S, Jie Z. Oxymatrine Attenuates Osteoclastogenesis via Modulation of ROS-Mediated SREBP2 Signaling and Counteracts Ovariectomy-Induced Osteoporosis. Front Cell Dev Biol 2021; 9:684007. [PMID: 34136493 PMCID: PMC8202524 DOI: 10.3389/fcell.2021.684007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis, mainly caused by osteoclast-induced bone resorption, has become a major health problem in post-menopausal women and the elderly. Growing evidence indicates that inhibiting osteoclastogenesis is an efficient approach to develop alternative therapeutic agents for treating osteoporosis. In this study, we identified the potential regulating role of Oxymatrine (OMT), a quinazine alkaloid extracted from Sophora flavescens with various therapeutic effects in many diseases, on osteoclastogenesis for the first time. We found that OMT attenuated RANKL-induced osteoclast formation in both time- and dose-dependent manners. Further, OMT significantly suppressed RANKL-induced sterol regulatory element-binding protein 2 (SREBP2) activation and the expression of the nuclear factor of activated T cells 1 (NFATc1). Moreover, OMT inhibited the generation of RANKL-induced reactive oxygen species (ROS), and the upregulation of ROS could rescue the inhibition of SREBP2 by OMT. More importantly, ovariectomy (OVX) mouse model showed that OMT could effectively improve ovariectomy (OVX)-induced osteopenia by inhibiting osteoclastogenesis in vivo. In conclusion, our data demonstrated that OMT impaired ROS mediated SREBP2 activity and downstream NFATc1 expression during osteoclastogenesis, suppressed OVX-induced osteopenia in vivo, which suggested that OMT could be a promising compound for medical treatment against osteoporosis.
Collapse
Affiliation(s)
- Chao Jiang
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Qingliang Ma
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Shiyu Wang
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Yang Shen
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - An Qin
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shunwu Fan
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Zhiwei Jie
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
60
|
Cai W, Sun X, Jin F, Xiao D, Li H, Sun H, Wang Y, Lu Y, Liu J, Huang C, Wang X, Gao S, Wang H, Gao C, Zhao T, Hao J. PERK-eIF2α-ERK1/2 axis drives mesenchymal-endothelial transition of cancer-associated fibroblasts in pancreatic cancer. Cancer Lett 2021; 515:86-95. [PMID: 34052329 DOI: 10.1016/j.canlet.2021.05.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 01/01/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by remarkable desmoplasia, usually driven by cancer-associated fibroblasts (CAFs), influencing patient prognosis. CAFs are a group of plastic cells responsible for tumor growth and metastasis. Fibroblasts have been reported to directly contribute to angiogenesis by undergoing mesenchymal-endothelial transition (MEndoT) after ischemic injury in the heart, brain, and hindlimbs. However, whether CAFs can undergo similar transdifferentiation in the hostile tumor microenvironment and directly contribute to tumor angiogenesis remains unclear. Herein, we provide evidence that CAFs can adopt an endothelial cell-like phenotype and directly contribute to tumor angiogenesis in vitro and in vivo. Furthermore, this program is regulated by the PERK-eIF2α-ERK1/2 axis. Pharmacological inhibition of PERK with GSK2606414 limited the phenotypic transition of CAFs. In conclusion, our results suggest that CAFs contribute to tumor angiogenesis by undergoing the MEndoT, thus representing therapeutic targets for improving PDAC prognosis.
Collapse
Affiliation(s)
- Wenrun Cai
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Xugang Sun
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Fanjie Jin
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Di Xiao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Hui Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Huizhi Sun
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Yifei Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Yang Lu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Jing Liu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Chongbiao Huang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Xiuchao Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Song Gao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Hongwei Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Chuntao Gao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China
| | - Tiansuo Zhao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China.
| | - Jihui Hao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, PR China.
| |
Collapse
|
61
|
Tang BM, Li ZW, Wang ZY. PERK activator CCT020312 prevents inflammation-mediated osteoporosis in the ovariectomized rats. Gynecol Endocrinol 2021; 37:342-348. [PMID: 33480297 DOI: 10.1080/09513590.2021.1874904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To investigate the therapeutic effects of PERK activator CCT020312 (CCT) on inflammation-mediated osteoporosis (IMO) in ovariectomized rats. METHODS Rats were divided into Sham, IMO, IMO + 1 mg/kg CCT and IMO + 2 mg/kg CCT groups. IMO models were constructed by bilateral ovariectomy (OVX) on 1st day followed by injection with magnesium silicate (Talc) on the 59th day. Sham rats did not undergo OVX surgery and were injected with saline instead of Talc. From 60th to 79th day, rats were treated with DMSO (vehicle control) in the Sham and IMO groups, and 1 or 2 mg/kg CCT020312 in treatment groups. Osteopontin (OPN), osteocalcin (OCN), tartrate-resistant acid phosphatase (TRAP), C-terminal telopeptide of type I collagen (CTX-I), and pro-inflammatory factors were measured on the 80th day. ProdigyDEXA was used to evaluate bone mineral density and content (BMD/BMC). Bone volume/total volume (BV/TV), connectivity density (Conn.D), trabecular number (Tb.N), and trabecular separation (Tb.Sp) was assessed using 3D micro-CT scanner. RESULTS CCT up-regulated Conn.D, BV/TV, and Tb.N, but down-regulated Tb.Sp in IMO rats. Besides, the declined femoral BMD and BMC in IMO rats were elevated after CCT treatment. Besides, IMO rats represented declined OPN and OCN, as well as increased TRAP, CTX-I, and pro-inflammatory factors, whereas those in the treatment groups were ameliorated regarding these indexes, with 2 mg/kg CCT showing better effect. CONCLUSION PERK activator CCT020312 can be served as a new therapeutic option for the protection against bone loss in the OVX rat model associated with inflammation probably by manipulating inflammatory factors.
Collapse
Affiliation(s)
- Bao-Ming Tang
- Department of Orthopedics, Affiliated Hospital of Qinghai University, Xining, China
| | - Zhao-Wei Li
- Department of Orthopedics, Affiliated Hospital of Qinghai University, Xining, China
| | - Zhuo-Ya Wang
- Department of Geriatrics, Affiliated Hospital of Qinghai University, Xining, China
| |
Collapse
|
62
|
Yang YF, Wang H, Song N, Jiang YH, Zhang J, Meng XW, Feng XM, Liu H, Peng K, Ji FH. Dexmedetomidine Attenuates Ischemia/Reperfusion-Induced Myocardial Inflammation and Apoptosis Through Inhibiting Endoplasmic Reticulum Stress Signaling. J Inflamm Res 2021; 14:1217-1233. [PMID: 33833544 PMCID: PMC8020464 DOI: 10.2147/jir.s292263] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Background Endoplasmic reticulum stress (ERS)-mediated myocardial inflammation and apoptosis plays an important role in myocardial ischemia/reperfusion (I/R) injury. Dexmedetomidine has been used clinically with sedative, analgesic, and anti-inflammatory properties. This study aimed to determine the effects of dexmedetomidine pretreatment on inflammation, apoptosis, and the expression of ERS signaling during myocardial I/R injury. Methods Rats underwent myocardial ischemia for 30 min and reperfusion for 6 h, and H9c2 cardiomyocytes were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) injury (OGD for 12 h and reoxygenation for 3 h). Dexmedetomidine was administered prior to myocardial ischemia in rats or ODG in cardiomyocytes. In addition, the α2-adrenergic receptor antagonist (yohimbine) or the PERK activator (CCT020312) was given prior to dexmedetomidine treatment. Results Dexmedetomidine pretreatment decreased serum levels of cardiac troponin I, reduced myocardial infarct size, alleviated histological structure damage, and improved left ventricular function following myocardial I/R injury in rats. In addition, dexmedetomidine pretreatment increased cell viability and reduced cytotoxicity following OGD/R injury in cardiomyocytes. Mechanistically, the cardioprotection offered by dexmedetomidine was mediated via the inhibition of inflammation and apoptosis through downregulating the expression of the ERS signaling pathway, including glucose-regulated protein 78 (GRP78), protein kinase R-like endoplasmic reticulum kinase (PERK), C/EBP homologous protein (CHOP), inositol-requiring protein 1 (IRE1), and activating transcription factor 6 (ATF6). Conversely, the protective effects of dexmedetomidine were diminished by blocking the α2 adrenergic receptors with yohimbine or promoting PERK phosphorylation with CCT020312. Conclusion Dexmedetomidine pretreatment protects the hearts against I/R injury via inhibiting inflammation and apoptosis through downregulation of the ERS signaling pathway. Future clinical studies are needed to confirm the cardioprotective effects of dexmedetomidine in patients at risk of myocardial I/R injury.
Collapse
Affiliation(s)
- Yu-Fan Yang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Hui Wang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China.,Department of Anesthesiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, People's Republic of China
| | - Nan Song
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Ya-Hui Jiang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Jun Zhang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Xiao-Wen Meng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Xiao-Mei Feng
- Department of Anesthesiology, University of Utah Health, Salt Lake City, UT, USA.,Transitional Residency Program, Intermountain Medical Center, Murray, UT, USA
| | - Hong Liu
- Department of Anesthesiology and Pain Medicine, University of California Davis Health, Sacramento, CA, USA
| | - Ke Peng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Fu-Hai Ji
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| |
Collapse
|