51
|
Qian H, He P, Zhang L, Chen K, Xu B, Lin S. Synthesis and Photo-responsive Self-Assembly of Azobenzene-Containing Molecular Brushes. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202102047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
52
|
Hou C, Zhou C, Cheng J. Norbornenyl-based amphiphilic ABA-triblock azobenzene copolymers: Synthesis, photoresponsive and self-assembly properties. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123310] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
53
|
Zhou M, He Z, Chen Y, Zhu L, Li L, Li J. Synthesis, Self-assembly, and Fluorescence Application of Bottlebrush Polyfluorene-g-Polycaprolactone with Conjugated Backbone and Crystalline Brushes. Macromol Rapid Commun 2020; 42:e2000544. [PMID: 33331036 DOI: 10.1002/marc.202000544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/08/2020] [Indexed: 01/09/2023]
Abstract
A series of bottlebrush copolymers with conjugated backbone and crystalline branch chains, polyfluorene-g-polycaprolactone (PF-g-PCL), are synthesized by combining Suzuki cross-coupling polymerization and cationic ring-opening polymerization. The PF-g-PCLs are prepared to self-assembled in solution and thin film. Due to the J-type aggregation of the polyfluorene main chains, the self-assembly spherical micelles have been observed. Meanwhile, in film, they exhibited self-assembly ringed spherulites because of the PF microregions in the bottlebrush copolymer. As a result of the interruption of PCL side chains, the aggregation tendency of PF main chains is weakened. And both the polymer solution and solid can overcome the aggregation-caused quenching to provide more pronounced fluorescence. Especially, owing to the good processability of the PF-g-PCL, as a fluorescent ink for different substrates, they can easily be prepared as high-brightness fluorescent films that are invisible under ambient light.
Collapse
Affiliation(s)
- Mi Zhou
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Zejian He
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Yulong Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Liangliang Zhu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Li Li
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Jie Li
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
54
|
Xu X, Huang X, Chang Y, Yu Y, Zhao J, Isahak N, Teng J, Qiao R, Peng H, Zhao CX, Davis TP, Fu C, Whittaker AK. Antifouling Surfaces Enabled by Surface Grafting of Highly Hydrophilic Sulfoxide Polymer Brushes. Biomacromolecules 2020; 22:330-339. [PMID: 33305948 DOI: 10.1021/acs.biomac.0c01193] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antifouling surfaces are important in a broad range of applications. An effective approach to antifouling surfaces is to covalently attach antifouling polymer brushes. This work reports the synthesis of a new class of antifouling polymer brushes based on highly hydrophilic sulfoxide polymers by surface-initiated photoinduced electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. The sulfoxide polymer brushes are able to effectively reduce nonspecific adsorption of proteins and cells, demonstrating remarkable antifouling properties. Given the outstanding antifouling behavior of the sulfoxide polymers and versatility of surface-initiated PET-RAFT technology, this work presents a useful and general approach to engineering various material surfaces with antifouling properties, for potential biomedical applications in areas such as tissue engineering, medical implants, and regenerative medicine.
Collapse
Affiliation(s)
- Xin Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Xumin Huang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yixin Chang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ye Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jiacheng Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Naatasha Isahak
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jisi Teng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ruirui Qiao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Thomas P Davis
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
55
|
Teulère C, Ben-Osman C, Barry C, Nicolaÿ R. Synthesis and self-assembly of amphiphilic heterografted molecular brushes prepared by telomerization. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
56
|
Reversible-deactivation radical polymerization (Controlled/living radical polymerization): From discovery to materials design and applications. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101311] [Citation(s) in RCA: 302] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
57
|
Tian L, Li B, Zhang Q, Wang Y. Polymer Brush-Induced Hollow Colloids via Diffusion-Controlled Silication. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12678-12683. [PMID: 33054246 DOI: 10.1021/acs.langmuir.0c02255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report on a new strategy to synthesize asymmetrical hollow colloidal particles by exploiting limited chemical diffusion that occurs at the periphery of a solvated polymer brush on the particle surface. The polymer brush-in our case poly(glycidyl methacrylate)-bears hydroxyl groups upon hydrolysis and is partially cross-linked under the Stöber condition of silication. Desolvation of the polymers creates a cavity. While elucidating this new mechanism, we demonstrate that particles with various types of cavities and tunable properties can be synthesized, including the ones bearing hemispherical and crescent shapes, as well as particles with wrinkled surfaces. Furthermore, we show that the hollow particles adopt preferred orientations because of their shape and composition attributes, which is further explored to facilitate the confined synthesis of nanocrystals.
Collapse
Affiliation(s)
- Lei Tian
- Department of Applied Chemistry, School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR, 999077, China
| | - Bei Li
- Department of Applied Chemistry, School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qiuyu Zhang
- Department of Applied Chemistry, School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yufeng Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR, 999077, China
| |
Collapse
|
58
|
Wang H, Jin S, Zhang X, Xie Y. Excitonic Effects in Polymeric Photocatalysts. Angew Chem Int Ed Engl 2020; 59:22828-22839. [DOI: 10.1002/anie.202002241] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Hui Wang
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Centre for Excellence in Nanoscience University of Science and Technology of China Hefei Anhui 230026 P. R. China
- Institute of Energy Hefei Comprehensive National Science Center Hefei Anhui 230031 P. R. China
| | - Sen Jin
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Centre for Excellence in Nanoscience University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Xiaodong Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Centre for Excellence in Nanoscience University of Science and Technology of China Hefei Anhui 230026 P. R. China
- Institute of Energy Hefei Comprehensive National Science Center Hefei Anhui 230031 P. R. China
| | - Yi Xie
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Centre for Excellence in Nanoscience University of Science and Technology of China Hefei Anhui 230026 P. R. China
- Institute of Energy Hefei Comprehensive National Science Center Hefei Anhui 230031 P. R. China
| |
Collapse
|
59
|
Chen K, Hu X, Zhu N, Guo K. Design, Synthesis, and Self-Assembly of Janus Bottlebrush Polymers. Macromol Rapid Commun 2020; 41:e2000357. [PMID: 32844547 DOI: 10.1002/marc.202000357] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/02/2020] [Indexed: 12/12/2022]
Abstract
Janus bottlebrush polymers are a class of special molecular brushes, which have two immiscible side chains on the repeating unit of the backbone. The characteristic architectures of Janus bottlebrush polymers enable unique self-assembly properties and broad applications. Recently, remarkable advances of Janus bottlebrush polymers have been achieved for polymer chemistry and material science. This review summarizes the synthetic strategies of Janus bottlebrush polymers, and highlights the self-assembly applications. Finally, the challenges and opportunities are proposed for the further development.
Collapse
Affiliation(s)
- Kerui Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 S. Puzhu Road, Nanjing, Jiangsu, 211800, China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 S. Puzhu Road, Nanjing, Jiangsu, 211800, China
| | - Xin Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 S. Puzhu Road, Nanjing, Jiangsu, 211800, China.,College of Materials Science and Engineering, Nanjing Tech University, 30 S. Puzhu Road, Nanjing, Jiangsu, 211800, China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 S. Puzhu Road, Nanjing, Jiangsu, 211800, China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 S. Puzhu Road, Nanjing, Jiangsu, 211800, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 S. Puzhu Road, Nanjing, Jiangsu, 211800, China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 S. Puzhu Road, Nanjing, Jiangsu, 211800, China
| |
Collapse
|
60
|
Affiliation(s)
- Hui Wang
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Centre for Excellence in Nanoscience University of Science and Technology of China Hefei Anhui 230026 P. R. China
- Institute of Energy Hefei Comprehensive National Science Center Hefei Anhui 230031 P. R. China
| | - Sen Jin
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Centre for Excellence in Nanoscience University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Xiaodong Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Centre for Excellence in Nanoscience University of Science and Technology of China Hefei Anhui 230026 P. R. China
- Institute of Energy Hefei Comprehensive National Science Center Hefei Anhui 230031 P. R. China
| | - Yi Xie
- Hefei National Laboratory for Physical Sciences at the Microscale CAS Centre for Excellence in Nanoscience University of Science and Technology of China Hefei Anhui 230026 P. R. China
- Institute of Energy Hefei Comprehensive National Science Center Hefei Anhui 230031 P. R. China
| |
Collapse
|
61
|
Zhu J, Zhu T, Tuo H, Yan M, Zhang W, Zhang G, Yang X. TEMPO‐Contained Polymer Grafted onto Graphene Oxide via Click Chemistry as Cathode Materials for Organic Battery. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Junfeng Zhu
- Shaanxi Key Laboratory of Chemical Additives for IndustryCollege of Chemistry and Chemical EngineeringShaanxi University of Science and Technology Xi'an 710021 China
| | - Ting Zhu
- Shaanxi Key Laboratory of Chemical Additives for IndustryCollege of Chemistry and Chemical EngineeringShaanxi University of Science and Technology Xi'an 710021 China
| | - Huan Tuo
- Shaanxi Key Laboratory of Chemical Additives for IndustryCollege of Chemistry and Chemical EngineeringShaanxi University of Science and Technology Xi'an 710021 China
| | - Mengmeng Yan
- Shaanxi Key Laboratory of Chemical Additives for IndustryCollege of Chemistry and Chemical EngineeringShaanxi University of Science and Technology Xi'an 710021 China
| | - Wanbin Zhang
- Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and TechnologyShaanxi University of Science & Technology Xi'an 710021 China
| | - Guanghua Zhang
- Shaanxi Key Laboratory of Chemical Additives for IndustryCollege of Chemistry and Chemical EngineeringShaanxi University of Science and Technology Xi'an 710021 China
| | - Xiaowu Yang
- Shaanxi Key Laboratory of Chemical Additives for IndustryCollege of Chemistry and Chemical EngineeringShaanxi University of Science and Technology Xi'an 710021 China
| |
Collapse
|
62
|
Wu T, Leng X, Wang Y, Wei Z, Li Y. Linear- and star-brush poly(ethylene glycol)s: Synthesis and architecture-dependent crystallization behavior. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
63
|
Liu M, Miao D, Wang X, Wang C, Deng W. Precise synthesis of heterogeneous glycopolymers with well‐defined saccharide motifs in the side chain via post‐polymerization modification and recognition with lectin. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Meina Liu
- School of Chemical and Environmental EngineeringShanghai Institute of Technology Shanghai China
- Key laboratory of Synthetic and Self‐Assembly Chemistry for Organic Function Molecules, Shanghai Institute of Organic ChemistryChinese Academy of Sciences Shanghai China
- State Key laboratory of Molecular Engineering of PolymersFudan University Shanghai China
| | - Dengyun Miao
- School of Chemical and Environmental EngineeringShanghai Institute of Technology Shanghai China
| | - Xingyou Wang
- School of Chemical and Environmental EngineeringShanghai Institute of Technology Shanghai China
| | - Caiyun Wang
- School of Chemical and Environmental EngineeringShanghai Institute of Technology Shanghai China
| | - Wei Deng
- School of Chemical and Environmental EngineeringShanghai Institute of Technology Shanghai China
| |
Collapse
|
64
|
Wang Y, Nguyen M, Gildersleeve AJ. Macromolecular Engineering by Applying Concurrent Reactions with ATRP. Polymers (Basel) 2020; 12:E1706. [PMID: 32751403 PMCID: PMC7463969 DOI: 10.3390/polym12081706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 01/24/2023] Open
Abstract
Modern polymeric material design often involves precise tailoring of molecular/supramolecular structures which is also called macromolecular engineering. The available tools for molecular structure tailoring are controlled/living polymerization methods, click chemistry, supramolecular polymerization, self-assembly, among others. When polymeric materials with complex molecular architectures are targeted, it usually takes several steps of reactions to obtain the aimed product. Concurrent polymerization methods, i.e., two or more reaction mechanisms, steps, or procedures take place simultaneously instead of sequentially, can significantly reduce the complexity of the reaction procedure or provide special molecular architectures that would be otherwise very difficult to synthesize. Atom transfer radical polymerization, ATRP, has been widely applied in concurrent polymerization reactions and resulted in improved efficiency in macromolecular engineering. This perspective summarizes reported studies employing concurrent polymerization methods with ATRP as one of the reaction components and highlights future research directions in this area.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA;
- Institute for Materials Research and Innovation, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Mary Nguyen
- Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA;
| | - Amanda J. Gildersleeve
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA;
| |
Collapse
|
65
|
Diaz IL, Sierra CA, Jérôme V, Freitag R, Perez LD. Target grafting of poly(2‐(dimethylamino)ethyl methacrylate) to biodegradable block copolymers. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ivonne L. Diaz
- Department of ChemistryUniversidad Nacional de Colombia Bogotá D.C. Colombia
| | - Cesar A. Sierra
- Department of ChemistryUniversidad Nacional de Colombia Bogotá D.C. Colombia
| | - Valérie Jérôme
- Process BiotechnologyUniversity of Bayreuth Bayreuth Germany
| | - Ruth Freitag
- Process BiotechnologyUniversity of Bayreuth Bayreuth Germany
| | - León D. Perez
- Department of ChemistryUniversidad Nacional de Colombia Bogotá D.C. Colombia
| |
Collapse
|
66
|
Savaş B, Öztürk T. Synthesis and characterization of poly(vinyl chloride-g-methyl methacrylate) graft copolymer by redox polymerization and Cu catalyzed azide-alkyne cycloaddition reaction. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1788393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Temel Öztürk
- Department of Chemistry, Faculty of Arts and Sciences, Giresun University, Giresun, Turkey
| |
Collapse
|
67
|
Xu G, Liu K, Xu B, Yao Y, Li W, Yan J, Zhang A. Confined Microenvironments from Thermoresponsive Dendronized Polymers. Macromol Rapid Commun 2020; 41:e2000325. [PMID: 32639094 DOI: 10.1002/marc.202000325] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/23/2020] [Indexed: 11/07/2022]
Abstract
Confined microenvironments in biomacromolecules arising from molecular crowding account for their well-defined biofunctions and bioactivities. To mimick this, synthetic polymers to form confined structures or microenvironments are of key scientific value, which have received significant attention recently. To create synthetic confined microenvironments, molecular crowding effects and topological cooperative effects have been applied successfully, and the key is balance between self-association of structural units and self-repulsion from crowding-induced steric hindrance. In this article, formation of confined microenvironments from stimuli-responsive dendronized polymers carrying densely dendritic oligoethylene glycols (OEGs) moieties in their pendants is presented. These wormlike thick macromolecules exhibit characteristic thermoresponsive properties, which can provide constrained microenvironments to encapsulate effectively guest molecules including dyes, proteins, or nucleic acids to prevent their protonation or biodegradation. This efficient shielding effect can also mediate chemical reactions in aqueous phase, and even enhance chirality transferring efficiency. All of these can be switched off simply through the thermally-induced dehydration and collapse of OEG dendrons due to the amphiphilicity of OEG chains. Furthermore, the switchable encapsulation and release of guests can be greatly enhanced when these dendronized polymers are used as major constituents for fabricating bulk hydrogels or nanogels, which provide a higher-level confinement.
Collapse
Affiliation(s)
- Gang Xu
- International Joint Laboratory of Smart and Biomimetic Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Kun Liu
- International Joint Laboratory of Smart and Biomimetic Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Biyi Xu
- International Joint Laboratory of Smart and Biomimetic Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yi Yao
- International Joint Laboratory of Smart and Biomimetic Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Wen Li
- International Joint Laboratory of Smart and Biomimetic Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Jiatao Yan
- International Joint Laboratory of Smart and Biomimetic Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Afang Zhang
- International Joint Laboratory of Smart and Biomimetic Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| |
Collapse
|
68
|
Laroque S, Reifarth M, Sperling M, Kersting S, Klöpzig S, Budach P, Storsberg J, Hartlieb M. Impact of Multivalence and Self-Assembly in the Design of Polymeric Antimicrobial Peptide Mimics. ACS APPLIED MATERIALS & INTERFACES 2020; 12:30052-30065. [PMID: 32517467 DOI: 10.1021/acsami.0c05944] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Antimicrobial resistance is an increasingly serious challenge for public health and could result in dramatic negative consequences for the health care sector during the next decades. To solve this problem, antibacterial materials that are unsusceptible toward the development of bacterial resistance are a promising branch of research. In this work, a new type of polymeric antimicrobial peptide mimic featuring a bottlebrush architecture is developed, using a combination of reversible addition-fragmentation chain transfer (RAFT) polymerization and ring-opening metathesis polymerization (ROMP). This approach enables multivalent presentation of antimicrobial subunits resulting in improved bioactivity and an increased hemocompatibility, boosting the selectivity of these materials for bacterial cells. Direct probing of membrane integrity of treated bacteria revealed highly potent membrane disruption caused by bottlebrush copolymers. Multivalent bottlebrush copolymers clearly outperformed their linear equivalents regarding bioactivity and selectivity. The effect of segmentation of cationic and hydrophobic subunits within bottle brushes was probed using heterograft copolymers. These materials were found to self-assemble under physiological conditions, which reduced their antibacterial activity, highlighting the importance of precise structural control for such applications. To the best of our knowledge, this is the first example to demonstrate the positive impact of multivalence, generated by a bottlebrush topology in polymeric antimicrobial peptide mimics, making these polymers a highly promising material platform for the design of new bactericidal systems.
Collapse
Affiliation(s)
- Sophie Laroque
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
- Department of Life Sciences & Bioprocesses, Fraunhofer Institute for Applied Polymer Research (IAP), Geiselbergstraße 69, 14476 Potsdam, Germany
| | - Martin Reifarth
- Department of Life Sciences & Bioprocesses, Fraunhofer Institute for Applied Polymer Research (IAP), Geiselbergstraße 69, 14476 Potsdam, Germany
| | - Marcel Sperling
- Department of Life Sciences & Bioprocesses, Fraunhofer Institute for Applied Polymer Research (IAP), Geiselbergstraße 69, 14476 Potsdam, Germany
| | - Sebastian Kersting
- Department of Molecular and Cellular Bioanalytics, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (Fraunhofer IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Stefanie Klöpzig
- Department of Healthcare, Biomaterials & Cosmeceuticals, Fraunhofer-Institute for Applied Polymer Research (IAP), Geiselbergstraße 69, 14476 Potsdam, Germany
| | - Patrick Budach
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| | - Joachim Storsberg
- Department of Healthcare, Biomaterials & Cosmeceuticals, Fraunhofer-Institute for Applied Polymer Research (IAP), Geiselbergstraße 69, 14476 Potsdam, Germany
| | - Matthias Hartlieb
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
- Department of Life Sciences & Bioprocesses, Fraunhofer Institute for Applied Polymer Research (IAP), Geiselbergstraße 69, 14476 Potsdam, Germany
| |
Collapse
|
69
|
Huang Q, Xu Z, Cai C, Lin J. Micelles with a Loose Core Self‐Assembled from Coil‐
g
‐Rod Graft Copolymers Displaying High Drug Loading Capacity. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Qijing Huang
- Shanghai Key Laboratory of Advanced Polymeric MaterialsKey Laboratory for Ultrafine Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Zhanwen Xu
- Shanghai Key Laboratory of Advanced Polymeric MaterialsKey Laboratory for Ultrafine Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric MaterialsKey Laboratory for Ultrafine Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric MaterialsKey Laboratory for Ultrafine Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
70
|
Xu B, Qian H, Lin S. Self-Assembly and Photoinduced Spindle-Toroid Morphology Transition of Macromolecular Double-Brushes with Azobenzene Pendants. ACS Macro Lett 2020; 9:404-409. [PMID: 35648535 DOI: 10.1021/acsmacrolett.0c00079] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Asymmetric macromolecular double-brushes (MDBs) are composed of two different side chains grafted on a linear backbone, possessing distinct assembly behaviors in comparison with conventional amphiphiles, owing to the Janus architecture and combined effects of backbone and hetero double-brushes. Additionally, the introduction of unique functionalities and responsiveness into the self-assembly system of MDBs endows extra opportunities to pursue morphologic diversity and intriguing properties. Herein, we report the synthesis of Janus-like MDBs of polyacrylate-g-poly(6-(4-butyl-4'-oxyazobenzene) hexyl acrylate)/poly(ethylene oxide) (PA-g-PAzo/PEO), in which hydrophilic PEO and hydrophobic PAzo brushes were grafted using the combination of concurrent ATRP and click reaction. Due to the special Janus topology and inter/intramolecular association of pendant azobenzene groups, amphiphilic PA-g-PAzo/PEO self-assembled into multimolecular rod and spindle-like aggregates. It is interesting that a transition of spindle-toroid-spindle was observed upon the alternative irradiation between UV and visible light, which is ascribed to the trans-to-cis isomerization of azobenzene molecular brushes. To our best knowledge, this is the first time that azobenzene-containing MDBs enable the fabrication of distinctive self-assembled morphologies and photoinduced toroid formation. The controlled synthesis of MDBs with unique functionalities and subsequent development of their structure-property relationships would shed light on the design and optimization of bottlebrush-based nanomaterials.
Collapse
Affiliation(s)
- Binbin Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hongyu Qian
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
71
|
Chen Y, Hu J, Ding A. Synthesis of an anthraquinone-containing polymeric photosensitizer and its application in aerobic photooxidation of thioethers. RSC Adv 2020; 10:10661-10665. [PMID: 35492936 PMCID: PMC9050403 DOI: 10.1039/d0ra00880j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/06/2020] [Indexed: 12/24/2022] Open
Abstract
Work on the synthesis of a polymeric photosensitizer and its application in the photooxidation of thioethers is reported herein. Firstly, the polymeric photosensitizer was designed and synthesized by the reaction of anthraquinone-2-carbonyl chloride (AQ-2-COCl) with poly(2-hydroxyethyl methacrylate) (PHEMA). Then, the visible light-induced photooxidation of thioethers under aerobic conditions was investigated. The results revealed that the reaction yielded sulfoxides highly chemoselectively in excellent yields with good substrate tolerance. Importantly, AQ-PHEMA could be easily recovered and reused more than 20 times without significant loss of the catalytic activity. Work on the synthesis of a polymeric photosensitizer and its application in the photooxidation of thioethers is reported herein.![]()
Collapse
Affiliation(s)
- Yang Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University 2005 Songhu Road Shanghai 200438 P. R. China +86-21-31242888 +86-21-55665280
| | - Jianhua Hu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University 2005 Songhu Road Shanghai 200438 P. R. China +86-21-31242888 +86-21-55665280
| | - Aishun Ding
- Department of Chemistry, Fudan University 2005 Songhu Road Shanghai 200438 P. R. China +86-21-31249190 +86-21-31249190
| |
Collapse
|
72
|
Synthesis of a metal-chelating polymer with NOTA pendants as a carrier for 64Cu, intended for radioimmunotherapy. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
73
|
Xu B, Feng C, Lv Y, Lin S, Lu G, Huang X. Biomimetic Asymmetric Polymer Brush Coatings Bearing Fencelike Conformation Exhibit Superior Protection and Antifouling Performance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1588-1596. [PMID: 31840506 DOI: 10.1021/acsami.9b19230] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Antifouling surfaces with optimized conformation and compositional heterogeneities are presented with the goal of improving the efficacy of surface protection. The approach exploits the adhesive group (thiol or catechol chain end) to anchor asymmetric polymer brushes (APBs) bearing amphiphilic side chains with synergistic nonfouling and fouling-release abilities onto the surface. The conformation of the APB surface is close to the fencelike structure, which mimics lubricating protein lubricin, endowing the surface with capacity of enhanced protection and antiadhesivity, even facing the high compression of fouling. By utilizing a poly(Br-acrylate-alkyne) macroagent comprising alkynyl and 2-bromopropionate groups, we prepared a series of APB surfaces based on polyacrylate-g-poly(ethylene oxide)/poly(pentafluorophenyl methacrylate) (PA-g-PEO/PPFMA) APBs to explore the influence of the content of the fluorinated segment and bioinspired topological polymer chemistry on their antifouling performance. The APB surfaces can not only provide compositional heterogeneities of PEO and fluorinated segments in each side chain but also give a high surface coverage because of the characteristic of high grafting density of macromolecular brushes. It was found for the first time, as far as we are aware, the fencelike APB surface shows excellent antifouling performance with less protein adsorption (up to 91% off) and cell adhesion (up to 84% off) in comparison with the controlled substrate under relatively long incubation time.
Collapse
Affiliation(s)
- Binbin Xu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , People's Republic of China
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , People's Republic of China
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , People's Republic of China
| | - Yisheng Lv
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , People's Republic of China
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , People's Republic of China
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , People's Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , People's Republic of China
| |
Collapse
|
74
|
Shen H, Han L, Ma H, Liu P, Yang L, Li C, Ma Y, Peng Z, Li Y. Synthesis of polymeric topological isomers based on sequential Ugi-4CR and thiol–yne click reactions with sequence-controlled amino-functionalized polymers. Polym Chem 2020. [DOI: 10.1039/c9py01859j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polymeric topological isomers have been designed and synthesized with sequence-controlled amino functionalized polymers.
Collapse
Affiliation(s)
- Heyu Shen
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- Liaoning key Laboratory of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Li Han
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- Liaoning key Laboratory of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Hongwei Ma
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- Liaoning key Laboratory of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Pibo Liu
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- Liaoning key Laboratory of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Lincan Yang
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- Liaoning key Laboratory of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Chao Li
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- Liaoning key Laboratory of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Yuting Ma
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- Liaoning key Laboratory of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Zhixuan Peng
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- Liaoning key Laboratory of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| | - Yang Li
- State Key Laboratory of Fine Chemicals
- Department of Polymer Science and Engineering
- Liaoning key Laboratory of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
| |
Collapse
|
75
|
Liu M, Wang X, Miao D, Wang C, Deng W. Synthesis of well-defined heteroglycopolymers via combining sequential click reactions and PPM: the effects of linker and heterogeneity on Con A binding. Polym Chem 2020. [DOI: 10.1039/d0py00302f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A versatile post- polymerization modification strategy to synthesize well-defined glycopolymers via the combination of RAFT polymerization and sequential CuAAC and thiol–ene click reactions was developed.
Collapse
Affiliation(s)
- Meina Liu
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- People's Republic of China
- Key laboratory of Synthetic and Self-Assembly Chemistry for Organic Function Molecules
| | - Xingyou Wang
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- People's Republic of China
| | - Dengyun Miao
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- People's Republic of China
| | - Caiyun Wang
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- People's Republic of China
| | - Wei Deng
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- People's Republic of China
| |
Collapse
|
76
|
Rusen E, Raluca Şomoghi, Busuioc C, Diacon A. Hydrophilic modification of polyvinyl chloride with polyacrylic acid using ATRP. RSC Adv 2020; 10:35692-35700. [PMID: 35517097 PMCID: PMC9057009 DOI: 10.1039/d0ra05936f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/09/2020] [Indexed: 12/27/2022] Open
Abstract
The aim of this paper was the synthesis of amphiphilic copolymers by employing an atom transfer radical polymerization (ATRP), control polymerization “grafting from” method, initiated both on the surface of an iodinated polyvinyl chloride (PVC–I) membrane and in solution. The iodination of PVC was performed through a Conant-Finkelstein reaction that afforded a 30% molar transformation. Using the contact angle measurements, we highlighted the higher degree of grafting polyacrylic acid (PAA) in the case of solution polymerization, the polar fraction increasing significantly. The micromembrane obtained by surface grafting has pores with a homogenous distribution, which contain –COOH functional groups and with a pore size that decreased about 10 times compared to the initial membrane. The TGA analysis highlighted the thermal resistance changes that the polymers registered. Amphiphilic copolymers were synthesized through a “grafting from” technique using an atom transfer radical polymerization (ATRP) initiated from the surface of an iodinated polyvinyl chloride (PVC-I) membrane and in solution.![]()
Collapse
Affiliation(s)
- Edina Rusen
- University POLITEHNICA of Bucharest
- Faculty of Applied Chemistry and Materials Science
- Bucharest
- Romania
| | - Raluca Şomoghi
- National Research and Development Institute for Chemistry and Petrochemistry – ICECHIM
- Bucharest
- Romania
| | - Cristina Busuioc
- University POLITEHNICA of Bucharest
- Faculty of Applied Chemistry and Materials Science
- Bucharest
- Romania
| | - Aurel Diacon
- University POLITEHNICA of Bucharest
- Faculty of Applied Chemistry and Materials Science
- Bucharest
- Romania
| |
Collapse
|
77
|
Tian J, Xiao C, Huang B, Wang C, Zhang W. Janus macromolecular brushes for synergistic cascade-amplified photodynamic therapy and enhanced chemotherapy. Acta Biomater 2020; 101:495-506. [PMID: 31726248 DOI: 10.1016/j.actbio.2019.11.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/17/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022]
Abstract
The aggregation-caused quenching (ACQ) effect of photosensitizers and multidrug resistance are the major obstacles in photodynamic therapy (PDT) and chemotherapy, respectively. Synergistic photo-chemotherapy is a promising cancer treatment to overcome the short boards of each single therapy. However, the fabrication of nanocarriers acting as both photosensitizers in PDT and the vehicle of drug release is a key challenge. Herein, we constructed a well-defined porphyrin-containing Janus macromolecular brush and used it as both a photosensitizer and a pH-responsive vehicle for DOX release. The Janus macromolecular brush with pH-responsive side chains and porphyrin units linked covalently in each repeat unit was synthesized by the combination of reversible addition-fragmentation chain transfer (RAFT) polymerization and click chemistry. The high grafting content of porphyrin units in the macromolecular brush improved the DOX loading capability by π-π stacking and therefore reduced the total treatment dose of DOX-loaded macromolecular brush nanoparticles (NPs). The pH-responsive side chains played triple roles in synergistic cascade-amplified PDT and enhanced chemotherapy including an executor of controlled drug release, a ligand with a mitochondria-targeting feature, and a barrier to reduce the ACQ effect of porphyrin units. In vitro and in vivo studies confirmed that the DOX-loaded macromolecular brush NPs exhibited high phototoxicity and significant tumor inhibition efficacy. STATEMENT OF SIGNIFICANCE: Synergistic photodynamic therapy (PDT) and chemotherapy has emerged as a promising cancer treatment to overcome the challenges of a single modality. Herein, we constructed new pH-responsive vesicles using porphyrin-containing Janus macromolecular brushes as theranostic nanocarriers to encapsulate high-loading doxorubicin (DOX) for synergistic cascade-amplified PDT and enhanced chemotherapy. The high grafting content of porphyrin units in Janus macromolecular brushes improved DOX loading capability by π-π stacking for enhanced chemotherapy. Moreover, pH-responsive side chains subsequently enhanced the suppression of the aggregation-caused quenching (ACQ) effect of porphyrins for cascade-amplified PDT. In vitro and in vivo studies confirmed that DOX-loaded macromolecular brush nanoparticles exhibited high phototoxicity and significant tumor inhibition efficacy.
Collapse
|
78
|
Fu X, Guo ZH, Le AN, Lei J, Zhong M. Synthesis and visualization of molecular brush- on-brush based hierarchically branched structures. Polym Chem 2020. [DOI: 10.1039/c9py01075k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An atom transfer radical polymerization-mediated sequential “graft-from” approach was developed to synthesize molecular brush-on-brush (MBoB)-based hierarchically branched polymers with readily tunable structural parameters.
Collapse
Affiliation(s)
- Xiaowei Fu
- Department of Chemical and Environmental Engineering
- Yale University
- New Haven
- USA
- State Key Laboratory of Polymer Materials Engineering
| | - Zi-Hao Guo
- Department of Chemical and Environmental Engineering
- Yale University
- New Haven
- USA
- South China Advanced Institute for Soft Matter Science and Technology
| | - An N. Le
- Department of Chemical and Environmental Engineering
- Yale University
- New Haven
- USA
| | - Jingxin Lei
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| | - Mingjiang Zhong
- Department of Chemical and Environmental Engineering
- Yale University
- New Haven
- USA
| |
Collapse
|
79
|
Nam J, Kim Y, Kim JG, Seo M. Self-Assembly of Monolayer Vesicles via Backbone-Shiftable Synthesis of Janus Core–Shell Bottlebrush Polymer. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01429] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | | | - Jeung Gon Kim
- Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | | |
Collapse
|
80
|
Wu C, Zhou Y, Wang H, Hu J, Wang X. Formation of antifouling functional coating from deposition of a zwitterionic-co-nonionic polymer via “grafting to” approach. JOURNAL OF SAUDI CHEMICAL SOCIETY 2019. [DOI: 10.1016/j.jscs.2019.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
81
|
|
82
|
Li S, Jiang K, Wang J, Zuo C, Jo YH, He D, Xie X, Xue Z. Molecular Brush with Dense PEG Side Chains: Design of a Well-Defined Polymer Electrolyte for Lithium-Ion Batteries. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01641] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shaoqiao Li
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ke Jiang
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jirong Wang
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Cai Zuo
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ye Hyang Jo
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dan He
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaolin Xie
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhigang Xue
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
83
|
Evolution in the morphological behaviour of a series of fluorine-containing ABC miktoarm star terpolymers. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.04.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
84
|
Affiliation(s)
- Bo Zheng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi’an Shaanxi 710069 China
| | - Yali Hou
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University Xi’an Shaanxi 710049 China
| | - Lingyan Gao
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University Xi’an Shaanxi 710049 China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University Xi’an Shaanxi 710049 China
| |
Collapse
|
85
|
Walsh DJ, Dutta S, Sing CE, Guironnet D. Engineering of Molecular Geometry in Bottlebrush Polymers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00845] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
86
|
Le AN, Liang R, Zhong M. Synthesis and Self‐Assembly of Mixed‐Graft Block Copolymers. Chemistry 2019; 25:8177-8189. [DOI: 10.1002/chem.201900520] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Indexed: 11/12/2022]
Affiliation(s)
- An N. Le
- Department of Chemical and Environmental EngineeringYale University New Haven CT 06511 USA
| | - Ruiqi Liang
- Department of Chemical and Environmental EngineeringYale University New Haven CT 06511 USA
| | - Mingjiang Zhong
- Department of Chemical and Environmental EngineeringYale University New Haven CT 06511 USA
| |
Collapse
|
87
|
Zeng Y, Xie L, Chi F, Liu D, Wu H, Pan N, Sun G. Controlled Growth of Ultra‐Thick Polymer Brushes via Surface‐Initiated Atom Transfer Radical Polymerization with Active Polymers as Initiators. Macromol Rapid Commun 2019; 40:e1900078. [DOI: 10.1002/marc.201900078] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/30/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Yiyang Zeng
- Fundamental Science on Nuclear Wastes and Environmental Safety LaboratorySouthwest University of Science and Technology Mianyang 621010 China
| | - Lei Xie
- Institute of Nuclear Physics and ChemistryChina Academy of Engineering Physics Mianyang 621900 China
| | - Fangting Chi
- Fundamental Science on Nuclear Wastes and Environmental Safety LaboratorySouthwest University of Science and Technology Mianyang 621010 China
| | - Dejian Liu
- Fundamental Science on Nuclear Wastes and Environmental Safety LaboratorySouthwest University of Science and Technology Mianyang 621010 China
| | - Haoyan Wu
- Fundamental Science on Nuclear Wastes and Environmental Safety LaboratorySouthwest University of Science and Technology Mianyang 621010 China
| | - Ning Pan
- Fundamental Science on Nuclear Wastes and Environmental Safety LaboratorySouthwest University of Science and Technology Mianyang 621010 China
| | - Guangai Sun
- Institute of Nuclear Physics and ChemistryChina Academy of Engineering Physics Mianyang 621900 China
| |
Collapse
|
88
|
Zhu J, Hao X, Yan Q. Electro-selective interconversion of living cationic and radical polymerizations. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9450-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
89
|
Zhu L, Xiao Y, Zhang J, Zheng S, Lang M. Melamine-mediated supramolecular assembly of nucleobase-modified poly(l-lysine). Polym Chem 2019. [DOI: 10.1039/c9py01413f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Melamine (M) was used to drive the supramolecular assembly of thymine (T)-modified poly(l-lysine) into fibers or spherical micelles through simply adjusting the substitution degree of T and the concentration of M.
Collapse
Affiliation(s)
- Luqi Zhu
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
| | - Yan Xiao
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
| | - Jiaxiao Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
| | - Siqi Zheng
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
| | - Meidong Lang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
| |
Collapse
|
90
|
Liu Z, Zhu Y, Ye W, Wu T, Miao D, Deng W, Liu M. Synthesis of well-defined glycopolymers with highly ordered sugar units in the side chain via combining CuAAC reaction and ROMP: lectin interaction study in homo- and hetero-glycopolymers. Polym Chem 2019. [DOI: 10.1039/c9py00756c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The design of novel heterogeneous glycopolymers with different sugar motifs is of critical importance in the glycopolymer field.
Collapse
Affiliation(s)
- Zhifeng Liu
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- People's Republic of China
| | - Yu Zhu
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- People's Republic of China
| | - Wenling Ye
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- People's Republic of China
| | - Tong Wu
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- People's Republic of China
| | - Dengyun Miao
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- People's Republic of China
| | - Wei Deng
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- People's Republic of China
| | - Meina Liu
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- People's Republic of China
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Function Molecules
| |
Collapse
|
91
|
Tang D, Dai W, Zhang J, Zhou X, Zhao Y. Facile synthesis of dual-responsive thioether-bridging graft copolymers by combination of controlled polymerization and thio-bromo click reaction. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
92
|
Zhang P, Yamamoto T, Suginome M. Helical Poly(quinoxaline‐2,3‐diyl)s Bearing 1,2,3‐Triazole Pendants: Synthesis by CuAAC and Use as Reusable Abnormal NHC Ligands in Gold Catalysis. ChemCatChem 2018. [DOI: 10.1002/cctc.201801361] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Pinglu Zhang
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of EngineeringKyoto University Katsura 615-8510 Japan
| | - Takeshi Yamamoto
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of EngineeringKyoto University Katsura 615-8510 Japan
| | - Michinori Suginome
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of EngineeringKyoto University Katsura 615-8510 Japan
| |
Collapse
|
93
|
Abstract
Polymer brushes are special macromolecular structures with polymer chains densely tethered to another polymer chain (one-dimensional, 1D) or the surface of a planar (two-dimensional, 2D), spherical or cylindrical (three-dimensional, 3D) solid via a stable covalent or noncovalent bond linkage. In comparison with the corresponding linear counterpart with similar molecular composition, one-dimension polymer brushes have some fascinating properties including wormlike conformation, compact molecular dimension, and notable chain end effects due to their compact and confined densely grafted structure. The introduction of polymer chains onto the surface of planar and spherical or cylindrical matrix will not only significantly change the surface-related properties of the matrix but also endows the obtained hybrid polymer brushes with new functionalities. Thus, polymer brushes are of great interest in the fields of polymer and material science due to their broad applications, such as catalysis, nanolithography, biomineralization, drug delivery, medical diagnosis, optoelectronics, and so on. Although a variety of 1D, 2D, and 3D polymer brushes have been prepared with the advent of living/controlled polymerization, the development of more efficient and facile synthetic protocols that permit access to polymer brushes with precisely controlled composition, structure, and functionality still represents a key contemporary challenge. In this Account, we summarize our recent efforts on the development of efficient methods to prepare 1D, 2D, and 3D polymer brushes and exploration of their potential applications in drug delivery, antifouling coating, catalysis, and lithium-ion batteries and also highlight related achievements by other groups. First, we briefly introduce the precedent examples of efficient synthesis of polymer brushes with different structures and functionalities by the combination of monomer design with living/controlled polymerization. Given the excellent tolerance and use of the same catalytic system without any mutual interference of ATRP and Cu-catalyzed alkyne-azide cyclization (CuAAC) click reaction, a versatile and efficient platform for precise synthesis of complex asymmetric (Janus-type) 1D polymer brushes was developed on the basis of the "trifunctional monomer" strategy without polymeric functionality transformation. Subsequently, a noncovalent strategy based on crystallization-driven self assembly to prepare well-defined polymer brushes with precise control over their composition and dimensions is described. Notably, the crystallization-driven self assembly can be treated as a living/controlled polymerization of "polymeric monomer" with a special building segment for crystallization, which allows for preparing linear polymer brushes with length as high as tens of micrometers. Moreover, the properties and related applications of polymer brushes as interesting building blocks for constructing hierarchical nanostructures, efficient drug deliver carriers, antifouling films, and lithium-ion batteries are addressed by some typical examples. These advancements in this field will provide a new avenue for obtaining fascinating polymer-brush-based functional materials.
Collapse
Affiliation(s)
- Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| |
Collapse
|
94
|
Li L, Li D, Zhang M, He J, Liu J, Ni P. One-Pot Synthesis of pH/Redox Responsive Polymeric Prodrug and Fabrication of Shell Cross-Linked Prodrug Micelles for Antitumor Drug Transportation. Bioconjug Chem 2018; 29:2806-2817. [PMID: 30005157 DOI: 10.1021/acs.bioconjchem.8b00421] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Shell cross-linked (SCL) polymeric prodrug micelles have the advantages of good blood circulation stability and high drug content. Herein, we report on a new kind of pH/redox responsive dynamic covalent SCL micelle, which was fabricated by self-assembly of a multifunctional polymeric prodrug. At first, a macroinitiator PBYP- ss- iBuBr was prepared via ring-opening polymerization (ROP), wherein PBYP represents poly[2-(but-3-yn-1-yloxy)-2-oxo-1,3,2-dioxaphospholane]. Subsequently, PBYP- hyd-DOX- ss-P(DMAEMA- co-FBEMA) prodrug was synthesized by a one-pot method with a combination of atom transfer radical polymerization (ATRP) and a Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction using a doxorubicin (DOX) derivative containing an azide group to react with the alkynyl group of the side chain in the PBYP block, while DMAEMA and FBEMA are the abbriviations of N, N-(2-dimethylamino)ethyl methacrylate and 2-(4-formylbenzoyloxy)ethyl methacrylate, respectively. The chemical structures of the polymer precursors and the prodrugs have been fully characterized. The SCL prodrug micelles were obtained by self-assembly of the prodrug and adding cross-linker dithiol bis(propanoic dihydrazide) (DTP). Compared with the shell un-cross-linked prodrug micelles, the SCL prodrug micelles can enhance the stability and prevent the drug from leaking in the body during blood circulation. The average size and morphology of the SCL prodrug micelles were measured by dynamic light scattering (DLS) and transmission electron microscopy (TEM), respectively. The SCL micelles can be dissociated under a moderately acidic and/or reductive microenvironment, that is, endosomal/lysosomal pH medium or high GSH level in the tumorous cytosol. The results of DOX release also confirmed that the SCL prodrug micelles possessed pH/reduction responsive properties. Cytotoxicity and cellular uptake analyses further revealed that the SCL prodrug micelles could be rapidly internalized into tumor cells through endocytosis and efficiently release DOX into the HeLa and HepG2 cells, which could efficiently inhibit the cell proliferation. This study provides a fast and precise synthesis method for preparing multifunctional polymer prodrugs, which hold great potential for optimal antitumor therapy.
Collapse
Affiliation(s)
- Lei Li
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis , Soochow University , Suzhou 215123 , People's Republic of China
| | - Dian Li
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis , Soochow University , Suzhou 215123 , People's Republic of China
| | - Mingzu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis , Soochow University , Suzhou 215123 , People's Republic of China
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis , Soochow University , Suzhou 215123 , People's Republic of China
| | - Jian Liu
- Institute of Functional Nano and Soft Materials (FUNSOM) , Soochow University , Suzhou , 215123 , People's Republic of China
| | - Peihong Ni
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis , Soochow University , Suzhou 215123 , People's Republic of China
| |
Collapse
|
95
|
Fan X, Win KY, Hu Z, Loh XJ, Li Z. Precise Synthesis of PS-PLA Janus Star-Like Copolymer. Macromol Rapid Commun 2018; 40:e1800217. [DOI: 10.1002/marc.201800217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/08/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Xiaoshan Fan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions; Ministry of Education; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang 453007 China
| | - Khin Yin Win
- Institute of Materials Research and Engineering; A*STAR (Agency for Science, Technology and Research); 2 Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
| | - Zhiguo Hu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions; Ministry of Education; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang 453007 China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering; A*STAR (Agency for Science, Technology and Research); 2 Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering; A*STAR (Agency for Science, Technology and Research); 2 Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
| |
Collapse
|
96
|
Guo Z, Le AN, Feng X, Choo Y, Liu B, Wang D, Wan Z, Gu Y, Zhao J, Li V, Osuji CO, Johnson JA, Zhong M. Janus Graft Block Copolymers: Design of a Polymer Architecture for Independently Tuned Nanostructures and Polymer Properties. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802844] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zi‐Hao Guo
- Department of Chemical and Environmental Engineering Yale University New Haven CT 06511 USA
| | - An N. Le
- Department of Chemical and Environmental Engineering Yale University New Haven CT 06511 USA
| | - Xunda Feng
- Department of Chemical and Environmental Engineering Yale University New Haven CT 06511 USA
| | - Youngwoo Choo
- Department of Chemical and Environmental Engineering Yale University New Haven CT 06511 USA
| | - Bingqian Liu
- Department of Chemical and Environmental Engineering Yale University New Haven CT 06511 USA
| | - Danyu Wang
- Department of Chemical and Environmental Engineering Yale University New Haven CT 06511 USA
| | - Zhengyi Wan
- Department of Chemical and Environmental Engineering Yale University New Haven CT 06511 USA
| | - Yuwei Gu
- Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Julia Zhao
- Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Vince Li
- Department of Chemical and Environmental Engineering Yale University New Haven CT 06511 USA
| | - Chinedum O. Osuji
- Department of Chemical and Environmental Engineering Yale University New Haven CT 06511 USA
| | - Jeremiah A. Johnson
- Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Mingjiang Zhong
- Department of Chemical and Environmental Engineering Yale University New Haven CT 06511 USA
| |
Collapse
|
97
|
Guo Z, Le AN, Feng X, Choo Y, Liu B, Wang D, Wan Z, Gu Y, Zhao J, Li V, Osuji CO, Johnson JA, Zhong M. Janus Graft Block Copolymers: Design of a Polymer Architecture for Independently Tuned Nanostructures and Polymer Properties. Angew Chem Int Ed Engl 2018; 57:8493-8497. [DOI: 10.1002/anie.201802844] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Zi‐Hao Guo
- Department of Chemical and Environmental Engineering Yale University New Haven CT 06511 USA
| | - An N. Le
- Department of Chemical and Environmental Engineering Yale University New Haven CT 06511 USA
| | - Xunda Feng
- Department of Chemical and Environmental Engineering Yale University New Haven CT 06511 USA
| | - Youngwoo Choo
- Department of Chemical and Environmental Engineering Yale University New Haven CT 06511 USA
| | - Bingqian Liu
- Department of Chemical and Environmental Engineering Yale University New Haven CT 06511 USA
| | - Danyu Wang
- Department of Chemical and Environmental Engineering Yale University New Haven CT 06511 USA
| | - Zhengyi Wan
- Department of Chemical and Environmental Engineering Yale University New Haven CT 06511 USA
| | - Yuwei Gu
- Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Julia Zhao
- Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Vince Li
- Department of Chemical and Environmental Engineering Yale University New Haven CT 06511 USA
| | - Chinedum O. Osuji
- Department of Chemical and Environmental Engineering Yale University New Haven CT 06511 USA
| | - Jeremiah A. Johnson
- Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Mingjiang Zhong
- Department of Chemical and Environmental Engineering Yale University New Haven CT 06511 USA
| |
Collapse
|
98
|
Huang CF, Chen WH, Aimi J, Huang YS, Venkatesan S, Chiang YW, Huang SH, Kuo SW, Chen T. Synthesis of well-defined PCL-b-PnBA-b-PMMA ABC-type triblock copolymers: toward the construction of nanostructures in epoxy thermosets. Polym Chem 2018. [DOI: 10.1039/c8py01357h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel PCL-b-PnBA-b-PMMA was designed and applied to construct ordered nanostructures within epoxy thermosets.
Collapse
Affiliation(s)
- Chih-Feng Huang
- Department of Chemical Engineering
- National Chung Hsing University
- Taichung 402-27
- Taiwan
- Research Center for Sustainable Energy and Nanotechnology
| | - Wen-Hua Chen
- Department of Chemical Engineering
- National Chung Hsing University
- Taichung 402-27
- Taiwan
| | - Junko Aimi
- Molecular Design & Function Group
- Research Center for Functional Materials
- National Institute for Materials Science
- Tsukuba
- Japan
| | - Yi-Shen Huang
- Department of Chemical Engineering
- National Chung Hsing University
- Taichung 402-27
- Taiwan
| | - Sathesh Venkatesan
- Department of Chemical Engineering
- National Chung Hsing University
- Taichung 402-27
- Taiwan
| | - Yeo-Wan Chiang
- Department of Materials and Optoelectronic Science
- Center for Nanoscience and Nanotechnology
- National Sun Yat-Sen University
- Kaohsiung 804-24
- Taiwan
| | - Shih-Hung Huang
- Department of Materials and Optoelectronic Science
- Center for Nanoscience and Nanotechnology
- National Sun Yat-Sen University
- Kaohsiung 804-24
- Taiwan
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science
- Center for Nanoscience and Nanotechnology
- National Sun Yat-Sen University
- Kaohsiung 804-24
- Taiwan
| | - Tao Chen
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo 315201
- China
| |
Collapse
|
99
|
Wu W, Dai W, Zhao X, Zhang J, Zhao Y. Synthesis, self-assembly and drug release behaviors of reduction-labile multi-responsive block miktobrush quaterpolymers with linear and V-shaped grafts. Polym Chem 2018. [DOI: 10.1039/c8py00245b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stimuli-tunable topological/morphological transitions and drug release properties based on novel disulfide-functionalized coil–comb–coil quaterpolymers were revealed.
Collapse
Affiliation(s)
- Wentao Wu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Wenxue Dai
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiaoqi Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Jian Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Youliang Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
100
|
Fukumoto A, Arimoto M, Matsuoka SI, Suzuki M. Polycondensation of methacrylates: auto-tandem organocatalysis using N-heterocyclic carbenes. Polym Chem 2018. [DOI: 10.1039/c8py01027g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
N-Heterocyclic carbenes catalyzed the self-polycondensation of hydroxy-functionalized methacrylates and the direct polycondensation of n-butyl methacrylate with diols to produce new unsaturated polyesters.
Collapse
Affiliation(s)
- Aoi Fukumoto
- Department of Life Science and Applied Chemistry
- Graduate School of Engineering
- Nagoya Institute of Technology
- Nagoya
- Japan
| | - Miharu Arimoto
- Department of Life Science and Applied Chemistry
- Graduate School of Engineering
- Nagoya Institute of Technology
- Nagoya
- Japan
| | - Shin-ichi Matsuoka
- Department of Life Science and Applied Chemistry
- Graduate School of Engineering
- Nagoya Institute of Technology
- Nagoya
- Japan
| | - Masato Suzuki
- Department of Life Science and Applied Chemistry
- Graduate School of Engineering
- Nagoya Institute of Technology
- Nagoya
- Japan
| |
Collapse
|