51
|
Tonti OR, Larson H, Lipp SN, Luetkemeyer CM, Makam M, Vargas D, Wilcox SM, Calve S. Tissue-specific parameters for the design of ECM-mimetic biomaterials. Acta Biomater 2021; 132:83-102. [PMID: 33878474 PMCID: PMC8434955 DOI: 10.1016/j.actbio.2021.04.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/18/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023]
Abstract
The extracellular matrix (ECM) is a complex network of biomolecules that mechanically and biochemically directs cell behavior and is crucial for maintaining tissue function and health. The heterogeneous organization and composition of the ECM varies within and between tissue types, directing mechanics, aiding in cell-cell communication, and facilitating tissue assembly and reassembly during development, injury and disease. As technologies like 3D printing rapidly advance, researchers are better able to recapitulate in vivo tissue properties in vitro; however, tissue-specific variations in ECM composition and organization are not given enough consideration. This is in part due to a lack of information regarding how the ECM of many tissues varies in both homeostatic and diseased states. To address this gap, we describe the components and organization of the ECM, and provide examples for different tissues at various states of disease. While many aspects of ECM biology remain unknown, our goal is to highlight the complexity of various tissues and inspire engineers to incorporate unique components of the native ECM into in vitro platform design and fabrication. Ultimately, we anticipate that the use of biomaterials that incorporate key tissue-specific ECM will lead to in vitro models that better emulate human pathologies. STATEMENT OF SIGNIFICANCE: Biomaterial development primarily emphasizes the engineering of new materials and therapies at the expense of identifying key parameters of the tissue that is being emulated. This can be partially attributed to the difficulty in defining the 3D composition, organization, and mechanics of the ECM within different tissues and how these material properties vary as a function of homeostasis and disease. In this review, we highlight a range of tissues throughout the body and describe how ECM content, cell diversity, and mechanical properties change in diseased tissues and influence cellular behavior. Accurately mimicking the tissue of interest in vitro by using ECM specific to the appropriate state of homeostasis or pathology in vivo will yield results more translatable to humans.
Collapse
Affiliation(s)
- Olivia R Tonti
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Hannah Larson
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Sarah N Lipp
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Callan M Luetkemeyer
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Megan Makam
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Diego Vargas
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Sean M Wilcox
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Sarah Calve
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States.
| |
Collapse
|
52
|
Fang Z, Wu D, Deng J, Yang Q, Zhang X, Chen J, Wang S, Hu S, Hou W, Ning S, Ding Y, Fan Z, Jiang Z, Kang J, Liu Y, Miao J, Ji X, Dong H, Xiong L. An MD2-perturbing peptide has therapeutic effects in rodent and rhesus monkey models of stroke. Sci Transl Med 2021; 13:13/597/eabb6716. [PMID: 34108252 DOI: 10.1126/scitranslmed.abb6716] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 12/08/2020] [Accepted: 03/26/2021] [Indexed: 12/21/2022]
Abstract
Studies have failed to translate more than 1000 experimental treatments from bench to bedside, leaving stroke as the second leading cause of death in the world. Thrombolysis within 4.5 hours is the recommended therapy for stroke and cannot be performed until neuroimaging is used to distinguish ischemic stroke from hemorrhagic stroke. Therefore, finding a common and critical therapeutic target for both ischemic and hemorrhagic stroke is appealing. Here, we report that the expression of myeloid differentiation protein 2 (MD2), which is traditionally regarded to be expressed only in microglia in the normal brain, was markedly increased in cortical neurons after stroke. We synthesized a small peptide, Trans-trans-activating (Tat)-cold-inducible RNA binding protein (Tat-CIRP), which perturbed the function of MD2 and strongly protected neurons against excitotoxic injury in vitro. In addition, systemic administration of Tat-CIRP or genetic deletion of MD2 induced robust neuroprotection against ischemic and hemorrhagic stroke in mice. Tat-CIRP reduced the brain infarct volume and preserved neurological function in rhesus monkeys 30 days after ischemic stroke. Tat-CIRP efficiently crossed the blood-brain barrier and showed a wide therapeutic index for stroke because no toxicity was detected when high doses were administered to the mice. Furthermore, we demonstrated that MD2 elicited neuronal apoptosis and necroptosis via a TLR4-independent, Sam68-related cascade. In summary, Tat-CIRP provides robust neuroprotection against stroke in rodents and gyrencephalic nonhuman primates. Further efforts should be made to translate these findings to treat both ischemic and hemorrhagic stroke in patients.
Collapse
Affiliation(s)
- Zongping Fang
- Department of Anesthesiology and Perioperative Medicine and Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Di Wu
- Department of neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 10053, China
| | - Jiao Deng
- Department of Anesthesiology and Perioperative Medicine and Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Qianzi Yang
- Department of Anesthesiology and Perioperative Medicine and Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xijing Zhang
- Department of Anesthesiology and Perioperative Medicine and Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jian Chen
- Department of neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 10053, China
| | - Shiquan Wang
- Department of Anesthesiology and Perioperative Medicine and Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Sijun Hu
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Wugang Hou
- Department of Anesthesiology and Perioperative Medicine and Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Siming Ning
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhongmin Fan
- Department of Anesthesiology and Perioperative Medicine and Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhenhua Jiang
- Department of Anesthesiology and Perioperative Medicine and Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Junjun Kang
- Department of Neurobiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yingying Liu
- Department of Neurobiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jinlin Miao
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xunming Ji
- Department of neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 10053, China.
| | - Hailong Dong
- Department of Anesthesiology and Perioperative Medicine and Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Lize Xiong
- Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai 200434, China. .,Department of Anesthesiology and Perioperative Medicine and Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
53
|
The MLKL kinase-like domain dimerization is an indispensable step of mammalian MLKL activation in necroptosis signaling. Cell Death Dis 2021; 12:638. [PMID: 34158471 PMCID: PMC8219780 DOI: 10.1038/s41419-021-03859-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 01/02/2023]
Abstract
MLKL phosphorylation by RIP3 is the commitment step of necroptosis execution, which could induce MLKL activation featured as MLKL monomer-oligomer transition. Here, we reported that the dimerization of the MLKL kinase-like domain was the direct consequence of RIP3 triggered MLKL-phosphorylation. Two inter-dimer interfaces were found in the crystal structure of human MLKL. Mutations destroying both interfaces could prevent RIP3-induced MLKL oligomerization and necroptosis efficiently. Moreover, we confirmed MLKL self-assembly by the internal coiled-coil region is necessary for MLKL oligomerization and function. The mutations disrupting coiled-coil self-assembly repressed necroptosis, but it did not prevent RIP3-induced dimerization of the MLKL kinase-like domain. So that, MLKL activation is a sequential process, which begins with kinase-like domain dimerization, and followed by internal coiled-coil region self-assembly to form a proper MLKL oligomer. Besides human MLKL, structural and functional analysis showed the kinase-like domain dimerization was conserved among mammalian species, suggesting it is a general step of the RIP3-induced MLKL activation process.
Collapse
|
54
|
Martens S, Bridelance J, Roelandt R, Vandenabeele P, Takahashi N. MLKL in cancer: more than a necroptosis regulator. Cell Death Differ 2021; 28:1757-1772. [PMID: 33953348 PMCID: PMC8184805 DOI: 10.1038/s41418-021-00785-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 02/03/2023] Open
Abstract
Mixed lineage kinase domain-like protein (MLKL) emerged as executioner of necroptosis, a RIPK3-dependent form of regulated necrosis. Cell death evasion is one of the hallmarks of cancer. Besides apoptosis, some cancers suppress necroptosis-associated mechanisms by for example epigenetic silencing of RIPK3 expression. Conversely, necroptosis-elicited inflammation by cancer cells can fuel tumor growth. Recently, necroptosis-independent functions of MLKL were unraveled in receptor internalization, ligand-receptor degradation, endosomal trafficking, extracellular vesicle formation, autophagy, nuclear functions, axon repair, neutrophil extracellular trap (NET) formation, and inflammasome regulation. Little is known about the precise role of MLKL in cancer and whether some of these functions are involved in cancer development and metastasis. Here, we discuss current knowledge and controversies on MLKL, its structure, necroptosis-independent functions, expression, mutations, and its potential role as a pro- or anti-cancerous factor. Analysis of MLKL expression patterns reveals that MLKL is upregulated by type I/II interferon, conditions of inflammation, and tissue injury. Overall, MLKL may affect cancer development and metastasis through necroptosis-dependent and -independent functions.
Collapse
Affiliation(s)
- Sofie Martens
- Cell Death and Inflammation Lab, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jolien Bridelance
- Cell Death and Inflammation Lab, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Ria Roelandt
- Cell Death and Inflammation Lab, VIB Center for Inflammation Research, Ghent, Belgium
| | - Peter Vandenabeele
- Cell Death and Inflammation Lab, VIB Center for Inflammation Research, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Nozomi Takahashi
- Cell Death and Inflammation Lab, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
55
|
The Role of the Key Effector of Necroptotic Cell Death, MLKL, in Mouse Models of Disease. Biomolecules 2021; 11:biom11060803. [PMID: 34071602 PMCID: PMC8227991 DOI: 10.3390/biom11060803] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
Necroptosis is an inflammatory form of lytic programmed cell death that is thought to have evolved to defend against pathogens. Genetic deletion of the terminal effector protein—MLKL—shows no overt phenotype in the C57BL/6 mouse strain under conventional laboratory housing conditions. Small molecules that inhibit necroptosis by targeting the kinase activity of RIPK1, one of the main upstream conduits to MLKL activation, have shown promise in several murine models of non-infectious disease and in phase II human clinical trials. This has triggered in excess of one billion dollars (USD) in investment into the emerging class of necroptosis blocking drugs, and the potential utility of targeting the terminal effector is being closely scrutinised. Here we review murine models of disease, both genetic deletion and mutation, that investigate the role of MLKL. We summarize a series of examples from several broad disease categories including ischemia reperfusion injury, sterile inflammation, pathogen infection and hematological stress. Elucidating MLKL’s contribution to mouse models of disease is an important first step to identify human indications that stand to benefit most from MLKL-targeted drug therapies.
Collapse
|
56
|
Relaix F, Bencze M, Borok MJ, Der Vartanian A, Gattazzo F, Mademtzoglou D, Perez-Diaz S, Prola A, Reyes-Fernandez PC, Rotini A, Taglietti. Perspectives on skeletal muscle stem cells. Nat Commun 2021; 12:692. [PMID: 33514709 PMCID: PMC7846784 DOI: 10.1038/s41467-020-20760-6] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 12/17/2020] [Indexed: 01/30/2023] Open
Abstract
Skeletal muscle has remarkable regeneration capabilities, mainly due to its resident muscle stem cells (MuSCs). In this review, we introduce recently developed technologies and the mechanistic insights they provide to the understanding of MuSC biology, including the re-definition of quiescence and Galert states. Additionally, we present recent studies that link MuSC function with cellular heterogeneity, highlighting the complex regulation of self-renewal in regeneration, muscle disorders and aging. Finally, we discuss MuSC metabolism and its role, as well as the multifaceted regulation of MuSCs by their niche. The presented conceptual advances in the MuSC field impact on our general understanding of stem cells and their therapeutic use in regenerative medicine.
Collapse
Affiliation(s)
- F. Relaix
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France ,EnvA, IMRB, 94700 Maisons-Alfort, France ,grid.462410.50000 0004 0386 3258EFS, IMRB, 94010 Creteil, France ,grid.50550.350000 0001 2175 4109AP-HP, Hopital Mondor, Service d’histologie, 94010 Creteil, France
| | - M. Bencze
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France
| | - M. J. Borok
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France
| | - A. Der Vartanian
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France
| | - F. Gattazzo
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France ,grid.462410.50000 0004 0386 3258EFS, IMRB, 94010 Creteil, France
| | - D. Mademtzoglou
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France
| | - S. Perez-Diaz
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France
| | - A. Prola
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France ,EnvA, IMRB, 94700 Maisons-Alfort, France
| | - P. C. Reyes-Fernandez
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France
| | - A. Rotini
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France
| | - Taglietti
- grid.462410.50000 0004 0386 3258Univ Paris Est Creteil, INSERM, IMRB, 94010 Creteil, France
| |
Collapse
|