51
|
Kyriakopoulos AM, Nagl M, Orth-Höller D, Marcinkiewicz J, Baliou S, Zoumbourlis V. Successful treatment of a unique chronic multi-bacterial scalp infection with N-chlorotaurine, N-bromotaurine and bromamine T. Access Microbiol 2020; 2:acmi000126. [PMID: 32974590 PMCID: PMC7497830 DOI: 10.1099/acmi.0.000126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/11/2020] [Indexed: 12/19/2022] Open
Abstract
Microbial species can act in synergy to circumvent environmental stress conditions and survive. In addition, biofilms are a serious public-health issue globally and constitute a clinical emergency. Infection persistence, increased morbidity and mortality, and antibiotic resistance are consequences of poly-microbial synergy. Due to inherited complexity and synergy between numerous species, newer antimicrobial agents of increased efficacy and tolerability are needed. In this unique medical case, a chronic (9 year) multi-bacterial scalp infection was differentially diagnosed from other inflammatory skin disorders by prolonged microbiological culture. The bacterial species found seem to have caused lesions of visible biofilm not documented previously in the medical literature. This complicated infection was treated successfully and rapidly with the combined topical application of the active halogen compounds N-chlorotaurine, N-bromotaurine and bromamine T, which is in contrast to the previous failed systemic and topical therapeutic approaches. This study strengthens the case for the use of active halogen compounds against multi-bacterial infections of the skin in the future, without the occurrence of resistance.
Collapse
Affiliation(s)
| | - Markus Nagl
- Department of Hygiene, Microbiology and Social Medicine, Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dorothea Orth-Höller
- Department of Hygiene, Microbiology and Social Medicine, Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Janusz Marcinkiewicz
- Department of Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Stella Baliou
- National Hellenic Research Foundation, 48 Vasileos Konstantinou Str., Athens, Greece
| | - Vassilis Zoumbourlis
- National Hellenic Research Foundation, 48 Vasileos Konstantinou Str., Athens, Greece
| |
Collapse
|
52
|
Tao X, Xu T, Kempher ML, Liu J, Zhou J. Precise promoter integration improves cellulose bioconversion and thermotolerance in Clostridium cellulolyticum. Metab Eng 2020; 60:110-118. [PMID: 32294528 DOI: 10.1016/j.ymben.2020.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/22/2020] [Accepted: 03/30/2020] [Indexed: 11/15/2022]
Abstract
Lignocellulose has been used for production of sustainable biofuels and value-added chemicals. However, the low-efficiency bioconversion of lignocellulose greatly contributes to a high production cost. Here, we employed CRISPR-Cas9 editing to improve cellulose degradation efficiency by editing a regulatory element of the cip-cel gene cluster in Clostridium cellulolyticum. Insertion of a synthetic promoter (P4) and an endogenous promoter (P2) in the mspI-deficient parental strain (Δ2866) created chromosomal integrants, P4-2866 and P2-2866, respectively. Both engineered strains increased the transcript abundance of downstream polycistronic genes and enhanced in vitro cellulolytic activities of isolated cellulosomes. A high cellulose load of 20 g/L suppressed cellulose degradation in the parental strain in the first 150 h fermentation; whereas P4-2866 and P2-2866 hydrolyzed 29% and 53% of the cellulose, respectively. Both engineered strains also demonstrated a greater growth rate and a higher cell biomass yield. Interestingly, the Δ2866 parental strain demonstrated better thermotolerance than the wildtype strain, and promoter insertion further enhanced thermotolerance. Similar improvements in cell growth and cellulose degradation were reproduced by promoter insertion in the wildtype strain and a lactate production-defective mutant (LM). P2 insertion in LM increased ethanol titer by 65%. Together, the editing of regulatory elements of catabolic gene clusters provides new perspectives on improving cellulose bioconversion in microbes.
Collapse
Affiliation(s)
- Xuanyu Tao
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA
| | - Tao Xu
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA; Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.
| | - Megan L Kempher
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA
| | - Jiantao Liu
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA; Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China.
| |
Collapse
|
53
|
Gao X, Jiang Y, Lin Y, Kim KH, Fang Y, Yi J, Meng L, Lee HC, Lu Z, Leddy O, Zhang R, Tu Q, Feng W, Nair V, Griffin PJ, Shi F, Shekhawat GS, Dinner AR, Park HG, Tian B. Structured silicon for revealing transient and integrated signal transductions in microbial systems. SCIENCE ADVANCES 2020; 6:eaay2760. [PMID: 32110728 PMCID: PMC7021504 DOI: 10.1126/sciadv.aay2760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/26/2019] [Indexed: 05/11/2023]
Abstract
Bacterial response to transient physical stress is critical to their homeostasis and survival in the dynamic natural environment. Because of the lack of biophysical tools capable of delivering precise and localized physical perturbations to a bacterial community, the underlying mechanism of microbial signal transduction has remained unexplored. Here, we developed multiscale and structured silicon (Si) materials as nongenetic optical transducers capable of modulating the activities of both single bacterial cells and biofilms at high spatiotemporal resolution. Upon optical stimulation, we capture a previously unidentified form of rapid, photothermal gradient-dependent, intercellular calcium signaling within the biofilm. We also found an unexpected coupling between calcium dynamics and biofilm mechanics, which could be of importance for biofilm resistance. Our results suggest that functional integration of Si materials and bacteria, and associated control of signal transduction, may lead to hybrid living matter toward future synthetic biology and adaptable materials.
Collapse
Affiliation(s)
- Xiang Gao
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Corresponding author. (B.T.); (H.-G.P.); (X.G.)
| | - Yuanwen Jiang
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Yiliang Lin
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Kyoung-Ho Kim
- Department of Physics, Korea University, Seoul 02841, Republic of Korea
- Department of Physics, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Yin Fang
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Jaeseok Yi
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Lingyuan Meng
- Institute for Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Hoo-Cheol Lee
- Department of Physics, Korea University, Seoul 02841, Republic of Korea
| | - Zhiyue Lu
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Owen Leddy
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Rui Zhang
- Institute for Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Qing Tu
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Wei Feng
- Institute for Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Vishnu Nair
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Philip J. Griffin
- Institute for Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Fengyuan Shi
- Research Resources Center, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Gajendra S. Shekhawat
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Aaron R. Dinner
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Hong-Gyu Park
- Department of Physics, Korea University, Seoul 02841, Republic of Korea
- Corresponding author. (B.T.); (H.-G.P.); (X.G.)
| | - Bozhi Tian
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Corresponding author. (B.T.); (H.-G.P.); (X.G.)
| |
Collapse
|
54
|
Hu C, Zhang F, Kong Q, Lu Y, Zhang B, Wu C, Luo R, Wang Y. Synergistic Chemical and Photodynamic Antimicrobial Therapy for Enhanced Wound Healing Mediated by Multifunctional Light-Responsive Nanoparticles. Biomacromolecules 2019; 20:4581-4592. [PMID: 31697486 DOI: 10.1021/acs.biomac.9b01401] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recently, rapid acquisition of antibiotic resistance, increased prevalence of antibiotic-resistant bacterial infections, and slow healing of infected wound have led to vast difficulties in developing innovative antimicrobial agents to obliterate pathogenic bacteria and simultaneously accelerate wound healing. To effectively solve this problem, we designed light-responsive multifunctional nanoparticles with conjugation of quaternary ammonium chitosan and photosensitizer chlorin e6 (Ce6) to merge chemical and photodynamic therapy to efficient antibacteria. The Mg/(-)-epigallocatechin-3-gallate (EGCG) complex rapidly responded to light irradiation under 660 nm with release of magnesium ions, which effectively accelerated wound healing without toxicity to mammalian cells. Notably, positively charged nanoparticles could efficiently adhere to the bacterial surface, and reactive oxygen species (ROS) produced under laser irradiation destroyed the membrane structure of the bacteria, which is irreversible, ultimately leading to bacteria death. Thus, multifunctional nanoparticles with a combination of chemical and photodynamic antimicrobial therapy would offer guidance to rational predicted and designed new effective antimicrobial nanomaterials. Most importantly, it may represent a promising class of antimicrobial strategy for potential clinical translation.
Collapse
Affiliation(s)
- Cheng Hu
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu , Sichuan 610064 , People's Republic of China
| | - Fanjun Zhang
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu , Sichuan 610064 , People's Republic of China
| | - Qunshou Kong
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu , Sichuan 610064 , People's Republic of China
| | - Yuhui Lu
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu , Sichuan 610064 , People's Republic of China
| | - Bo Zhang
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu , Sichuan 610064 , People's Republic of China
| | - Can Wu
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu , Sichuan 610064 , People's Republic of China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu , Sichuan 610064 , People's Republic of China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu , Sichuan 610064 , People's Republic of China
| |
Collapse
|
55
|
Chen R, Salisbury AM, Percival SL. A comparative study on the cellular viability and debridement efficiency of antimicrobial-based wound dressings. Int Wound J 2019; 17:73-82. [PMID: 31657125 DOI: 10.1111/iwj.13234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/14/2022] Open
Abstract
A concentrated surfactant gel containing polyhexamethylene biguanide (CSG-PHMB) (CSG: Plurogel) was evaluated for in vitro cell cytotoxicity using the direct contact, extraction, and cell insert assays, along with its ability to breakdown artificial wound eschar and slough, compared with other clinically available wound gels: a wound gel loaded with 0.13% benzalkonium chloride (BXG) and a highly viscous gel loaded with 0.1% polyhexamethylene biguanide (PXG). Following treatment with CSG-PHMB, BXG, and PXG at day 1, the viability of L929 and HDFa cells sharply decreased to lower than 20% of the culture media control in the direct contact assay; however, cell viability of L929 was 128.65 ± 1.41%, 99.90 ± 2.84%*, and 64.08 ± 5.99%* respectively; HDFa was 84.58 ± 10.41%, 19.54 ± 3.06%**, and 96.28 ± 33.67%, respectively, in the extraction assay. In the cell insert model, cell viability of L929 cells were 95.25 ± 0.96%, 47.49 ± 5.37%**, and 48.63 ± 7.00%**, respectively; HDFa cell viability were 92.80 ± 1.29%, 38.86 ± 4.28%**, and 49.90 ± 2.55%** (*: P < .01; **P < .001 compared with CSG-PHMB; cell viability of culture medium without treatment at day 1 was 100%). The cell extraction model on day 1 indicated that CSG-PHMB had higher viability of L929 cells compared with BXG. In addition, the cellular viability results indicated that CSG-PHMB gel exhibited lower cytotoxicity when compared with BXG and PXG in the cell insert model assay. Within the in vitro debridement model, CSG-PHMB exhibited an ability to potentially increase the loosening of the collagen matrix. The reason for this may be because of the concentrated surfactant found within the CSG-PHMB, which has the ability to lower the surface tension, aiding in the movements of fragments and debris in the fluorescent artificial wound eschar model (fAWE).
Collapse
Affiliation(s)
- Rui Chen
- Centre of Excellence for Biofilm Science (CEBS), 5D Health Protection Group Ltd., Liverpool Bio-Innovation Hub, Liverpool, UK
| | - Anne-Marie Salisbury
- Centre of Excellence for Biofilm Science (CEBS), 5D Health Protection Group Ltd., Liverpool Bio-Innovation Hub, Liverpool, UK
| | - Steven L Percival
- Centre of Excellence for Biofilm Science (CEBS), 5D Health Protection Group Ltd., Liverpool Bio-Innovation Hub, Liverpool, UK
| |
Collapse
|
56
|
You Z, Pearce DJG, Sengupta A, Giomi L. Mono- to Multilayer Transition in Growing Bacterial Colonies. PHYSICAL REVIEW LETTERS 2019; 123:178001. [PMID: 31702266 DOI: 10.1103/physrevlett.123.178001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 06/20/2019] [Indexed: 06/10/2023]
Abstract
The transition from monolayers to multilayered structures in bacterial colonies is a fundamental step in biofilm development. Observed across different morphotypes and species, this transition is triggered within freely growing bacterial microcolonies comprising a few hundred cells. Using a combination of numerical simulations and analytical modeling, here we demonstrate that this transition originates from the competition between growth-induced in-plane active stresses and vertical restoring forces, due to the cell-substrate interactions. Using a simple chainlike colony of laterally confined cells, we show that the transition sets when individual cells become unstable to rotations; thus it is localized and mechanically deterministic. Asynchronous cell division renders the process stochastic, so that all the critical parameters that control the onset of the transition are continuously distributed random variables. Here we demonstrate that the occurrence of the first division in the colony can be approximated as a Poisson process in the limit of large cell numbers. This allows us to approximately calculate the probability distribution function of the position and time associated with the first extrusion. The rate of such a Poisson process can be identified as the order parameter of the transition, thus highlighting its mixed deterministic-stochastic nature.
Collapse
Affiliation(s)
- Zhihong You
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, Netherlands
| | - Daniel J G Pearce
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, Netherlands
| | - Anupam Sengupta
- Physics and Materials Science Research Unit, University of Luxembourg, 162 A, Avenue de la Faïencerie, Luxembourg City, L-1511 Luxembourg
| | - Luca Giomi
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, Netherlands
| |
Collapse
|
57
|
Booker AE, Hoyt DW, Meulia T, Eder E, Nicora CD, Purvine SO, Daly RA, Moore JD, Wunch K, Pfiffner SM, Lipton MS, Mouser PJ, Wrighton KC, Wilkins MJ. Deep-Subsurface Pressure Stimulates Metabolic Plasticity in Shale-Colonizing Halanaerobium spp. Appl Environ Microbiol 2019; 85:e00018-19. [PMID: 30979840 PMCID: PMC6544827 DOI: 10.1128/aem.00018-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/10/2019] [Indexed: 01/12/2023] Open
Abstract
Bacterial Halanaerobium strains become the dominant persisting microbial community member in produced fluids across geographically distinct hydraulically fractured shales. Halanaerobium is believed to be inadvertently introduced into this environment during the drilling and fracturing process and must therefore tolerate large changes in pressure, temperature, and salinity. Here, we used a Halanaerobium strain isolated from a natural gas well in the Utica Point Pleasant formation to investigate metabolic and physiological responses to growth under high-pressure subsurface conditions. Laboratory incubations confirmed the ability of Halanaerobium congolense strain WG8 to grow under pressures representative of deep shale formations (21 to 48 MPa). Under these conditions, broad metabolic and physiological shifts were identified, including higher abundances of proteins associated with the production of extracellular polymeric substances. Confocal laser scanning microscopy indicated that extracellular polymeric substance (EPS) production was associated with greater cell aggregation when biomass was cultured at high pressure. Changes in Halanaerobium central carbon metabolism under the same conditions were inferred from nuclear magnetic resonance (NMR) and gas chromatography measurements, revealing large per-cell increases in production of ethanol, acetate, and propanol and cessation of hydrogen production. These metabolic shifts were associated with carbon flux through 1,2-propanediol in response to slower fluxes of carbon through stage 3 of glycolysis. Together, these results reveal the potential for bioclogging and corrosion (via organic acid fermentation products) associated with persistent Halanaerobium growth in deep, hydraulically fractured shale ecosystems, and offer new insights into cellular mechanisms that enable these strains to dominate deep-shale microbiomes.IMPORTANCE The hydraulic fracturing of deep-shale formations for hydrocarbon recovery accounts for approximately 60% of U.S. natural gas production. Microbial activity associated with this process is generally considered deleterious due to issues associated with sulfide production, microbially induced corrosion, and bioclogging in the subsurface. Here we demonstrate that a representative Halanaerobium species, frequently the dominant microbial taxon in hydraulically fractured shales, responds to pressures characteristic of the deep subsurface by shifting its metabolism to generate more corrosive organic acids and produce more polymeric substances that cause "clumping" of biomass. While the potential for increased corrosion of steel infrastructure and clogging of pores and fractures in the subsurface may significantly impact hydrocarbon recovery, these data also offer new insights for microbial control in these ecosystems.
Collapse
Affiliation(s)
- Anne E Booker
- Department of Microbiology, Ohio State University, Columbus, Ohio, USA
| | - David W Hoyt
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tea Meulia
- College of Food, Agricultural, and Environmental Sciences, Ohio State University, Columbus, Ohio, USA
| | - Elizabeth Eder
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Samuel O Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Rebecca A Daly
- Department of Microbiology, Ohio State University, Columbus, Ohio, USA
| | - Joseph D Moore
- DowDuPont Industrial Biosciences, Wilmington, Delaware, USA
| | - Kenneth Wunch
- DowDuPont Industrial Biosciences, Wilmington, Delaware, USA
| | - Susan M Pfiffner
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, USA
| | - Mary S Lipton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Paula J Mouser
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, New Hampshire, USA
| | - Kelly C Wrighton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Michael J Wilkins
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
58
|
Gniewek P, Schreck CF, Hallatschek O. Biomechanical Feedback Strengthens Jammed Cellular Packings. PHYSICAL REVIEW LETTERS 2019; 122:208102. [PMID: 31172757 DOI: 10.1103/physrevlett.122.208102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Growth in confined spaces can drive cellular populations through a jamming transition from a fluidlike state to a solidlike state. Experiments have found that jammed budding yeast populations can build up extreme compressive pressures (over 1 MPa), which in turn feed back onto cellular physiology by slowing or even stalling cell growth. Using numerical simulations, we investigate how this feedback impacts the mechanical properties of model jammed cell populations. We find that feedback directs growth toward poorly coordinated regions, resulting in an excess number of cell-cell contacts that rigidify cell packings. Cell packings possess anomalously large shear and bulk moduli that depend sensitively on the strength of feedback. These results demonstrate that mechanical feedback on the single-cell level is a simple mechanism by which living systems may tune their population-level mechanical properties.
Collapse
Affiliation(s)
- Pawel Gniewek
- Departments of Physics and Integrative Biology, University of California, Berkeley, California 94720, USA
| | - Carl F Schreck
- Departments of Physics and Integrative Biology, University of California, Berkeley, California 94720, USA
| | - Oskar Hallatschek
- Departments of Physics and Integrative Biology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
59
|
Cox H, Cao M, Xu H, Waigh TA, Lu JR. Active Modulation of States of Prestress in Self-Assembled Short Peptide Gels. Biomacromolecules 2019; 20:1719-1730. [PMID: 30865428 PMCID: PMC6492955 DOI: 10.1021/acs.biomac.9b00085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/07/2019] [Indexed: 11/29/2022]
Abstract
Peptide hydrogels are excellent candidates for medical therapeutics due to their tuneable viscoelastic properties, however, in vivo they will be subject to various osmotic pressures, temperature changes, and biological co-solutes, which could alter their performance. Peptide hydrogels formed from the synthetic peptide I3K have a temperature-induced hardening of their shear modulus by a factor of 2. We show that the addition of uncross-linked poly( N-isopropylacrylamide) chains to the peptide gels increases the gels' temperature sensitivity by 3 orders of magnitude through the control of osmotic swelling and cross-linking. Using machine learning combined with single-molecule fluorescence microscopy, we measured the modulation of states of prestress in the gels on the level of single peptide fibers. A new self-consistent mixture model was developed to simultaneously quantify the energy and the length distributions of the states of prestress. Switching the temperature from 20 to 40 °C causes 6-fold increases in the number of states of prestress. At the higher temperature, many of the fibers experience constrained buckling with characteristic small wavelength oscillations in their curvature.
Collapse
Affiliation(s)
- Henry Cox
- Biological
Physics, School of Physics and Astronomy and Photon Science Institute, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Meiwen Cao
- Centre
for Bioengineering and Biotechnology, China
University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Hai Xu
- Centre
for Bioengineering and Biotechnology, China
University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Thomas A. Waigh
- Biological
Physics, School of Physics and Astronomy and Photon Science Institute, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Jian R. Lu
- Biological
Physics, School of Physics and Astronomy and Photon Science Institute, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|