51
|
Nyhan L, Field D, Hill C, Callanan M, Begley M. Investigation of combinations of rationally selected bioengineered nisin derivatives for their ability to inhibit Listeria in broth and model food systems. Food Microbiol 2021; 99:103835. [PMID: 34119119 DOI: 10.1016/j.fm.2021.103835] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/07/2021] [Accepted: 05/15/2021] [Indexed: 10/21/2022]
Abstract
In this study, we examined the ability of nisin A and a rationally assembled bank of 36 nisin derivative producing Lactococcus lactis strains to inhibit Listeria. A broth-based bioluminescence assay for screening single and combinations of bioengineered nisin derivatives using cell-free supernatants (CFS) from nisin derivative producing strains was developed. In this way, we screened 630 combinations of nisin derivative producing strains, identifying two (CFS from M17Q + N20P and M17Q + S29E) which exhibited enhanced anti-listerial activity when used together compared to when used alone, or to the nisin A producing strain. Minimal inhibitory concentration assays performed with purified peptides revealed than when used singly, the specific activities of M17Q, N20P and S29E (3.75-7.5 μM) against L. innocua were equal to, or less than that of nisin A (MIC of 3.75 μM). Broth-based growth curve assays using purified peptides demonstrated that use of the double peptide combinations and a triple peptide combination (M17Q + N20P + S29E) resulted in an extended lag phase of L. innocua, while kill curve assays confirmed the enhanced bactericidal activity of the combinations in comparison to the single derivative peptides or nisin A. Furthermore, the enhanced activity of the M17Q + N20P combination was maintained in a model food system (frankfurter homogenate) at both chill (4 °C) and abusive (20 °C) temperature conditions, with final cell numbers significantly less (1-2 log10 CFU/ml) than those observed with the derivative peptides alone, or nisin A. To our knowledge, this study is the first investigation that combines bioengineered bacteriocins with the aim of discovering a combination with enhanced antimicrobial activity.
Collapse
Affiliation(s)
- Laura Nyhan
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Des Field
- School of Microbiology, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| | - Colin Hill
- School of Microbiology, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Michael Callanan
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Máire Begley
- Department of Biological Sciences, Munster Technological University, Cork, Ireland.
| |
Collapse
|
52
|
Travers W, Kelleher F. Studies of the highly potent lantibiotic peptide nisin Z in aqueous solutions of salts and biological buffer components. Biophys Chem 2021; 274:106603. [PMID: 33945991 DOI: 10.1016/j.bpc.2021.106603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 12/20/2022]
Abstract
The lantibiotic nisin, usually used as a 2.5%w/w in NaCl and milk solids, has activity against a wide range of Gram-positive bacteria, especially food-borne pathogens, and has been used as a food preservative for decades without the development of significant resistance. It has been reported that the high purity (>95%) nisin Z form has activity against the Gram-negative speciesE. coli, which is significantly reduced in the presence of NaCl. This current study examined, by1H NMR spectroscopy, the effects of NaCl, and a range of other salts, on the observed aqueous solution1H NMR spectra of nisin Z in the pH 3-4 range, where nisin Z has its maximum stability. Nisin's mechanism of action involves binding to the polyoxygenated pyrophosphate moiety of lipid II, and in acidic solution the positively charged C-terminus region is reported to interact with the negative sulfate groups of SDS micelles, so the study was extended to include a number of polyoxygenated anions commonly used as buffers in many biological assays. In general, the biggest changes found were in the chemical shifts of protons in the hydrophobic N-terminus region, rather than the more polar C-terminus region. The effects seen on the addition of the salts (cations and anions) were not just an overall non-specific ionic strength effect, as different salts caused different effects, in an unpredictive manner. Similarly, the polyoxygenated anions behaved differently and not predictably, and neither the cations/anions, or polyoxygenated anions, constitute a Hofmeister or inverse Hofmeister series.
Collapse
Affiliation(s)
- Wayne Travers
- Molecular Design & Synthesis Group, Centre of Applied Science for Health, TU Dublin Tallaght, Dublin D24 FKT9, Ireland
| | - Fintan Kelleher
- Molecular Design & Synthesis Group, Centre of Applied Science for Health, TU Dublin Tallaght, Dublin D24 FKT9, Ireland.
| |
Collapse
|
53
|
Field D, Considine K, O’Connor PM, Ross RP, Hill C, Cotter PD. Bio-Engineered Nisin with Increased Anti- Staphylococcus and Selectively Reduced Anti- Lactococcus Activity for Treatment of Bovine Mastitis. Int J Mol Sci 2021; 22:3480. [PMID: 33801752 PMCID: PMC8036683 DOI: 10.3390/ijms22073480] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 01/22/2023] Open
Abstract
Bovine mastitis is a significant economic burden for dairy enterprises, responsible for premature culling, prophylactic and therapeutic antibiotic use, reduced milk production and the withholding (and thus wastage) of milk. There is a desire to identify novel antimicrobials that are expressly directed to veterinary applications, do not require a lengthy milk withholding period and that will not have a negative impact on the growth of lactic acid bacteria involved in downstream dairy fermentations. Nisin is the prototypical lantibiotic, a family of highly modified antimicrobial peptides that exhibit potent antimicrobial activity against many Gram-positive microbes, including human and animal pathogens including species of Staphylococcus and Streptococcus. Although not yet utilized in the area of human medicine, nisin is currently applied as the active agent in products designed to prevent bovine mastitis. Over the last decade, we have harnessed bioengineering strategies to boost the specific activity and target spectrum of nisin against several problematic microorganisms. Here, we screen a large bank of engineered nisin derivatives to identify novel derivatives that exhibit improved specific activity against a selection of staphylococci, including mastitis-associated strains, but have unchanged or reduced activity against dairy lactococci. Three such peptides were identified; nisin A M17Q, nisin A T2L and nisin A HTK.
Collapse
Affiliation(s)
- Des Field
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland;
- APC Microbiome Ireland, T12 YT20 Cork, Ireland;
| | - Kiera Considine
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., P61 C996 Cork, Ireland; (K.C.); (P.M.O.)
| | - Paula M. O’Connor
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., P61 C996 Cork, Ireland; (K.C.); (P.M.O.)
| | - R. Paul Ross
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland;
- APC Microbiome Ireland, T12 YT20 Cork, Ireland;
| | - Colin Hill
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland;
- APC Microbiome Ireland, T12 YT20 Cork, Ireland;
| | - Paul D. Cotter
- APC Microbiome Ireland, T12 YT20 Cork, Ireland;
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., P61 C996 Cork, Ireland; (K.C.); (P.M.O.)
| |
Collapse
|
54
|
Narasimhan S, Pinto C, Lucini Paioni A, van der Zwan J, Folkers GE, Baldus M. Characterizing proteins in a native bacterial environment using solid-state NMR spectroscopy. Nat Protoc 2021; 16:893-918. [PMID: 33442051 DOI: 10.1038/s41596-020-00439-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/09/2020] [Indexed: 01/29/2023]
Abstract
For a long time, solid-state nuclear magnetic resonance (ssNMR) has been employed to study complex biomolecular systems at the detailed chemical, structural, or dynamic level. Recent progress in high-resolution and high-sensitivity ssNMR, in combination with innovative sample preparation and labeling schemes, offers novel opportunities to study proteins in their native setting irrespective of the molecular tumbling rate. This protocol describes biochemical preparation schemes to obtain cellular samples of both soluble as well as insoluble or membrane-associated proteins in bacteria. To this end, the protocol is suitable for studying a protein of interest in both whole cells and in cell envelope or isolated membrane preparations. In the first stage of the procedure, an appropriate strain of Escherichia coli (DE3) is transformed with a plasmid of interest harboring the protein of interest under the control of an inducible T7 promoter. Next, the cells are adapted to grow in minimal (M9) medium. Before the growth enters stationary phase, protein expression is induced, and shortly thereafter, the native E. coli RNA polymerase is inhibited using rifampicin for targeted labeling of the protein of interest. The cells are harvested after expression and prepared for ssNMR rotor filling. In addition to conventional 13C/15N-detected ssNMR, we also outline how these preparations can be readily subjected to multidimensional ssNMR experiments using dynamic nuclear polarization (DNP) or proton (1H) detection schemes. We estimate that the entire preparative procedure until NMR experiments can be started takes 3-5 days.
Collapse
Affiliation(s)
- Siddarth Narasimhan
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands.,Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Cecilia Pinto
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands.,Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Alessandra Lucini Paioni
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Johan van der Zwan
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Gert E Folkers
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
55
|
Reif B, Ashbrook SE, Emsley L, Hong M. Solid-state NMR spectroscopy. NATURE REVIEWS. METHODS PRIMERS 2021; 1:2. [PMID: 34368784 PMCID: PMC8341432 DOI: 10.1038/s43586-020-00002-1] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/29/2020] [Indexed: 12/18/2022]
Abstract
Solid-state nuclear magnetic resonance (NMR) spectroscopy is an atomic-level method used to determine the chemical structure, three-dimensional structure, and dynamics of solids and semi-solids. This Primer summarizes the basic principles of NMR as applied to the wide range of solid systems. The fundamental nuclear spin interactions and the effects of magnetic fields and radiofrequency pulses on nuclear spins are the same as in liquid-state NMR. However, because of the anisotropy of the interactions in the solid state, the majority of high-resolution solid-state NMR spectra is measured under magic-angle spinning (MAS), which has profound effects on the types of radiofrequency pulse sequences required to extract structural and dynamical information. We describe the most common MAS NMR experiments and data analysis approaches for investigating biological macromolecules, organic materials, and inorganic solids. Continuing development of sensitivity-enhancement approaches, including 1H-detected fast MAS experiments, dynamic nuclear polarization, and experiments tailored to ultrahigh magnetic fields, is described. We highlight recent applications of solid-state NMR to biological and materials chemistry. The Primer ends with a discussion of current limitations of NMR to study solids, and points to future avenues of development to further enhance the capabilities of this sophisticated spectroscopy for new applications.
Collapse
Affiliation(s)
- Bernd Reif
- Technische Universität München, Department Chemie, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Sharon E. Ashbrook
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Lyndon Emsley
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des sciences et ingénierie chimiques, CH-1015 Lausanne, Switzerland
| | - Mei Hong
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| |
Collapse
|
56
|
Separovic F, Keizer DW, Sani MA. In-cell Solid-State NMR Studies of Antimicrobial Peptides. FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2:610203. [PMID: 35047891 PMCID: PMC8757805 DOI: 10.3389/fmedt.2020.610203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/30/2020] [Indexed: 12/23/2022] Open
Abstract
Antimicrobial peptides (AMPs) have attracted attention as alternatives to classic antibiotics due to their expected limited pressure on bacterial resistance mechanisms. Yet, their modes of action, in particular in vivo, remain to be elucidated. In situ atomistic-scale details of complex biomolecular assemblies is a challenging requirement for deciphering the complex modes of action of AMPs. The large diversity of molecules that modulate complex interactions limits the resolution achievable using imaging methodology. Herein, the latest advances in in-cell solid-state NMR (ssNMR) are discussed, which demonstrate the power of this non-invasive technique to provide atomic details of molecular structure and dynamics. Practical requirements for investigations of intact bacteria are discussed. An overview of recent in situ NMR investigations of the architecture and metabolism of bacteria and the effect of AMPs on various bacterial structures is presented. In-cell ssNMR revealed that the studied AMPs have a disruptive action on the molecular packing of bacterial membranes and DNA. Despite the limited number of studies, in-cell ssNMR is emerging as a powerful technique to monitor in situ the interplay between bacteria and AMPs.
Collapse
Affiliation(s)
- Frances Separovic
- School of Chemistry, University of Melbourne, Melbourne, VIC, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia
| | - David W. Keizer
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Marc-Antoine Sani
- School of Chemistry, University of Melbourne, Melbourne, VIC, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia
- *Correspondence: Marc-Antoine Sani
| |
Collapse
|
57
|
Poles Apart: Where and How Cells Construct Nisin. mBio 2020; 11:mBio.02991-20. [PMID: 33323521 PMCID: PMC7773994 DOI: 10.1128/mbio.02991-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Nisin is a 34-amino-acid lantibiotic that has been used commercially for almost a century as a food preservative. In order to produce active nisin, Lactococcus lactis requires an 11-gene operon that encodes proteins involved in modification, processing, transport, immunity, and regulation. Nisin is a 34-amino-acid lantibiotic that has been used commercially for almost a century as a food preservative. In order to produce active nisin, Lactococcus lactis requires an 11-gene operon that encodes proteins involved in modification, processing, transport, immunity, and regulation. While the role of each of the 11 proteins is well understood, the location and spatial organization of the biosynthetic machinery that involves NisA, NisB, NisC, NisT, and NisP remain to be determined. In this elegant paper (J. Chen, A. J. van Heel, and O. P. Kuipers, mBio 11:e02825-20, 2020, https://doi.org/10.1128/mBio.02825-20), we learn that a NisB dimer is recruited to the “old” pole of a dividing cell, where it assembles with NisC to form a modification complex that can engage with NisA. Unexpectedly, the NisT transporter does not stably assemble into this complex but is distributed around the membrane until it engages with the NisABC complex to transport NisA across the membrane, whereupon it dissociates from NisBC.
Collapse
|
58
|
Lacabanne D, Boudet J, Malär AA, Wu P, Cadalbert R, Salmon L, Allain FHT, Meier BH, Wiegand T. Protein Side-Chain-DNA Contacts Probed by Fast Magic-Angle Spinning NMR. J Phys Chem B 2020; 124:11089-11097. [PMID: 33238710 PMCID: PMC7734624 DOI: 10.1021/acs.jpcb.0c08150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Protein–nucleic
acid interactions are essential in a variety
of biological events ranging from the replication of genomic DNA to
the synthesis of proteins. Noncovalent interactions guide such molecular
recognition events, and protons are often at the center of them, particularly
due to their capability of forming hydrogen bonds to the nucleic acid
phosphate groups. Fast magic-angle spinning experiments (100 kHz)
reduce the proton NMR line width in solid-state NMR of fully protonated
protein–DNA complexes to such an extent that resolved proton
signals from side-chains coordinating the DNA can be detected. We
describe a set of NMR experiments focusing on the detection of protein
side-chains from lysine, arginine, and aromatic amino acids and discuss
the conclusions that can be obtained on their role in DNA coordination.
We studied the 39 kDa enzyme of the archaeal pRN1 primase complexed
with DNA and characterize protein–DNA contacts in the presence
and absence of bound ATP molecules.
Collapse
Affiliation(s)
| | - Julien Boudet
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Pengzhi Wu
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland.,Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Loic Salmon
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Frédéric H-T Allain
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland.,Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Beat H Meier
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Thomas Wiegand
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
59
|
Karczewski J, Krasucki SP, Asare-Okai PN, Diehl C, Friedman A, Brown CM, Maezato Y, Streatfield SJ. Isolation, Characterization and Structure Elucidation of a Novel Lantibiotic From Paenibacillus sp. Front Microbiol 2020; 11:598789. [PMID: 33324379 PMCID: PMC7721686 DOI: 10.3389/fmicb.2020.598789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/26/2020] [Indexed: 01/01/2023] Open
Abstract
We have isolated and characterized a novel antibacterial peptide, CMB001, following an extensive screening effort of bacterial species isolated from diverse environmental sources. The bacterium that produces CMB001 is characterized as a Gram (+) bacillus sharing approximately 98.9% 16S rRNA sequence homology with its closest match, Paenibacillus kyungheensis. The molecule has been purified to homogeneity from its cell-free supernatant by a three-step preparative chromatography process. Based on its primary structure, CMB001 shares 81% identity with subtilin and 62% with nisin. CMB001 is active mainly against Gram-positive bacteria and Mycobacteriaceae but it is also active against certain Gram-negative bacteria, including multi-drug resistant Acinetobacter baumannii. It retains full antibacterial activity at neutral pH and displays a low propensity to select for resistance among targeted bacteria. Based on NMR and mass spectrometry, CMB001 forms a unique 3D-structure comprising of a compact backbone with one α-helix and two pseudo-α-helical regions. Screening the structure against the Protein Data Bank (PDB) revealed a partial match with nisin-lipid II (1WCO), but none of the lantibiotics with known structures showed significant structural similarity. Due to its unique structure, resistance profile, relatively broad spectrum and stability under physiological conditions, CMB001 is a promising drug candidate for evaluation in animal models of bacterial infection.
Collapse
Affiliation(s)
- Jerzy Karczewski
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, United States
| | - Stephen P Krasucki
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, United States
| | - Papa Nii Asare-Okai
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States
| | | | - Andrew Friedman
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, United States
| | - Christine M Brown
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, United States
| | - Yukari Maezato
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, United States
| | | |
Collapse
|
60
|
Reiners J, Lagedroste M, Gottstein J, Adeniyi ET, Kalscheuer R, Poschmann G, Stühler K, Smits SHJ, Schmitt L. Insights in the Antimicrobial Potential of the Natural Nisin Variant Nisin H. Front Microbiol 2020; 11:573614. [PMID: 33193179 PMCID: PMC7606277 DOI: 10.3389/fmicb.2020.573614] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/25/2020] [Indexed: 11/17/2022] Open
Abstract
Lantibiotics are a growing class of antimicrobial peptides, which possess antimicrobial activity against mainly Gram-positive bacteria including the highly resistant strains such as methicillin-resistant Staphylococcus aureus or vancomycin-resistant enterococci. In the last decades numerous lantibiotics were discovered in natural habitats or designed with bioengineering tools. In this study, we present an insight in the antimicrobial potential of the natural occurring lantibiotic nisin H from Streptococcus hyointestinalis as well as the variant nisin H F1I. We determined the yield of the heterologously expressed peptide and quantified the cleavage efficiency employing the nisin protease NisP. Furthermore, we analyzed the effect on the modification via mass spectrometry analysis. With standardized growth inhibition assays we benchmarked the activity of pure nisin H and the variant nisin H F1I, and their influence on the activity of the nisin immunity proteins NisI and NisFEG from Lactococcus lactis and the nisin resistance proteins SaNSR and SaNsrFP from Streptococcus agalactiae COH1. We further checked the antibacterial activity against clinical isolates of Staphylococcus aureus, Enterococcus faecium and Enterococcus faecalis via microdilution method. In summary, nisin H and the nisin H F1I variant possessed better antimicrobial potency than the natural nisin A.
Collapse
Affiliation(s)
- Jens Reiners
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.,Center for Structural Studies, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Marcel Lagedroste
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Julia Gottstein
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Emmanuel T Adeniyi
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Rainer Kalscheuer
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Gereon Poschmann
- Institute for Molecular Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Kai Stühler
- Institute for Molecular Medicine, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.,Molecular Proteomics Laboratory, BMFZ, Heinrich-Heine-University-Düsseldorf, Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.,Center for Structural Studies, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
61
|
Smits SHJ, Schmitt L, Beis K. Self-immunity to antibacterial peptides by ABC transporters. FEBS Lett 2020; 594:3920-3942. [PMID: 33040342 DOI: 10.1002/1873-3468.13953] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/22/2020] [Accepted: 10/05/2020] [Indexed: 01/17/2023]
Abstract
Bacteria produce under certain stress conditions bacteriocins and microcins that display antibacterial activity against closely related species for survival. Bacteriocins and microcins exert their antibacterial activity by either disrupting the membrane or inhibiting essential intracellular processes of the bacterial target. To this end, they can lyse bacterial membranes and cause subsequent loss of their integrity or nutrients, or hijack membrane receptors for internalisation. Both bacteriocins and microcins are ribosomally synthesised and several are posttranslationally modified, whereas others are not. Such peptides are also toxic to the producer bacteria, which utilise immunity proteins or/and dedicated ATP-binding cassette (ABC) transporters to achieve self-immunity and peptide export. In this review, we discuss the structure and mechanism of self-protection that is conferred by these ABC transporters.
Collapse
Affiliation(s)
- Sander H J Smits
- Institute of Biochemistry, Heinrich-Heine-University, Duesseldorf, Germany.,Center for Structural Studies, Heinrich-Heine-University, Duesseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich-Heine-University, Duesseldorf, Germany
| | - Konstantinos Beis
- Department of Life Sciences, Imperial College London, UK.,Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, UK
| |
Collapse
|
62
|
Zhai W, Lucini Paioni A, Cai X, Narasimhan S, Medeiros-Silva J, Zhang W, Rockenbauer A, Weingarth M, Song Y, Baldus M, Liu Y. Postmodification via Thiol-Click Chemistry Yields Hydrophilic Trityl-Nitroxide Biradicals for Biomolecular High-Field Dynamic Nuclear Polarization. J Phys Chem B 2020; 124:9047-9060. [PMID: 32961049 DOI: 10.1021/acs.jpcb.0c08321] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dynamic nuclear polarization (DNP) is a powerful method to enhance nuclear magnetic resonance (NMR) signal intensities, enabling unprecedented applications in life and material science. An ultimate goal is to expand the use of DNP-enhanced solid-state NMR to ultrahigh magnetic fields where optimal spectral resolution and sensitivity are integrated. Trityl-nitroxide (TN) biradicals have attracted significant interest in high-field DNP, but their application to complex (bio)molecules has so far been limited. Here we report a novel postmodification strategy for synthesis of hydrophilic TN biradicals in order to improve their use in biomolecular applications. Initially, three TN biradicals (referred to as NATriPols 1-3) with amino-acid linkers were synthesized. EPR studies showed that the α-position of the amino-acid linkers is an ideal modification site for these biradicals since their electron-electron magnetic interactions are marginally affected by the substituents at this position. On the basis of this finding, we synthesized NATriPol-4 with pyridine disulfide appended at the α-position. Postmodification of NATriPol-4 via thiol-click chemistry resulted in various TN biradicals including hydrophilic NATriPol-5 in a quantitative manner. Interestingly, DNP enhancements at 18.8 T of NATriPols for 13C,15N-proline in a glycerol/water matrix are inversely correlated with their hydrophobicity. Importantly, applications of hydrophilic NATriPol-5 and NATriPol-3 to biomolecules including a globular soluble protein and a membrane targeting peptide reveal significantly improved performance compared to TEMTriPol-1 and AMUPol. Our work provides an efficient approach for one-step synthesis of new polarizing agents with tunable physicochemical properties, thus expediting optimization of new biradicals for biomolecular applications at ultrahigh magnetic fields.
Collapse
Affiliation(s)
- Weixiang Zhai
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Alessandra Lucini Paioni
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Xinyi Cai
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Siddarth Narasimhan
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - João Medeiros-Silva
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Wenxiao Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Antal Rockenbauer
- Institute of Materials and Environmental Chemistry, Hungarian Academy of Sciences, and Department of Physics, Budapest University of Technology and Economics, Budafokiut 8, 1111 Budapest, Hungary
| | - Markus Weingarth
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Yuguang Song
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China
| |
Collapse
|
63
|
Damman R, Lucini Paioni A, Xenaki KT, Beltrán Hernández I, van Bergen En Henegouwen PMP, Baldus M. Development of in vitro-grown spheroids as a 3D tumor model system for solid-state NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2020; 74:401-412. [PMID: 32562030 PMCID: PMC7508937 DOI: 10.1007/s10858-020-00328-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/09/2020] [Indexed: 05/11/2023]
Abstract
Recent advances in the field of in-cell NMR spectroscopy have made it possible to study proteins in the context of bacterial or mammalian cell extracts or even entire cells. As most mammalian cells are part of a multi-cellular complex, there is a need to develop novel NMR approaches enabling the study of proteins within the complexity of a 3D cellular environment. Here we investigate the use of the hanging drop method to grow spheroids which are homogenous in size and shape as a model system to study solid tumors using solid-state NMR (ssNMR) spectroscopy. We find that these spheroids are stable under magic-angle-spinning conditions and show a clear change in metabolic profile as compared to single cell preparations. Finally, we utilize dynamic nuclear polarization (DNP)-supported ssNMR measurements to show that low concentrations of labelled nanobodies targeting EGFR (7D12) can be detected inside the spheroids. These findings suggest that solid-state NMR can be used to directly examine proteins or other biomolecules in a 3D cellular microenvironment with potential applications in pharmacological research.
Collapse
Affiliation(s)
- Reinier Damman
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Alessandra Lucini Paioni
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Katerina T Xenaki
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Irati Beltrán Hernández
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
- Pharmaceutics, Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Paul M P van Bergen En Henegouwen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands.
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
64
|
El Hariri El Nokab M, van der Wel PC. Use of solid-state NMR spectroscopy for investigating polysaccharide-based hydrogels: A review. Carbohydr Polym 2020; 240:116276. [DOI: 10.1016/j.carbpol.2020.116276] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/22/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022]
|
65
|
Twomey E, Hill C, Field D, Begley M. Bioengineered Nisin Derivative M17Q Has Enhanced Activity against Staphylococcus epidermidis. Antibiotics (Basel) 2020; 9:antibiotics9060305. [PMID: 32517174 PMCID: PMC7345907 DOI: 10.3390/antibiotics9060305] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus epidermidis is frequently implicated in medical device-related infections. As a result of this, novel approaches for control of this opportunistic pathogen are required. We examined the ability of the natural peptide nisin A, produced by Lactococcus lactis, to inhibit S. epidermidis. In addition, a bank of 29 rationally selected bioengineered L. lactis strains were examined with the aim of identifying a nisin derivative with enhanced antimicrobial activity. Agar-based deferred antagonism assays revealed that wild type nisin A inhibited all 18 S. epidermidis strains tested. Larger zones of inhibition than those obtained from the nisin A producing L. lactis strain were observed for each derivative producer against at least one S. epidermidis strain tested. Six derivative producing strains, (VGA, VGT, SGK, M21A, M17Q, AAA), gave larger zones against all 18 strains compared to the wildtype producing strain. The enhanced bioactivity of M17Q was confirmed using well diffusion, minimum inhibitory concentration (MIC) and a broth-based survival assays. Biofilm assays were performed with plastic microtiter plates and medical device substrates (stainless-steel coupons and three catheter materials). The presence of nisin A significantly reduce the amount of biofilm formed on all surfaces. M17Q was significantly better at reducing biofilm production than nisin A on plastic and stainless-steel. Finally, M17Q was significantly better than nisin A at reducing bacterial numbers in a simulated wound fluid. The findings of this study suggest that nisin and bioengineered derivatives warrant further investigation as potential strategies for the control of S. epidermidis.
Collapse
Affiliation(s)
- Ellen Twomey
- Department of Biological Sciences, Cork Institute of Technology, T12 P928 Cork, Ireland;
| | - Colin Hill
- School of Microbiology, University College Cork, T12 YN60 Cork, Ireland;
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland
| | - Des Field
- School of Microbiology, University College Cork, T12 YN60 Cork, Ireland;
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland
- Correspondence: (D.F.); (M.B.)
| | - Maire Begley
- Department of Biological Sciences, Cork Institute of Technology, T12 P928 Cork, Ireland;
- Correspondence: (D.F.); (M.B.)
| |
Collapse
|
66
|
Mode of action of teixobactins in cellular membranes. Nat Commun 2020; 11:2848. [PMID: 32503964 PMCID: PMC7275090 DOI: 10.1038/s41467-020-16600-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/12/2020] [Indexed: 12/16/2022] Open
Abstract
The natural antibiotic teixobactin kills pathogenic bacteria without detectable resistance. The difficult synthesis and unfavourable solubility of teixobactin require modifications, yet insufficient knowledge on its binding mode impedes the hunt for superior analogues. Thus far, teixobactins are assumed to kill bacteria by binding to cognate cell wall precursors (Lipid II and III). Here we present the binding mode of teixobactins in cellular membranes using solid-state NMR, microscopy, and affinity assays. We solve the structure of the complex formed by an improved teixobactin-analogue and Lipid II and reveal how teixobactins recognize a broad spectrum of targets. Unexpectedly, we find that teixobactins only weakly bind to Lipid II in cellular membranes, implying the direct interaction with cell wall precursors is not the sole killing mechanism. Our data suggest an additional mechanism affords the excellent activity of teixobactins, which can block the cell wall biosynthesis by capturing precursors in massive clusters on membranes. The natural antibiotic teixobactin kills bacteria by direct binding to their cognate cell wall precursors (Lipid II and III). Here authors use solid-state NMR to reveal the native binding mode of teixobactins and show that teixobactins only weakly bind to Lipid II in anionic cellular membranes.
Collapse
|
67
|
Panina I, Krylov N, Nolde D, Efremov R, Chugunov A. Environmental and dynamic effects explain how nisin captures membrane-bound lipid II. Sci Rep 2020; 10:8821. [PMID: 32483218 PMCID: PMC7264305 DOI: 10.1038/s41598-020-65522-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/01/2020] [Indexed: 11/09/2022] Open
Abstract
Antibiotics (AB) resistance is a major threat to global health, thus the development of novel AB classes is urgently needed. Lantibiotics (i.e. nisin) are natural compounds that effectively control bacterial populations, yet their clinical potential is very limited. Nisin targets membrane-embedded cell wall precursor - lipid II - via capturing its pyrophosphate group (PPi), which is unlikely to evolve, and thus represents a promising pharmaceutical target. Understanding of exact molecular mechanism of initial stages of membrane-bound lipid II recognition by water-soluble nisin is indispensable. Here, using molecular simulations, we demonstrate that the structure of lipid II is determined to a large extent by the surrounding water-lipid milieu. In contrast to the bulk solvent, in the bilayer only two conformational states remain capable of nisin binding. In these states PPi manifests a unique arrangement of hydrogen bond acceptors on the bilayer surface. Such a "pyrophosphate pharmacophore" cannot be formed by phospholipids, which explains high selectivity of nisin/lipid II recognition. Similarly, the "recognition module" of nisin, being rather flexible in water, adopts the only stable conformation in the presence of PPi analogue (which mimics the lipid II molecule). We establish the "energy of the pyrophosphate pharmacophore" approach, which effectively distinguishes nisin conformations that can form a complex with PPi. Finally, we propose a molecular model of nisin recognition module/lipid II complex in the bacterial membrane. These results will be employed for further study of lipid II targeting by antimicrobial (poly)cyclic peptides and for design of novel AB prototypes.
Collapse
Affiliation(s)
- Irina Panina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow, 117997, Russia.,National Research University Higher School of Economics, Moscow, 101000, Russia
| | - Nikolay Krylov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow, 117997, Russia.,National Research University Higher School of Economics, Moscow, 101000, Russia
| | - Dmitry Nolde
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow, 117997, Russia.,National Research University Higher School of Economics, Moscow, 101000, Russia
| | - Roman Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow, 117997, Russia. .,National Research University Higher School of Economics, Moscow, 101000, Russia. .,Moscow Institute of Physics and Technology (State University), Dolgoprudny, 141701, Moscow, Oblast, Russia.
| | - Anton Chugunov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow, 117997, Russia.,National Research University Higher School of Economics, Moscow, 101000, Russia.,Moscow Institute of Physics and Technology (State University), Dolgoprudny, 141701, Moscow, Oblast, Russia
| |
Collapse
|
68
|
Narasimhan S, Folkers GE, Baldus M. When Small becomes Too Big: Expanding the Use of In‐Cell Solid‐State NMR Spectroscopy. Chempluschem 2020; 85:760-768. [DOI: 10.1002/cplu.202000167] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/31/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Siddarth Narasimhan
- NMR Spectroscopy Research Group Bijvoet Center for Biomolecular ResearchUtrecht University Padualaan 8 3584 CH Utrecht (The Netherlands
| | - Gert E. Folkers
- NMR Spectroscopy Research Group Bijvoet Center for Biomolecular ResearchUtrecht University Padualaan 8 3584 CH Utrecht (The Netherlands
| | - Marc Baldus
- NMR Spectroscopy Research Group Bijvoet Center for Biomolecular ResearchUtrecht University Padualaan 8 3584 CH Utrecht (The Netherlands
| |
Collapse
|
69
|
Koukos P, Bonvin A. Integrative Modelling of Biomolecular Complexes. J Mol Biol 2020; 432:2861-2881. [DOI: 10.1016/j.jmb.2019.11.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022]
|
70
|
Munusamy S, Conde R, Bertrand B, Munoz-Garay C. Biophysical approaches for exploring lipopeptide-lipid interactions. Biochimie 2020; 170:173-202. [PMID: 31978418 PMCID: PMC7116911 DOI: 10.1016/j.biochi.2020.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
Abstract
In recent years, lipopeptides (LPs) have attracted a lot of attention in the pharmaceutical industry due to their broad-spectrum of antimicrobial activity against a variety of pathogens and their unique mode of action. This class of compounds has enormous potential for application as an alternative to conventional antibiotics and for pest control. Understanding how LPs work from a structural and biophysical standpoint through investigating their interaction with cell membranes is crucial for the rational design of these biomolecules. Various analytical techniques have been developed for studying intramolecular interactions with high resolution. However, these tools have been barely exploited in lipopeptide-lipid interactions studies. These biophysical approaches would give precise insight on these interactions. Here, we reviewed these state-of-the-art analytical techniques. Knowledge at this level is indispensable for understanding LPs activity and particularly their potential specificity, which is relevant information for safe application. Additionally, the principle of each analytical technique is presented and the information acquired is discussed. The key challenges, such as the selection of the membrane model are also been briefly reviewed.
Collapse
Affiliation(s)
- Sathishkumar Munusamy
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Renaud Conde
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Brandt Bertrand
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Carlos Munoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico.
| |
Collapse
|
71
|
BceAB-Type Antibiotic Resistance Transporters Appear To Act by Target Protection of Cell Wall Synthesis. Antimicrob Agents Chemother 2020; 64:AAC.02241-19. [PMID: 31871088 PMCID: PMC7038271 DOI: 10.1128/aac.02241-19] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/18/2019] [Indexed: 11/25/2022] Open
Abstract
Resistance against cell wall-active antimicrobial peptides in bacteria is often mediated by transporters. In low-GC-content Gram-positive bacteria, a common type of such transporters is BceAB-like systems, which frequently provide high-level resistance against peptide antibiotics that target intermediates of the lipid II cycle of cell wall synthesis. How a transporter can offer protection from drugs that are active on the cell surface, however, has presented researchers with a conundrum. Resistance against cell wall-active antimicrobial peptides in bacteria is often mediated by transporters. In low-GC-content Gram-positive bacteria, a common type of such transporters is BceAB-like systems, which frequently provide high-level resistance against peptide antibiotics that target intermediates of the lipid II cycle of cell wall synthesis. How a transporter can offer protection from drugs that are active on the cell surface, however, has presented researchers with a conundrum. Multiple theories have been discussed, ranging from removal of the peptides from the membrane and internalization of the drug for degradation to removal of the cellular target rather than the drug itself. To resolve this much-debated question, we here investigated the mode of action of the transporter BceAB of Bacillus subtilis. We show that it does not inactivate or import its substrate antibiotic bacitracin. Moreover, we present evidence that the critical factor driving transport activity is not the drug itself but instead the concentration of drug-target complexes in the cell. Our results, together with previously reported findings, lead us to propose that BceAB-type transporters act by transiently freeing lipid II cycle intermediates from the inhibitory grip of antimicrobial peptides and thus provide resistance through target protection of cell wall synthesis. Target protection has so far only been reported for resistance against antibiotics with intracellular targets, such as the ribosome. However, this mechanism offers a plausible explanation for the use of transporters as resistance determinants against cell wall-active antibiotics in Gram-positive bacteria where cell wall synthesis lacks the additional protection of an outer membrane.
Collapse
|
72
|
Wiegand T, Schledorn M, Malär AA, Cadalbert R, Däpp A, Terradot L, Meier BH, Böckmann A. Nucleotide Binding Modes in a Motor Protein Revealed by 31 P- and 1 H-Detected MAS Solid-State NMR Spectroscopy. Chembiochem 2020; 21:324-330. [PMID: 31310428 PMCID: PMC7318265 DOI: 10.1002/cbic.201900439] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Indexed: 12/16/2022]
Abstract
Protein-nucleic acid interactions play important roles not only in energy-providing reactions, such as ATP hydrolysis, but also in reading, extending, packaging, or repairing genomes. Although they can often be analyzed in detail with X-ray crystallography, complementary methods are needed to visualize them in complexes, which are not crystalline. Here, we show how solid-state NMR spectroscopy can detect and classify protein-nucleic interactions through site-specific 1 H- and 31 P-detected spectroscopic methods. The sensitivity of 1 H chemical-shift values on noncovalent interactions involved in these molecular recognition processes is exploited allowing us to probe directly the chemical bonding state, an information, which is not directly accessible from an X-ray structure. We show that these methods can characterize interactions in easy-to-prepare sediments of the 708 kDa dodecameric DnaB helicase in complex with ADP:AlF4- :DNA, and this despite the very challenging size of the complex.
Collapse
Affiliation(s)
- Thomas Wiegand
- Physical ChemistryETH ZurichVladimir-Prelog-Weg 1-5/108093ZürichSwitzerland
| | - Maarten Schledorn
- Physical ChemistryETH ZurichVladimir-Prelog-Weg 1-5/108093ZürichSwitzerland
| | - Alexander A. Malär
- Physical ChemistryETH ZurichVladimir-Prelog-Weg 1-5/108093ZürichSwitzerland
| | - Riccardo Cadalbert
- Physical ChemistryETH ZurichVladimir-Prelog-Weg 1-5/108093ZürichSwitzerland
| | - Alexander Däpp
- Physical ChemistryETH ZurichVladimir-Prelog-Weg 1-5/108093ZürichSwitzerland
| | - Laurent Terradot
- Physical ChemistryETH ZurichVladimir-Prelog-Weg 1-5/108093ZürichSwitzerland
| | - Beat H. Meier
- Physical ChemistryETH ZurichVladimir-Prelog-Weg 1-5/108093ZürichSwitzerland
| | - Anja Böckmann
- Molecular Microbiology and Structural BiochemistryLabex EcofectUMR 5086 CNRS/Université de Lyon7 Passage du vercors69367LyonFrance
| |
Collapse
|
73
|
Ding X, Fu R, Tian F. De novo resonance assignment of the transmembrane domain of LR11/SorLA in E. coli membranes. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 310:106639. [PMID: 31734618 PMCID: PMC6935515 DOI: 10.1016/j.jmr.2019.106639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 05/17/2023]
Abstract
Membrane proteins perform many important cellular functions. Historically, structural studies of these proteins have been conducted in detergent preparations and synthetic lipid bilayers. More recently, magic-angle-spinning (MAS) solid-state NMR has been employed to analyze membrane proteins in native membrane environments, but resonance assignments with this technique remain challenging due to limited spectral resolution and high resonance degeneracy. To tackle this issue, we combine reverse labeling of amino acids, frequency-selective dipolar dephasing, and NMR difference spectroscopy. These methods have resulted in nearly complete resonance assignments of the transmembrane domain of human LR11 (SorLA) protein in E. coli membranes. To reduce background signals from E. coli lipids and proteins and improve spectral sensitivity, we effectively utilize amylose affinity chromatography to prepare membrane vesicles when MBP is included as a fusion partner in the expression construct.
Collapse
Affiliation(s)
- Xiaoyan Ding
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Riqiang Fu
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Dr., Tallahassee, FL 32310, USA.
| | - Fang Tian
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, Hershey, PA 17033, USA.
| |
Collapse
|
74
|
Townshend G, Thompson GS, White LJ, Hiscock JR, Ortega-Roldan JL. The elucidation of phospholipid bilayer–small molecule interactions using a combination of phospholipid nanodiscs and solution state NMR techniques. Chem Commun (Camb) 2020; 56:4015-4018. [DOI: 10.1039/c9cc09948d] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Quantifying phospholipid bilayer–small molecule interactions is vital to the development of new drug candidates and/or medicinal therapies.
Collapse
Affiliation(s)
- Georgina Townshend
- School of Biosciences
- University of Kent
- Canterbury
- UK
- School of Physical Sciences
| | | | | | | | | |
Collapse
|
75
|
Exploring Protein Structures by DNP-Enhanced Methyl Solid-State NMR Spectroscopy. J Am Chem Soc 2019; 141:19888-19901. [DOI: 10.1021/jacs.9b11195] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
76
|
Jekhmane S, Prachar M, Pugliese R, Fontana F, Medeiros‐Silva J, Gelain F, Weingarth M. Design Parameters of Tissue‐Engineering Scaffolds at the Atomic Scale. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shehrazade Jekhmane
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchDepartment of ChemistryFaculty of ScienceUtrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
| | - Marek Prachar
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchDepartment of ChemistryFaculty of ScienceUtrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
| | - Raffaele Pugliese
- Fondazione IRCCS Casa Sollievo della SofferenzaUnita' di Ingegneria Tissutale Viale Cappuccini 1 71013 San Giovanni Rotondo Italy
| | - Federico Fontana
- Fondazione IRCCS Casa Sollievo della SofferenzaUnita' di Ingegneria Tissutale Viale Cappuccini 1 71013 San Giovanni Rotondo Italy
- ASST Grande Ospedale Metropolitano NiguardaCenter for Nanomedicine and Tissue Engineering Piazza dell'Ospedale Maggiore 3 20162 Milan Italy
| | - João Medeiros‐Silva
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchDepartment of ChemistryFaculty of ScienceUtrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
| | - Fabrizio Gelain
- Fondazione IRCCS Casa Sollievo della SofferenzaUnita' di Ingegneria Tissutale Viale Cappuccini 1 71013 San Giovanni Rotondo Italy
- ASST Grande Ospedale Metropolitano NiguardaCenter for Nanomedicine and Tissue Engineering Piazza dell'Ospedale Maggiore 3 20162 Milan Italy
| | - Markus Weingarth
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchDepartment of ChemistryFaculty of ScienceUtrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
| |
Collapse
|
77
|
Dickman R, Danelius E, Mitchell SA, Hansen DF, Erdélyi M, Tabor AB. A Chemical Biology Approach to Understanding Molecular Recognition of Lipid II by Nisin(1-12): Synthesis and NMR Ensemble Analysis of Nisin(1-12) and Analogues. Chemistry 2019; 25:14572-14582. [PMID: 31599485 PMCID: PMC6899958 DOI: 10.1002/chem.201902814] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/29/2019] [Indexed: 12/14/2022]
Abstract
Natural products that target lipid II, such as the lantibiotic nisin, are strategically important in the development of new antibacterial agents to combat the rise of antimicrobial resistance. Understanding the structural factors that govern the highly selective molecular recognition of lipid II by the N-terminal region of nisin, nisin(1-12), is a crucial step in exploiting the potential of such compounds. In order to elucidate the relationships between amino acid sequence and conformation of this bicyclic peptide fragment, we have used solid-phase peptide synthesis to prepare two novel analogues of nisin(1-12) in which the dehydro residues have been replaced. We have carried out an NMR ensemble analysis of one of these analogues and of the wild-type nisin(1-12) peptide in order to compare the conformations of these two bicyclic peptides. Our analysis has shown the effects of residue mutation on ring conformation. We have also demonstrated that the individual rings of nisin(1-12) are pre-organised to an extent for binding to the pyrophosphate group of lipid II, with a high degree of flexibility exhibited in the central amide bond joining the two rings.
Collapse
Affiliation(s)
- Rachael Dickman
- Department of ChemistryUniversity College London, 20Gordon StreetLondonWC1H 0AJUK
| | - Emma Danelius
- The Swedish NMR CentreMedicinaregatan 540530GothenburgSweden
| | - Serena A. Mitchell
- Department of ChemistryUniversity College London, 20Gordon StreetLondonWC1H 0AJUK
| | - D. Flemming Hansen
- Institute of Structural and Molecular BiologyDivision of BiosciencesUniversity College LondonGower StreetLondonWC1E 6BTUK
| | - Máté Erdélyi
- The Swedish NMR CentreMedicinaregatan 540530GothenburgSweden
- Department of Chemistry–BMCUppsala UniversityBox 57675123UppsalaSweden
| | - Alethea B. Tabor
- Department of ChemistryUniversity College London, 20Gordon StreetLondonWC1H 0AJUK
| |
Collapse
|
78
|
Jekhmane S, Prachar M, Pugliese R, Fontana F, Medeiros-Silva J, Gelain F, Weingarth M. Design Parameters of Tissue-Engineering Scaffolds at the Atomic Scale. Angew Chem Int Ed Engl 2019; 58:16943-16951. [PMID: 31573131 PMCID: PMC6899630 DOI: 10.1002/anie.201907880] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/03/2019] [Indexed: 01/08/2023]
Abstract
Stem-cell behavior is regulated by the material properties of the surrounding extracellular matrix, which has important implications for the design of tissue-engineering scaffolds. However, our understanding of the material properties of stem-cell scaffolds is limited to nanoscopic-to-macroscopic length scales. Herein, a solid-state NMR approach is presented that provides atomic-scale information on complex stem-cell substrates at near physiological conditions and at natural isotope abundance. Using self-assembled peptidic scaffolds designed for nervous-tissue regeneration, we show at atomic scale how scaffold-assembly degree, mechanics, and homogeneity correlate with favorable stem cell behavior. Integration of solid-state NMR data with molecular dynamics simulations reveals a highly ordered fibrillar structure as the most favorable stem-cell scaffold. This could improve the design of tissue-engineering scaffolds and other self-assembled biomaterials.
Collapse
Affiliation(s)
- Shehrazade Jekhmane
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Marek Prachar
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Raffaele Pugliese
- Fondazione IRCCS Casa Sollievo della Sofferenza, Unita' di Ingegneria Tissutale, Viale Cappuccini 1, 71013, San Giovanni Rotondo, Italy
| | - Federico Fontana
- Fondazione IRCCS Casa Sollievo della Sofferenza, Unita' di Ingegneria Tissutale, Viale Cappuccini 1, 71013, San Giovanni Rotondo, Italy.,ASST Grande Ospedale Metropolitano Niguarda, Center for Nanomedicine and Tissue Engineering, Piazza dell'Ospedale Maggiore 3, 20162, Milan, Italy
| | - João Medeiros-Silva
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Fabrizio Gelain
- Fondazione IRCCS Casa Sollievo della Sofferenza, Unita' di Ingegneria Tissutale, Viale Cappuccini 1, 71013, San Giovanni Rotondo, Italy.,ASST Grande Ospedale Metropolitano Niguarda, Center for Nanomedicine and Tissue Engineering, Piazza dell'Ospedale Maggiore 3, 20162, Milan, Italy
| | - Markus Weingarth
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| |
Collapse
|
79
|
Dutta Chowdhury A, Yarulina I, Abou-Hamad E, Gurinov A, Gascon J. Surface enhanced dynamic nuclear polarization solid-state NMR spectroscopy sheds light on Brønsted-Lewis acid synergy during the zeolite catalyzed methanol-to-hydrocarbon process. Chem Sci 2019; 10:8946-8954. [PMID: 32190235 PMCID: PMC7068724 DOI: 10.1039/c9sc02215e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/20/2019] [Indexed: 02/02/2023] Open
Abstract
After a prolonged effort over two decades, the reaction mechanism of the zeolite-catalyzed methanol-to-hydrocarbon (MTH) process is now well-understood: the so-called 'direct mechanism' (via direct coupling of two methanol molecules) is responsible for the formation of the initial carbon-carbon bonds, while the hydrocarbon pool (HCP)-based dual cycle mechanism is responsible for the formation of reaction products. While most of the reaction events occur at zeolite Brønsted acid sites, the addition of Lewis acid sites (i.e., via the introduction of alkaline earth cations like calcium) has been shown to inhibit the formation of deactivating coke species and hence increase the catalyst lifetime. With the aim to have an in-depth mechanistic understanding, herein, we employ magic angle spinning surface-enhanced dynamic nuclear polarization solid-state NMR spectroscopy to illustrate that the inclusion of Lewis acidity prevents the formation of carbene/ylide species on the zeolite, directly affecting the equilibrium between arene and olefin cycles of the HCP mechanism and hence regulating the ultimate product selectivity and catalyst lifetime.
Collapse
Affiliation(s)
- Abhishek Dutta Chowdhury
- King Abdullah University of Science and Technology , KAUST Catalysis Center , Advanced Catalytic Materials , Thuwal 23955 , Saudi Arabia . ;
| | - Irina Yarulina
- King Abdullah University of Science and Technology , KAUST Catalysis Center , Advanced Catalytic Materials , Thuwal 23955 , Saudi Arabia . ;
| | - Edy Abou-Hamad
- King Abdullah University of Science and Technology , KAUST Core Labs , Thuwal 23955 , Saudi Arabia .
| | - Andrei Gurinov
- King Abdullah University of Science and Technology , KAUST Core Labs , Thuwal 23955 , Saudi Arabia .
| | - Jorge Gascon
- King Abdullah University of Science and Technology , KAUST Catalysis Center , Advanced Catalytic Materials , Thuwal 23955 , Saudi Arabia . ;
| |
Collapse
|
80
|
Swain J, El Khoury M, Flament A, Dezanet C, Briée F, Van Der Smissen P, Décout JL, Mingeot-Leclercq MP. Antimicrobial activity of amphiphilic neamine derivatives: Understanding the mechanism of action on Gram-positive bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:182998. [DOI: 10.1016/j.bbamem.2019.05.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 01/06/2023]
|
81
|
Dickman R, Mitchell SA, Figueiredo AM, Hansen DF, Tabor AB. Molecular Recognition of Lipid II by Lantibiotics: Synthesis and Conformational Studies of Analogues of Nisin and Mutacin Rings A and B. J Org Chem 2019; 84:11493-11512. [PMID: 31464129 PMCID: PMC6759747 DOI: 10.1021/acs.joc.9b01253] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Indexed: 12/12/2022]
Abstract
In response to the growing threat posed by antibiotic-resistant bacterial strains, extensive research is currently focused on developing antimicrobial agents that target lipid II, a vital precursor in the biosynthesis of bacterial cell walls. The lantibiotic nisin and related peptides display unique and highly selective binding to lipid II. A key feature of the nisin-lipid II interaction is the formation of a cage-like complex between the pyrophosphate moiety of lipid II and the two thioether-bridged rings, rings A and B, at the N-terminus of nisin. To understand the important structural factors underlying this highly selective molecular recognition, we have used solid-phase peptide synthesis to prepare individual ring A and B structures from nisin, the related lantibiotic mutacin, and synthetic analogues. Through NMR studies of these rings, we have demonstrated that ring A is preorganized to adopt the correct conformation for binding lipid II in solution and that individual amino acid substitutions in ring A have little effect on the conformation. We have also analyzed the turn structures adopted by these thioether-bridged peptides and show that they do not adopt the tight α-turn or β-turn structures typically found in proteins.
Collapse
Affiliation(s)
- Rachael Dickman
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Serena A. Mitchell
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Angelo M. Figueiredo
- Institute
of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K.
| | - D. Flemming Hansen
- Institute
of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K.
| | - Alethea B. Tabor
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| |
Collapse
|
82
|
Narasimhan S, Scherpe S, Lucini Paioni A, van der Zwan J, Folkers GE, Ovaa H, Baldus M. DNP-Supported Solid-State NMR Spectroscopy of Proteins Inside Mammalian Cells. Angew Chem Int Ed Engl 2019; 58:12969-12973. [PMID: 31233270 PMCID: PMC6772113 DOI: 10.1002/anie.201903246] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 11/25/2022]
Abstract
Elucidating at atomic level how proteins interact and are chemically modified in cells represents a leading frontier in structural biology. We have developed a tailored solid-state NMR spectroscopic approach that allows studying protein structure inside human cells at atomic level under high-sensitivity dynamic nuclear polarization (DNP) conditions. We demonstrate the method using ubiquitin (Ub), which is critically involved in cellular functioning. Our results pave the way for structural studies of larger proteins or protein complexes inside human cells, which have remained elusive to in-cell solution-state NMR spectroscopy due to molecular size limitations.
Collapse
Affiliation(s)
- Siddarth Narasimhan
- NMR Spectroscopy groupBijvoet Center for Biomolecular ResearchUtrecht UniversityPadualaan 8, 3584CHUtrechtThe Netherlands
| | - Stephan Scherpe
- Oncode Institute and Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333 ZCLeidenThe Netherlands
| | - Alessandra Lucini Paioni
- NMR Spectroscopy groupBijvoet Center for Biomolecular ResearchUtrecht UniversityPadualaan 8, 3584CHUtrechtThe Netherlands
| | - Johan van der Zwan
- NMR Spectroscopy groupBijvoet Center for Biomolecular ResearchUtrecht UniversityPadualaan 8, 3584CHUtrechtThe Netherlands
| | - Gert E. Folkers
- NMR Spectroscopy groupBijvoet Center for Biomolecular ResearchUtrecht UniversityPadualaan 8, 3584CHUtrechtThe Netherlands
| | - Huib Ovaa
- Oncode Institute and Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333 ZCLeidenThe Netherlands
| | - Marc Baldus
- NMR Spectroscopy groupBijvoet Center for Biomolecular ResearchUtrecht UniversityPadualaan 8, 3584CHUtrechtThe Netherlands
| |
Collapse
|
83
|
Influence of nisin hinge-region variants on lantibiotic immunity and resistance proteins. Bioorg Med Chem 2019; 27:3947-3953. [DOI: 10.1016/j.bmc.2019.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/06/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023]
|
84
|
Siegal G, Selenko P. Cells, drugs and NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 306:202-212. [PMID: 31358370 DOI: 10.1016/j.jmr.2019.07.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/08/2019] [Accepted: 07/08/2019] [Indexed: 05/18/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a versatile tool for investigating cellular structures and their compositions. While in vivo and whole-cell NMR have a long tradition in cell-based approaches, high-resolution in-cell NMR spectroscopy is a new addition to these methods. In recent years, technological advancements in multiple areas provided converging benefits for cellular MR applications, especially in terms of robustness, reproducibility and physiological relevance. Here, we review the use of cellular NMR methods for drug discovery purposes in academia and industry. Specifically, we discuss how developments in NMR technologies such as miniaturized bioreactors and flow-probe perfusion systems have helped to consolidate NMR's role in cell-based drug discovery efforts.
Collapse
Affiliation(s)
- Gregg Siegal
- ZoBio B.V., BioPartner 2 Building, J.H. Oortweg 19, 2333 Leiden, the Netherlands
| | - Philipp Selenko
- Department of Biological Regulation, Weizmann Institute of Science, 234 Herzl Street, 761000 Rehovot, Israel.
| |
Collapse
|
85
|
Malin JJ, de Leeuw E. Therapeutic compounds targeting Lipid II for antibacterial purposes. Infect Drug Resist 2019; 12:2613-2625. [PMID: 31692545 PMCID: PMC6711568 DOI: 10.2147/idr.s215070] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/29/2019] [Indexed: 12/18/2022] Open
Abstract
Resistance against commonly used antibiotics has emerged in all bacterial pathogens. In fact, there is no antibiotic currently in clinical use against which resistance has not been reported. In particular, rapidly increasing urbanization in developing nations are sites of major concern. Additionally, the widespread practice by physicians to prescribe antibiotics in cases of viral infections puts selective pressure on antibiotics that still remain effective and it will only be a matter of time before resistance develops on a large scale. The biosynthesis pathway of the bacterial cell wall is well studied and a validated target for the development of antibacterial agents. Cell wall biosynthesis involves two major processes; 1) the biosynthesis of cell wall teichoic acids and 2) the biosynthesis of peptidoglycan. Key molecules in these pathways, including enzymes and precursor molecules are attractive targets for the development of novel antibacterial agents. In this review, we will focus on the major class of natural antibacterial compounds that target the peptidoglycan precursor molecule Lipid II; namely the glycopeptides, including the novel generation of lipoglycopeptides. We will discuss their mechanism-of-action and clinical applications. Further, we will briefly discuss additional peptides that target Lipid II such as the lantibiotic nisin and defensins. We will highlight recent developments and future perspectives.
Collapse
Affiliation(s)
- Jakob J Malin
- University of Cologne, Department I of Internal Medicine, Division of Infectious Diseases, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Erik de Leeuw
- Institute of Human Virology and Department of Molecular Biology & Biochemistry of the University of Maryland, Baltimore School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
86
|
Elkins MR, Hong M. Elucidating ligand-bound structures of membrane proteins using solid-state NMR spectroscopy. Curr Opin Struct Biol 2019; 57:103-109. [PMID: 30903830 PMCID: PMC6697555 DOI: 10.1016/j.sbi.2019.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/05/2019] [Accepted: 02/08/2019] [Indexed: 01/08/2023]
Abstract
Magic-angle-spinning (MAS) solid-state NMR spectroscopy is a versatile technique to elucidate functionally important protein-ligand interactions in lipid membranes. Here, we review recent solid-state NMR studies of membrane protein interactions with cholesterol, lipids, transported substrates, and peptide ligands. These studies are conducted in synthetic or native lipid bilayers to provide an accurate environment for ligand binding. The solid-state NMR approaches include multinuclear detection to gain comprehensive structural information, distance measurements to locate ligand-binding sites, and dynamic nuclear polarization and 1H detection to enhance spectral sensitivity. These studies provide novel insights into the mechanisms of virus budding, virus entry into cells, transmembrane signaling, substrate transport, antibacterial action, and many other biological processes.
Collapse
Affiliation(s)
- Matthew R Elkins
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States.
| |
Collapse
|
87
|
Narasimhan S, Scherpe S, Lucini Paioni A, van der Zwan J, Folkers GE, Ovaa H, Baldus M. DNP‐Supported Solid‐State NMR Spectroscopy of Proteins Inside Mammalian Cells. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903246] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Siddarth Narasimhan
- NMR Spectroscopy group Bijvoet Center for Biomolecular Research Utrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
| | - Stephan Scherpe
- Oncode Institute and Department of Cell and Chemical Biology Leiden University Medical Center (LUMC) Einthovenweg 20 2333 ZC Leiden The Netherlands
| | - Alessandra Lucini Paioni
- NMR Spectroscopy group Bijvoet Center for Biomolecular Research Utrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
| | - Johan van der Zwan
- NMR Spectroscopy group Bijvoet Center for Biomolecular Research Utrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
| | - Gert E. Folkers
- NMR Spectroscopy group Bijvoet Center for Biomolecular Research Utrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
| | - Huib Ovaa
- Oncode Institute and Department of Cell and Chemical Biology Leiden University Medical Center (LUMC) Einthovenweg 20 2333 ZC Leiden The Netherlands
| | - Marc Baldus
- NMR Spectroscopy group Bijvoet Center for Biomolecular Research Utrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
| |
Collapse
|
88
|
Medeiros‐Silva J, Jekhmane S, Breukink E, Weingarth M. Towards the Native Binding Modes of Antibiotics that Target Lipid II. Chembiochem 2019; 20:1731-1738. [PMID: 30725496 PMCID: PMC6767406 DOI: 10.1002/cbic.201800796] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Indexed: 12/22/2022]
Abstract
The alarming rise of antimicrobial resistance (AMR) imposes severe burdens on healthcare systems and the economy worldwide, urgently calling for the development of new antibiotics. Antimicrobial peptides could be ideal templates for next-generation antibiotics, due to their low propensity to cause resistance. An especially promising branch of antimicrobial peptides target lipid II, the precursor of the bacterial peptidoglycan network. To develop these peptides into clinically applicable compounds, detailed information on their pharmacologically relevant modes of action is of critical importance. Here we review the binding modes of a selection of peptides that target lipid II and highlight shortcomings in our molecular understanding that, at least partly, relate to the widespread use of artificial membrane mimics for structural studies of membrane-active antibiotics. In particular, with the example of the antimicrobial peptide nisin, we showcase how the native cellular membrane environment can be critical for understanding of the physiologically relevant binding mode.
Collapse
Affiliation(s)
- João Medeiros‐Silva
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchDepartment of ChemistryFaculty of ScienceUtrecht UniversityPadualaan 83584 CHUtrechtThe Netherlands
| | - Shehrazade Jekhmane
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchDepartment of ChemistryFaculty of ScienceUtrecht UniversityPadualaan 83584 CHUtrechtThe Netherlands
| | - Eefjan Breukink
- Membrane Biochemistry and BiophysicsBijvoet Center for Biomolecular ResearchDepartment of ChemistryFaculty of ScienceUtrecht UniversityPadualaan 83584 CHUtrechtThe Netherlands
| | - Markus Weingarth
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchDepartment of ChemistryFaculty of ScienceUtrecht UniversityPadualaan 83584 CHUtrechtThe Netherlands
| |
Collapse
|
89
|
Bypassing lantibiotic resistance by an effective nisin derivative. Bioorg Med Chem 2019; 27:3454-3462. [PMID: 31253534 DOI: 10.1016/j.bmc.2019.06.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/29/2019] [Accepted: 06/18/2019] [Indexed: 12/12/2022]
Abstract
The need for new antibiotic compounds is rising and antimicrobial peptides are excellent candidates to fulfill this object. The bacteriocin subgroup lantibiotics, for example, are active in the nanomolar range and target the membranes of mainly Gram-positive bacteria. They bind to lipid II, inhibit cell growth and in some cases form pores within the bacterial membrane, inducing rapid cell death. Pharmaceutical usage of lantibiotics is however hampered by the presence of gene clusters in human pathogenic strains which, when expressed, confer resistance. The human pathogen Streptococcus agalactiae COH1, expresses several lantibiotic resistance proteins resulting in resistance against for example nisin. This study presents a highly potent, pore forming nisin variant as an alternative lantibiotic which bypasses the SaNSR protein. It is shown that this nisin derivate nisinC28P keeps its nanomolar antibacterial activity against L. lactis NZ9000 cells but is not recognized by the nisin resistance protein SaNSR. NisinC28P is cleaved by SaNSR in vitro with a highly decreased efficiency, as shown by an cleavage assay. Furthermore, we show that nisinC28P is still able to form pores in the membranes of L. lactis and is three times more efficient against SaNSR-expressing L. lactis cells than wildtype nisin.
Collapse
|
90
|
Geiger C, Korn SM, Häsler M, Peetz O, Martin J, Kötter P, Morgner N, Entian KD. LanI-Mediated Lantibiotic Immunity in Bacillus subtilis: Functional Analysis. Appl Environ Microbiol 2019; 85:e00534-19. [PMID: 30952662 PMCID: PMC6532034 DOI: 10.1128/aem.00534-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 03/26/2019] [Indexed: 01/09/2023] Open
Abstract
Lantibiotics subtilin and nisin are produced by Bacillus subtilis and Lactococcus lactis, respectively. To prevent toxicity of their own lantibiotic, both bacteria express specific immunity proteins, called SpaI and NisI. In addition, ABC transporters SpaFEG and NisFEG prevent lantibiotic toxicity by transporting the respective peptides to the extracellular space. Although the three-dimensional structures of SpaI and NisI have been solved, very little is known about the molecular function of either lipoprotein. Using laser-induced liquid bead ion desorption (LILBID)-mass spectrometry, we show here that subtilin interacts with SpaI monomers. The expression of either SpaI or NisI in a subtilin-nonproducing B. subtilis strain resulted in the respective strain being more resistant against either subtilin or nisin. Furthermore, pore formation provided by subtilin and nisin was prevented specifically upon the expression of either SpaI or NisI. As shown with a nisin-subtilin hybrid molecule, the C-terminal part of subtilin but not any particular lanthionine ring was needed for SpaI-mediated immunity. With respect to growth, SpaI provided less immunity against subtilin than is provided by the ABC transporter SpaFEG. However, SpaI prevented pore formation much more efficiently than SpaFEG. Taken together, our data show the physiological function of SpaI as a fast immune response to protect the cellular membrane.IMPORTANCE The two lantibiotics nisin and subtilin are produced by Lactococcus lactis and Bacillus subtilis, respectively. Both peptides have strong antimicrobial activity against Gram-positive bacteria, and therefore, appropriate protection mechanisms are required for the producing strains. To prevent toxicity of their own lantibiotic, both bacteria express immunity proteins, called SpaI and NisI, and in addition, ABC transporters SpaFEG and NisFEG. Whereas it has been shown that the ABC transporters protect the producing strains by transporting the toxic peptides to the extracellular space, the exact mode of action and the physiological function of the lipoproteins during immunity are still unknown. Understanding the exact role of lantibiotic immunity proteins is of major importance for improving production rates and for the design of newly engineered peptide antibiotics. Here, we show (i) the specificity of each lipoprotein for its own lantibiotic, (ii) the specific physical interaction of subtilin with its lipoprotein SpaI, (iii) the physiological function of SpaI in protecting the cellular membrane, and (iv) the importance of the C-terminal part of subtilin for its interaction with SpaI.
Collapse
Affiliation(s)
- Christoph Geiger
- Molecular Genetics and Cellular Microbiology, Institute for Molecular Biosciences, University of Frankfurt, Frankfurt, Germany
| | - Sophie Marianne Korn
- Molecular Genetics and Cellular Microbiology, Institute for Molecular Biosciences, University of Frankfurt, Frankfurt, Germany
| | - Michael Häsler
- Molecular Genetics and Cellular Microbiology, Institute for Molecular Biosciences, University of Frankfurt, Frankfurt, Germany
| | - Oliver Peetz
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt, Germany
| | - Janosch Martin
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt, Germany
| | - Peter Kötter
- Molecular Genetics and Cellular Microbiology, Institute for Molecular Biosciences, University of Frankfurt, Frankfurt, Germany
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt, Germany
| | - Karl-Dieter Entian
- Molecular Genetics and Cellular Microbiology, Institute for Molecular Biosciences, University of Frankfurt, Frankfurt, Germany
| |
Collapse
|
91
|
Grein F, Schneider T, Sahl HG. Docking on Lipid II-A Widespread Mechanism for Potent Bactericidal Activities of Antibiotic Peptides. J Mol Biol 2019; 431:3520-3530. [PMID: 31100388 DOI: 10.1016/j.jmb.2019.05.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/30/2019] [Accepted: 05/08/2019] [Indexed: 12/21/2022]
Abstract
Natural product antibiotics usually target the major biosynthetic pathways of bacterial cells and the search for new targets outside these pathways has proven very difficult. Cell wall biosynthesis maybe the most prominent antibiotic target, and ß-lactams are among the clinically most relevant antibiotics. Among cell wall biosynthesis inhibitors, glycopeptide antibiotics are a second group of important drugs, which bind to the peptidoglycan building block lipid II and prevent the incorporation of the monomeric unit into polymeric cell wall. However, lipid II acts as a docking molecule for many more naturally occurring antibiotics from diverse chemical classes and likely is the most targeted molecule in antibacterial mechanisms. We summarize current knowledge on lipid II binding antibiotics and explain, on the levels of mechanisms and resistance development, why lipid II is such a prominent target, and thus provide insights for the design of new antibiotic drugs.
Collapse
Affiliation(s)
- Fabian Grein
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany.
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Hans-Georg Sahl
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany
| |
Collapse
|
92
|
Heesterbeek DAC, Martin NI, Velthuizen A, Duijst M, Ruyken M, Wubbolts R, Rooijakkers SHM, Bardoel BW. Complement-dependent outer membrane perturbation sensitizes Gram-negative bacteria to Gram-positive specific antibiotics. Sci Rep 2019; 9:3074. [PMID: 30816122 PMCID: PMC6395757 DOI: 10.1038/s41598-019-38577-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/02/2019] [Indexed: 01/21/2023] Open
Abstract
Gram-negative bacteria are refractory to the action of many antibiotics due to their impermeable outer membrane. An important player of the immune system is the complement system, a protein network in serum that directly kills Gram-negative bacteria through pore-formation by the Membrane Attack Complexes (MAC). We here show that the MAC rapidly perforates the outer membrane but that inner membrane damage, which is essential for killing, is relatively slow. Importantly, we demonstrate that MAC-induced outer membrane damage sensitizes Gram-negative bacteria to otherwise ineffective, Gram-positive-specific, antimicrobials. Synergy between serum and nisin was observed for 22 out of 53 tested Gram-negative clinical isolates and for multi-drug resistant (MDR) blood isolates. The in vivo relevance of this process is further highlighted by the fact that blood sensitizes a MDR K. pneumoniae strain to vancomycin. Altogether, these data imply that antibiotics that are considered ineffective to treat infections with Gram-negatives may have different functional outcomes in patients, due to the presence of the complement system.
Collapse
Affiliation(s)
- D A C Heesterbeek
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - N I Martin
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - A Velthuizen
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - M Duijst
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - M Ruyken
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - R Wubbolts
- Department of Biochemistry and Cell Biology, Utrecht University, Utrecht, Netherlands
| | - S H M Rooijakkers
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - B W Bardoel
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
93
|
Jekhmane S, Medeiros-Silva J, Li J, Kümmerer F, Müller-Hermes C, Baldus M, Roux B, Weingarth M. Shifts in the selectivity filter dynamics cause modal gating in K + channels. Nat Commun 2019; 10:123. [PMID: 30631074 PMCID: PMC6328603 DOI: 10.1038/s41467-018-07973-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/07/2018] [Indexed: 01/30/2023] Open
Abstract
Spontaneous activity shifts at constant experimental conditions represent a widespread regulatory mechanism in ion channels. The molecular origins of these modal gating shifts are poorly understood. In the K+ channel KcsA, a multitude of fast activity shifts that emulate the native modal gating behaviour can be triggered by point-mutations in the hydrogen bonding network that controls the selectivity filter. Using solid-state NMR and molecular dynamics simulations in a variety of KcsA mutants, here we show that modal gating shifts in K+ channels are associated with important changes in the channel dynamics that strongly perturb the selectivity filter equilibrium conformation. Furthermore, our study reveals a drastically different motional and conformational selectivity filter landscape in a mutant that mimics voltage-gated K+ channels, which provides a foundation for an improved understanding of eukaryotic K+ channels. Altogether, our results provide a high-resolution perspective on some of the complex functional behaviour of K+ channels.
Collapse
Affiliation(s)
- Shehrazade Jekhmane
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584, CH Utrecht, The Netherlands
| | - João Medeiros-Silva
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584, CH Utrecht, The Netherlands
| | - Jing Li
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 E57th Street, Chicago, IL, 60637, USA
| | - Felix Kümmerer
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584, CH Utrecht, The Netherlands
| | - Christoph Müller-Hermes
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584, CH Utrecht, The Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584, CH Utrecht, The Netherlands
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 E57th Street, Chicago, IL, 60637, USA
| | - Markus Weingarth
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584, CH Utrecht, The Netherlands.
| |
Collapse
|
94
|
Pokhrel R, Bhattarai N, Baral P, Gerstman BS, Park JH, Handfield M, Chapagain PP. Molecular mechanisms of pore formation and membrane disruption by the antimicrobial lantibiotic peptide Mutacin 1140. Phys Chem Chem Phys 2019; 21:12530-12539. [DOI: 10.1039/c9cp01558b] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The emergence of antibiotic-resistance is a major concern to global human health and identification of novel antibiotics is critical to mitigate the threat.
Collapse
Affiliation(s)
| | - Nisha Bhattarai
- Department of Physics
- Florida International University
- Miami
- USA
| | - Prabin Baral
- Department of Physics
- Florida International University
- Miami
- USA
| | - Bernard S. Gerstman
- Department of Physics
- Florida International University
- Miami
- USA
- Biomolecular Sciences Institute
| | | | | | - Prem P. Chapagain
- Department of Physics
- Florida International University
- Miami
- USA
- Biomolecular Sciences Institute
| |
Collapse
|
95
|
Mitchell SA, Truscott F, Dickman R, Ward J, Tabor AB. Simplified lipid II-binding antimicrobial peptides: Design, synthesis and antimicrobial activity of bioconjugates of nisin rings A and B with pore-forming peptides. Bioorg Med Chem 2018; 26:5691-5700. [DOI: 10.1016/j.bmc.2018.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022]
|