51
|
Prischich D, Gomila AMJ, Milla‐Navarro S, Sangüesa G, Diez‐Alarcia R, Preda B, Matera C, Batlle M, Ramírez L, Giralt E, Hernando J, Guasch E, Meana JJ, Villa P, Gorostiza P. Adrenergic Modulation With Photochromic Ligands. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Davia Prischich
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
- Centro de Investigación Biomédica en Red— Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Alexandre M. J. Gomila
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
- Centro de Investigación Biomédica en Red— Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | | | - Gemma Sangüesa
- Institut Clínic Cardiovascular Hospital Clinic University of Barcelona (UB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
- Centro de Investigación Biomédica en Red— Enfermedades Cardiovasculares (CIBER-CV) Spain
| | - Rebeca Diez‐Alarcia
- Department of Pharmacology University of the Basque Country (UPV/EHU) Leioa Bizkaia Spain
- Centro de Investigación Biomédica en Red— Salud Mental (CIBER-SAM) Spain
| | - Beatrice Preda
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
| | - Carlo Matera
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
- Centro de Investigación Biomédica en Red— Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Montserrat Batlle
- Institut Clínic Cardiovascular Hospital Clinic University of Barcelona (UB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
- Centro de Investigación Biomédica en Red— Enfermedades Cardiovasculares (CIBER-CV) Spain
| | - Laura Ramírez
- Department of Systems Biology University of Alcalá (UAH) Madrid Spain
| | - Ernest Giralt
- Department of Inorganic and Organic Chemistry University of Barcelona (UB) Barcelona Spain
- Institute for Research in Biomedicine (IRB) Barcelona Institute for Science and Technology (BIST) Barcelona Spain
| | - Jordi Hernando
- Departament de Química Universitat Autònoma de Barcelona (UAB) Cerdanyola del Vallès Spain
| | - Eduard Guasch
- Institut Clínic Cardiovascular Hospital Clinic University of Barcelona (UB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
- Centro de Investigación Biomédica en Red— Enfermedades Cardiovasculares (CIBER-CV) Spain
| | - J. Javier Meana
- Department of Pharmacology University of the Basque Country (UPV/EHU) Leioa Bizkaia Spain
- Centro de Investigación Biomédica en Red— Salud Mental (CIBER-SAM) Spain
| | - Pedro Villa
- Department of Systems Biology University of Alcalá (UAH) Madrid Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
- Centro de Investigación Biomédica en Red— Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
- Catalan Institution for Research and Advanced Studies (ICREA) Barcelona Spain
| |
Collapse
|
52
|
Prischich D, Gomila AMJ, Milla‐Navarro S, Sangüesa G, Diez‐Alarcia R, Preda B, Matera C, Batlle M, Ramírez L, Giralt E, Hernando J, Guasch E, Meana JJ, Villa P, Gorostiza P. Adrenergic Modulation With Photochromic Ligands. Angew Chem Int Ed Engl 2020; 60:3625-3631. [DOI: 10.1002/anie.202010553] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/21/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Davia Prischich
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
- Centro de Investigación Biomédica en Red— Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Alexandre M. J. Gomila
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
- Centro de Investigación Biomédica en Red— Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | | | - Gemma Sangüesa
- Institut Clínic Cardiovascular Hospital Clinic University of Barcelona (UB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
- Centro de Investigación Biomédica en Red— Enfermedades Cardiovasculares (CIBER-CV) Spain
| | - Rebeca Diez‐Alarcia
- Department of Pharmacology University of the Basque Country (UPV/EHU) Leioa Bizkaia Spain
- Centro de Investigación Biomédica en Red— Salud Mental (CIBER-SAM) Spain
| | - Beatrice Preda
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
| | - Carlo Matera
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
- Centro de Investigación Biomédica en Red— Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Montserrat Batlle
- Institut Clínic Cardiovascular Hospital Clinic University of Barcelona (UB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
- Centro de Investigación Biomédica en Red— Enfermedades Cardiovasculares (CIBER-CV) Spain
| | - Laura Ramírez
- Department of Systems Biology University of Alcalá (UAH) Madrid Spain
| | - Ernest Giralt
- Department of Inorganic and Organic Chemistry University of Barcelona (UB) Barcelona Spain
- Institute for Research in Biomedicine (IRB) Barcelona Institute for Science and Technology (BIST) Barcelona Spain
| | - Jordi Hernando
- Departament de Química Universitat Autònoma de Barcelona (UAB) Cerdanyola del Vallès Spain
| | - Eduard Guasch
- Institut Clínic Cardiovascular Hospital Clinic University of Barcelona (UB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
- Centro de Investigación Biomédica en Red— Enfermedades Cardiovasculares (CIBER-CV) Spain
| | - J. Javier Meana
- Department of Pharmacology University of the Basque Country (UPV/EHU) Leioa Bizkaia Spain
- Centro de Investigación Biomédica en Red— Salud Mental (CIBER-SAM) Spain
| | - Pedro Villa
- Department of Systems Biology University of Alcalá (UAH) Madrid Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
- Centro de Investigación Biomédica en Red— Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
- Catalan Institution for Research and Advanced Studies (ICREA) Barcelona Spain
| |
Collapse
|
53
|
Liu W, Yang S, Li J, Su G, Ren J. One molecule, two states: Single molecular switch on metallic electrodes. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wei Liu
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing China
| | - Sha Yang
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing China
| | - Jingtai Li
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing China
| | - Guirong Su
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing China
| | - Ji‐Chang Ren
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing China
| |
Collapse
|
54
|
Frank JA, Antonini MJ, Chiang PH, Canales A, Konrad DB, Garwood IC, Rajic G, Koehler F, Fink Y, Anikeeva P. In Vivo Photopharmacology Enabled by Multifunctional Fibers. ACS Chem Neurosci 2020; 11:3802-3813. [PMID: 33108719 DOI: 10.1021/acschemneuro.0c00577] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Photoswitchable ligands can add an optical switch to a target receptor or signaling cascade and enable reversible control of neural circuits. The application of this approach, termed photopharmacology, to behavioral experiments has been impeded by a lack of integrated hardware capable of delivering both light and compounds to deep brain regions in moving subjects. Here, we devise a hybrid photochemical genetic approach to target neurons using a photoswitchable agonist of the capsaicin receptor TRPV1, red-AzCA-4. Using multifunctional fibers with optical and microfluidic capabilities, we delivered a transgene coding for TRPV1 into the ventral tegmental area (VTA). This sensitized excitatory VTA neurons to red-AzCA-4, allowing us to optically control conditioned place preference in mice, thus extending applications of photopharmacology to behavioral experiments. Applied to endogenous receptors, our approach may accelerate future studies of molecular mechanisms underlying animal behavior.
Collapse
Affiliation(s)
- James A. Frank
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Marc-Joseph Antonini
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Harvard/MIT Health Science & Technology Graduate Program, Cambridge, Massachusetts 02139, United States
| | - Po-Han Chiang
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Institute of Biomedical Engineering, National Chiao Tung University, Hsinchu 300, Taiwan (R.O.C.)
| | - Andres Canales
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - David B. Konrad
- Department of Pharmacy, Ludwig Maximilian University, D-81377 Munich, Germany
| | - Indie C. Garwood
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Harvard/MIT Health Science & Technology Graduate Program, Cambridge, Massachusetts 02139, United States
| | - Gabriela Rajic
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Florian Koehler
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yoel Fink
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Polina Anikeeva
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
55
|
Jeong M, Park J, Kwon S. Molecular Switches and Motors Powered by Orthogonal Stimuli. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001179] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Myeongsu Jeong
- Department of Chemistry Chung‐Ang University Heukseok‐ro, Dongjak‐gu 06974 Seoul Republic of Korea
| | - Jiyoon Park
- Department of Chemistry Chung‐Ang University Heukseok‐ro, Dongjak‐gu 06974 Seoul Republic of Korea
| | - Sunbum Kwon
- Department of Chemistry Chung‐Ang University Heukseok‐ro, Dongjak‐gu 06974 Seoul Republic of Korea
| |
Collapse
|
56
|
Dudek M, Tarnowicz-Staniak N, Deiana M, Pokładek Z, Samoć M, Matczyszyn K. Two-photon absorption and two-photon-induced isomerization of azobenzene compounds. RSC Adv 2020; 10:40489-40507. [PMID: 35520821 PMCID: PMC9057575 DOI: 10.1039/d0ra07693g] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/18/2020] [Indexed: 01/05/2023] Open
Abstract
The process of two-photon-induced isomerization occurring in various organic molecules, among which azobenzene derivatives hold a prominent position, offers a wide range of functionalities, which can be used in both material and life sciences. This review provides a comprehensive description of nonlinear optical (NLO) properties of azobenzene (AB) derivatives whose geometries can be switched through two-photon absorption (TPA). Employing the nonlinear excitation process allows for deeper penetration of light into the tissues and provides opportunities to regulate biological systems in a non-invasive manner. At the same time, the tight focus of the beam needed to induce nonlinear absorption helps to improve the spatial resolution of the photoinduced structures. Since near-infrared (NIR) wavelengths are employed, the lower photon energies compared to usual one-photon excitation (typically, the azobenzene geometry change from trans to cis form requires the use of UV photons) cause less damage to the biological samples. Herein, we present an overview of the strategies for optimizing azobenzene-based photoswitches for efficient two-photon excitation (TPE) and the potential applications of two-photon-induced isomerization of azobenzenes in biological systems: control of ion flow in ion channels or control of drug release, as well as in materials science, to fabricate data storage media, optical filters, diffraction elements etc., based on phenomena like photoinduced anisotropy, mass transport and phase transition. The extant challenges in the field of two-photon switchable azomolecules are discussed.
Collapse
Affiliation(s)
- Marta Dudek
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw Unviersity of Science and Technology Wyb. Wyspianskiego 27 50-370 Wroclaw Poland
| | - Nina Tarnowicz-Staniak
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw Unviersity of Science and Technology Wyb. Wyspianskiego 27 50-370 Wroclaw Poland
| | - Marco Deiana
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw Unviersity of Science and Technology Wyb. Wyspianskiego 27 50-370 Wroclaw Poland
| | - Ziemowit Pokładek
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw Unviersity of Science and Technology Wyb. Wyspianskiego 27 50-370 Wroclaw Poland
| | - Marek Samoć
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw Unviersity of Science and Technology Wyb. Wyspianskiego 27 50-370 Wroclaw Poland
| | - Katarzyna Matczyszyn
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw Unviersity of Science and Technology Wyb. Wyspianskiego 27 50-370 Wroclaw Poland
| |
Collapse
|
57
|
Wiest J, Kehrein J, Saedtler M, Schilling K, Cataldi E, Sotriffer CA, Holzgrabe U, Rasmussen T, Böttcher B, Cronin-Golomb M, Lehmann M, Jung N, Windbergs M, Meinel L. Controlling Supramolecular Structures of Drugs by Light. Mol Pharm 2020; 17:4704-4708. [DOI: 10.1021/acs.molpharmaceut.0c00720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Johannes Wiest
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Josef Kehrein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Marco Saedtler
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Klaus Schilling
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Eleonora Cataldi
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Christoph A. Sotriffer
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Tim Rasmussen
- Department of Biochemistry, Rudolf Virchow Center, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Bettina Böttcher
- Department of Biochemistry, Rudolf Virchow Center, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Mark Cronin-Golomb
- Biomedical Engineering, Tufts University, Colby Street 4, Medford, Massachusetts 01867, United States
| | - Matthias Lehmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Nathalie Jung
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Straße 15, 60438 Frankfurt a. Main, Germany
| | - Mike Windbergs
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Straße 15, 60438 Frankfurt a. Main, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| |
Collapse
|
58
|
Lam PY, Thawani AR, Balderas E, White AJP, Chaudhuri D, Fuchter MJ, Peterson RT. TRPswitch-A Step-Function Chemo-optogenetic Ligand for the Vertebrate TRPA1 Channel. J Am Chem Soc 2020; 142:17457-17468. [PMID: 32966062 DOI: 10.1021/jacs.0c06811] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chemo-optogenetics has produced powerful tools for optical control of cell activity, but current tools suffer from a variety of limitations including low unitary conductance, the need to modify the target channel, or the inability to control both on and off switching. Using a zebrafish behavior-based screening strategy, we discovered "TRPswitch", a photoswitchable nonelectrophilic ligand scaffold for the transient receptor potential ankyrin 1 (TRPA1) channel. TRPA1 exhibits high unitary channel conductance, making it an ideal target for chemo-optogenetic tool development. Key molecular determinants for the activity of TRPswitch were elucidated and allowed for replacement of the TRPswitch azobenzene with a next-generation azoheteroarene. The TRPswitch compounds enable reversible, repeatable, and nearly quantitative light-induced activation and deactivation of the vertebrate TRPA1 channel with violet and green light, respectively. The utility of TRPswitch compounds was demonstrated in larval zebrafish hearts exogenously expressing zebrafish Trpa1b, where the heartbeat could be controlled using TRPswitch and light. Therefore, TRPA1/TRPswitch represents a novel step-function chemo-optogenetic system with a unique combination of high conductance, high efficiency, activity against an unmodified vertebrate channel, and capacity for bidirectional optical switching. This chemo-optogenetic system will be particularly applicable in systems where a large depolarization current is needed or sustained channel activation is desirable.
Collapse
Affiliation(s)
- Pui-Ying Lam
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Aditya R Thawani
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London W12 OBZ, United Kingdom
| | - Enrique Balderas
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah 84112, United States
| | - Andrew J P White
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London W12 OBZ, United Kingdom
| | - Dipayan Chaudhuri
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah 84112, United States
| | - Matthew J Fuchter
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London W12 OBZ, United Kingdom
| | - Randall T Peterson
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
59
|
Boase NRB. Shining a Light on Bioorthogonal Photochemistry for Polymer Science. Macromol Rapid Commun 2020; 41:e2000305. [DOI: 10.1002/marc.202000305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/29/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Nathan R. B. Boase
- Centre for Materials Science Queensland University of Technology 2 George Street Brisbane QLD 4000 Australia
- School of Chemistry and Physics Queensland University of Technology 2 George Street Brisbane QLD 4000 Australia
| |
Collapse
|
60
|
Noirbent G, Dumur F. Recent advances on naphthalic anhydrides and 1,8-naphthalimide-based photoinitiators of polymerization. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109702] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
61
|
Tecilla P, Bonifazi D. Configurational Selection in Azobenzene-Based Supramolecular Systems Through Dual-Stimuli Processes. ChemistryOpen 2020; 9:529-544. [PMID: 32373423 PMCID: PMC7197086 DOI: 10.1002/open.202000045] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/30/2020] [Indexed: 11/21/2022] Open
Abstract
Azobenzene is one of the most studied light-controlled molecular switches and it has been incorporated in a large variety of supramolecular systems to control their structural and functional properties. Given the peculiar isomeric distribution at the photoexcited state (PSS), azobenzene derivatives have been used as photoactive framework to build metastable supramolecular systems that are out of the thermodynamic equilibrium. This could be achieved exploiting the peculiar E/Z photoisomerization process that can lead to isomeric ratios that are unreachable in thermal equilibrium conditions. The challenge in the field is to find molecular architectures that, under given external circumstances, lead to a given isomeric ratio in a reversible and predictable manner, ensuring an ultimate control of the configurational distribution and system composition. By reviewing early and recent works in the field, this review aims at describing photoswitchable systems that, containing an azobenzene dye, display a controlled configurational equilibrium by means of a molecular recognition event. Specifically, examples include programmed photoactive molecular architectures binding cations, anions and H-bonded neutral guests. In these systems the non-covalent molecular recognition adds onto the thermal and light stimuli, equipping the supramolecular architecture with an additional external trigger to select the desired configuration composition.
Collapse
Affiliation(s)
- Paolo Tecilla
- Dipartimento di Matematica e GeoscienzeUniversità degli Studi di TriesteVia Weiss 2 134127TriesteItaly
| | - Davide Bonifazi
- School of ChemistryCardiff University Main BuildingPark PlaceCF10 3ATCardiff, WalesUK
| |
Collapse
|
62
|
Paternò GM, Colombo E, Vurro V, Lodola F, Cimò S, Sesti V, Molotokaite E, Bramini M, Ganzer L, Fazzi D, D'Andrea C, Benfenati F, Bertarelli C, Lanzani G. Membrane Environment Enables Ultrafast Isomerization of Amphiphilic Azobenzene. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903241. [PMID: 32328424 PMCID: PMC7175258 DOI: 10.1002/advs.201903241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/24/2020] [Indexed: 05/18/2023]
Abstract
The non-covalent affinity of photoresponsive molecules to biotargets represents an attractive tool for achieving effective cell photo-stimulation. Here, an amphiphilic azobenzene that preferentially dwells within the plasma membrane is studied. In particular, its isomerization dynamics in different media is investigated. It is found that in molecular aggregates formed in water, the isomerization reaction is hindered, while radiative deactivation is favored. However, once protected by a lipid shell, the photochromic molecule reacquires its ultrafast photoisomerization capacity. This behavior is explained considering collective excited states that may form in aggregates, locking the conformational dynamics and redistributing the oscillator strength. By applying the pump probe technique in different media, an isomerization time in the order of 10 ps is identified and the deactivation in the aggregate in water is also characterized. Finally, it is demonstrated that the reversible modulation of membrane potential of HEK293 cells via illumination with visible light can be indeed related to the recovered trans→cis photoreaction in lipid membrane. These data fully account for the recently reported experiments in neurons, showing that the amphiphilic azobenzenes, once partitioned in the cell membrane, are effective light actuators for the modification of the electrical state of the membrane.
Collapse
Affiliation(s)
- Giuseppe Maria Paternò
- Center for Nano Science and TechnologyIstituto Italiano di TecnologiaVia Pascoli 70/320133MilanoItaly
| | - Elisabetta Colombo
- Center for Synaptic Neuroscience and TechnologyIstituto Italiano di TecnologiaLargo Rosanna Benzi 1016132GenovaItaly
- IRCCS Ospedale Policlinico San MartinoLargo Rosanna Benzi 1016132GenovaItaly
| | - Vito Vurro
- Center for Nano Science and TechnologyIstituto Italiano di TecnologiaVia Pascoli 70/320133MilanoItaly
- Dipartimento di FisicaPolitecnico di MilanoPiazza L. da Vinci 3220133MilanoItaly
| | - Francesco Lodola
- Center for Nano Science and TechnologyIstituto Italiano di TecnologiaVia Pascoli 70/320133MilanoItaly
| | - Simone Cimò
- Dipartimento di ChimicaMateriali e Ingegneria Chimica “Giulio Natta”Politecnico di MilanoPiazza L. da Vinci 3220133MilanoItaly
| | - Valentina Sesti
- Dipartimento di ChimicaMateriali e Ingegneria Chimica “Giulio Natta”Politecnico di MilanoPiazza L. da Vinci 3220133MilanoItaly
| | - Egle Molotokaite
- Center for Nano Science and TechnologyIstituto Italiano di TecnologiaVia Pascoli 70/320133MilanoItaly
| | - Mattia Bramini
- Center for Synaptic Neuroscience and TechnologyIstituto Italiano di TecnologiaLargo Rosanna Benzi 1016132GenovaItaly
- IRCCS Ospedale Policlinico San MartinoLargo Rosanna Benzi 1016132GenovaItaly
- Department of Applied PhysicsFaculty of SciencesUniversity of GranadaC/Fuentenueva s/n18071GranadaSpain
| | - Lucia Ganzer
- Dipartimento di FisicaPolitecnico di MilanoPiazza L. da Vinci 3220133MilanoItaly
| | - Daniele Fazzi
- Department of ChemistryInstitut für Physikalische ChemieUniversity of CologneLuxemburger Str. 116D‐50939KölnGermany
| | - Cosimo D'Andrea
- Center for Nano Science and TechnologyIstituto Italiano di TecnologiaVia Pascoli 70/320133MilanoItaly
- Dipartimento di FisicaPolitecnico di MilanoPiazza L. da Vinci 3220133MilanoItaly
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and TechnologyIstituto Italiano di TecnologiaLargo Rosanna Benzi 1016132GenovaItaly
- IRCCS Ospedale Policlinico San MartinoLargo Rosanna Benzi 1016132GenovaItaly
| | - Chiara Bertarelli
- Dipartimento di ChimicaMateriali e Ingegneria Chimica “Giulio Natta”Politecnico di MilanoPiazza L. da Vinci 3220133MilanoItaly
| | - Guglielmo Lanzani
- Center for Nano Science and TechnologyIstituto Italiano di TecnologiaVia Pascoli 70/320133MilanoItaly
- Dipartimento di FisicaPolitecnico di MilanoPiazza L. da Vinci 3220133MilanoItaly
| |
Collapse
|
63
|
Konrad DB, Savasci G, Allmendinger L, Trauner D, Ochsenfeld C, Ali AM. Computational Design and Synthesis of a Deeply Red-Shifted and Bistable Azobenzene. J Am Chem Soc 2020; 142:6538-6547. [PMID: 32207943 PMCID: PMC7307923 DOI: 10.1021/jacs.9b10430] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
We computationally
dissected the electronic and geometrical influences
of ortho-chlorinated azobenzenes on their photophysical
properties. X-ray analysis provided the insight that trans-tetra-ortho-chloro azobenzene is conformationally
flexible and thus subject to molecular motions. This allows the photoswitch
to adopt a range of red-shifted geometries, which account for the
extended n → π* band tails. On the basis of our results,
we designed the di-ortho-fluoro di-ortho-chloro (dfdc) azobenzene and provided computational
evidence for the superiority of this substitution pattern to tetra-ortho-chloro azobenzene. Thereafter, we synthesized dfdc azobenzene by ortho-chlorination via
2-fold C–H activation and experimentally confirmed its structural
and photophysical properties through UV–vis, NMR, and X-ray
analyses. The advantages include near-bistable isomers and an increased
separation of the n → π* bands between the trans- and cis-conformations, which allows for the generation
of unusually high levels of the cis-isomer by irradiation
with green/yellow light as well as red light within the biooptical
window.
Collapse
Affiliation(s)
- David B Konrad
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, Munich 81377, Germany.,Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, Munich 81377, Germany.,Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Gökcen Savasci
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, Munich 81377, Germany.,Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart 70569, Germany
| | - Lars Allmendinger
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, Munich 81377, Germany
| | - Dirk Trauner
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, Munich 81377, Germany.,Department of Chemistry, New York University, 100 Washington Square East, Room 712, New York, New York 10003, United States
| | - Christian Ochsenfeld
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, Munich 81377, Germany.,Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart 70569, Germany
| | - Ahmed M Ali
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, Munich 81377, Germany.,Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstraße 5-13, Munich 81377, Germany.,Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| |
Collapse
|
64
|
Paoletti P, Ellis-Davies GCR, Mourot A. Optical control of neuronal ion channels and receptors. Nat Rev Neurosci 2020; 20:514-532. [PMID: 31289380 DOI: 10.1038/s41583-019-0197-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Light-controllable tools provide powerful means to manipulate and interrogate brain function with relatively low invasiveness and high spatiotemporal precision. Although optogenetic approaches permit neuronal excitation or inhibition at the network level, other technologies, such as optopharmacology (also known as photopharmacology) have emerged that provide molecular-level control by endowing light sensitivity to endogenous biomolecules. In this Review, we discuss the challenges and opportunities of photocontrolling native neuronal signalling pathways, focusing on ion channels and neurotransmitter receptors. We describe existing strategies for rendering receptors and channels light sensitive and provide an overview of the neuroscientific insights gained from such approaches. At the crossroads of chemistry, protein engineering and neuroscience, optopharmacology offers great potential for understanding the molecular basis of brain function and behaviour, with promises for future therapeutics.
Collapse
Affiliation(s)
- Pierre Paoletti
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
| | | | - Alexandre Mourot
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), CNRS, INSERM, Sorbonne Université, Paris, France.
| |
Collapse
|
65
|
|
66
|
Two-Photon Excitation of Azobenzene Photoswitches for Synthetic Optogenetics. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10030805] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Synthetic optogenetics is an emerging optical technique that enables users to photocontrol molecules, proteins, and cells in vitro and in vivo. This is achieved by use of synthetic chromophores—denoted photoswitches—that undergo light-dependent changes (e.g., isomerization), which are meticulously designed to interact with unique cellular targets, notably proteins. Following light illumination, the changes adopted by photoswitches are harnessed to affect the function of nearby proteins. In most instances, photoswitches absorb visible light, wavelengths of poor tissue penetration, and excessive scatter. These shortcomings impede their use in vivo. To overcome these challenges, photoswitches of red-shifted absorbance have been developed. Notably, this shift in absorbance also increases their compatibility with two-photon excitation (2PE) methods. Here, we provide an overview of recent efforts devoted towards optimizing azobenzene-based photoswitches for 2PE and their current applications.
Collapse
|
67
|
Paternò GM, Colombo E, Vurro V, Lodola F, Sesti V, Benfenati F, Bertarelli C, Lanzani G. Membrane Environment Enables Ultrafast Isomerization of Amphiphilic Azobenzene -INVITED. EPJ WEB OF CONFERENCES 2020. [DOI: 10.1051/epjconf/202023807001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report on the isomerization dynamics of an amphiphilic azobenzene that dwells within the plasma membrane. We found that in aggregates formed in water, the isomerization reaction is hindered, while radiative deactivation is favoured. However, once in the membrane, the molecule reacquires its isomerisation capacity. These data fully account for the recently reported experiments in neurons, showing that the amphiphilic azobenzenes are effective light actuators for the modification of the electrical state of the membrane.
Collapse
|
68
|
Sansalone L, Zhao J, Richers MT, Ellis-Davies GCR. Chemical tuning of photoswitchable azobenzenes: a photopharmacological case study using nicotinic transmission. Beilstein J Org Chem 2019; 15:2812-2821. [PMID: 31807216 PMCID: PMC6880823 DOI: 10.3762/bjoc.15.274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022] Open
Abstract
We have developed photochromic probes for the nicotinic acetylcholine receptor that exploit the unique chemical properties of the tetrafluoroazobenzene (4FAB) scaffold. Ultraviolet light switching and rapid thermal relaxation of the metastable cis configuration are the main drawbacks associated with standard AB-based switches. We designed our photoprobes to take advantage of the excellent thermodynamic stability of the cis-4FAB configuration (thermal half-life > 12 days at 37 °C in physiological buffer) and cis–trans photostationary states above 84%. Furthermore, the well-separated n–π* absorption bands of trans- and cis-4FAB allow facile photoswitching with visible light in two optical channels. A convergent 11-step synthetic approach allowed the installation of a trimethylammonium (TA) head onto the 4FAB scaffold, by means of an alkyl spacer, to afford a free diffusible 4FABTA probe. TAs are known to agonize nicotinic receptors, so 4FABTA was tested on mouse brain slices and enabled reversible receptor activation with cycles of violet and green light. Due to the very long-lived metastable cis configuration, 4FAB in vivo use could be of great promise for long term biological studies. Further chemical functionalization of this 4FAB probe with a maleimide functionality allowed clean cross-linking with glutathione. However, attempts to conjugate with a cysteine on a genetically modified nicotinic acetylcholine receptor did not afford the expected light-responsive channel. Our data indicate that the 4FAB photoswitch can be derivatized bifunctionally for genetically-targeted photopharmacology whilst preserving all the favorable photophysical properties of the parent 4FAB scaffold, however, the tetrafluoro motif can significantly perturb pharmacophore–protein interactions. In contrast, we found that the freely diffusible 4FABTA probe could be pre-set with green light into an OFF state that was biologically inert, irradiation with violet light effectively "uncaged" agonist activity, but in a photoreversible manner. Since the neurotransmitter acetylcholine has fully saturated heteroatom valences, our photoswitchable 4FABTA probe could be useful for physiological studies of this neurotransmitter.
Collapse
Affiliation(s)
- Lorenzo Sansalone
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Jun Zhao
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Matthew T Richers
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
69
|
Xi H, Zhang Z, Zhang W, Li M, Lian C, Luo Q, Tian H, Zhu WH. All-Visible-Light-Activated Dithienylethenes Induced by Intramolecular Proton Transfer. J Am Chem Soc 2019; 141:18467-18474. [DOI: 10.1021/jacs.9b07357] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hancheng Xi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Zhipeng Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Weiwei Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Mengqi Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Cheng Lian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Qianfu Luo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
70
|
Pfaff P, Samarasinghe KTG, Crews CM, Carreira EM. Reversible Spatiotemporal Control of Induced Protein Degradation by Bistable PhotoPROTACs. ACS CENTRAL SCIENCE 2019; 5:1682-1690. [PMID: 31660436 PMCID: PMC6813558 DOI: 10.1021/acscentsci.9b00713] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 05/09/2023]
Abstract
Off-tissue effects are persistent issues of modern inhibition-based therapies. By merging the strategies of photopharmacology and small-molecule degraders, we introduce a novel concept for persistent spatiotemporal control of induced protein degradation that potentially prevents off-tissue toxicity. Building on the successful principle of bifunctional all-small-molecule Proteolysis Targeting Chimeras (PROTACs), we designed photoswitchable PROTACs (photoPROTACs) by including ortho-F4-azobenzene linkers between both warhead ligands. This highly bistable yet photoswitchable structural component leads to reversible control over the topological distance between both ligands. The azo-cis-isomer is observed to be inactive because the distance defined by the linker is prohibitively short to permit complex formation between the protein binding partners. By contrast, the azo-trans-isomer is active since it can engage both protein partners to form the necessary and productive ternary complex. Importantly, due to the bistable nature of the ortho-F4-azobenzene moiety employed, the photostationary state of the photoPROTAC is persistent, with no need for continuous irradiation. This technique offers reversible on/off switching of protein degradation that is compatible with an intracellular environment and, therefore, could be useful in experimental exploration of biological signaling pathways-such as those crucial for oncogenic signal transduction. Additionally, this strategy may be suitable for therapeutic intervention to address a variety of diseases. By enabling reversible activation and deactivation of protein degradation, photoPROTACs offer advantages over conventional photocaging strategies that irreversibly release active agents.
Collapse
Affiliation(s)
- Patrick Pfaff
- Department
of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Kusal T. G. Samarasinghe
- Department
of Molecular, Cell, and Developmental Biology, Yale University, 260
Whitney Avenue, New Haven, Connecticut 06511, United States
| | - Craig M. Crews
- Department
of Molecular, Cell, and Developmental Biology, Yale University, 260
Whitney Avenue, New Haven, Connecticut 06511, United States
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
- Department
of Pharmacology, Yale University, New Haven, Connecticut 06511, United States
| | - Erick M. Carreira
- Department
of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| |
Collapse
|
71
|
Dorsey PJ, Rubanov M, Wang W, Schulman R. Digital Maskless Photolithographic Patterning of DNA-Functionalized Poly(ethylene glycol) Diacrylate Hydrogels with Visible Light Enabling Photodirected Release of Oligonucleotides. ACS Macro Lett 2019; 8:1133-1140. [PMID: 35619455 DOI: 10.1021/acsmacrolett.9b00450] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Soft biomaterials possessing structural hierarchy have growing applications in lab-on-chip devices, artificial tissues, and micromechanical and chemomechanical systems. The ability to integrate sets of biomolecules, specifically DNA, within hydrogel substrates at precise locations could offer the potential to form and modulate complex biochemical processes with DNA-based molecular switches in such materials and provide a means of creating dynamic spatial patterns, thus enabling spatiotemporal control of a wide array of reaction-diffusion phenomena prevalent in biological systems. Here we develop a means of photopatterning two-dimensional DNA-functionalized poly(ethylene glycol) diacrylate (PEGDA) hydrogel architectures with an aim toward these applications. While PEGDA photopatterning methods are well-established for the fabrication of hydrogels, including those containing oligonucleotides, the photoinitiators typically used have significant crosstalk with many UV-photoswitchable chemistries including nitrobenzyl derivatives. We demonstrate the digital photopatterning of PEGDA-co-DNA hydrogels using a blue light-absorbing (470 nm peak) photoinitiator system and macromer comprised of camphorquinone, triethanolamine, and poly(ethylene glycol) diacrylate (Mn = 575) that minimizes absorption in the UV-A wavelength range commonly used to trigger photoswitchable chemistries. We demonstrate this method using digital maskless photolithography within microfluidic devices that allows for the reliable construction of multidomain structures. The method achieves feature resolutions as small as 25 μm, and the resulting materials allow for lateral isotropic bulk diffusion of short single-stranded (ss) DNA oligonucleotides. Finally, we show how the use of these photoinitiators allows for orthogonal control of photopolymerization and UV-photoscission of acrylate-modified DNA containing a 1-(2-nitrophenyl) ethyl spacer to selectively cleave DNA from regions of a PEGDA substrate.
Collapse
|
72
|
Li Y, Zhuo H, Chen H, Chen S. Novel photo-thermal staged-responsive supramolecular shape memory polyurethane complex. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
73
|
Pittolo S, Lee H, Lladó A, Tosi S, Bosch M, Bardia L, Gómez-Santacana X, Llebaria A, Soriano E, Colombelli J, Poskanzer KE, Perea G, Gorostiza P. Reversible silencing of endogenous receptors in intact brain tissue using 2-photon pharmacology. Proc Natl Acad Sci U S A 2019; 116:13680-13689. [PMID: 31196955 PMCID: PMC6613107 DOI: 10.1073/pnas.1900430116] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The physiological activity of proteins is often studied with loss-of-function genetic approaches, but the corresponding phenotypes develop slowly and can be confounding. Photopharmacology allows direct, fast, and reversible control of endogenous protein activity, with spatiotemporal resolution set by the illumination method. Here, we combine a photoswitchable allosteric modulator (alloswitch) and 2-photon excitation using pulsed near-infrared lasers to reversibly silence metabotropic glutamate 5 (mGlu5) receptor activity in intact brain tissue. Endogenous receptors can be photoactivated in neurons and astrocytes with pharmacological selectivity and with an axial resolution between 5 and 10 µm. Thus, 2-photon pharmacology using alloswitch allows investigating mGlu5-dependent processes in wild-type animals, including synaptic formation and plasticity, and signaling pathways from intracellular organelles.
Collapse
Affiliation(s)
- Silvia Pittolo
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Hyojung Lee
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Anna Lladó
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Sébastien Tosi
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Miquel Bosch
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Lídia Bardia
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Xavier Gómez-Santacana
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Institute of Advanced Chemistry of Catalonia, Consejo Superior de Investigaciones Científicas (IQAC-CSIC), 08034 Barcelona, Spain
| | - Amadeu Llebaria
- Institute of Advanced Chemistry of Catalonia, Consejo Superior de Investigaciones Científicas (IQAC-CSIC), 08034 Barcelona, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology, and Immunology, University of Barcelona (UB), 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- Network Center of Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Julien Colombelli
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Kira E Poskanzer
- Department of Biochemistry & Biophysics, University of California, San Francisco (UCSF), CA 94158
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94158
| | - Gertrudis Perea
- Cajal Institute, Consejo Superior de Investigaciones Científicas (IC-CSIC), 28002 Madrid, Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain;
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- Network Center of Biomedical Research in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 50015 Zaragoza, Spain
| |
Collapse
|
74
|
Cabré G, Garrido-Charles A, González-Lafont À, Moormann W, Langbehn D, Egea D, Lluch JM, Herges R, Alibés R, Busqué F, Gorostiza P, Hernando J. Synthetic Photoswitchable Neurotransmitters Based on Bridged Azobenzenes. Org Lett 2019; 21:3780-3784. [DOI: 10.1021/acs.orglett.9b01222] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Gisela Cabré
- Departament de Química, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès 08193, Spain
| | - Aida Garrido-Charles
- Institut de Bioenginyeria de Catalunya (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona 08036, Spain
| | - Àngels González-Lafont
- Departament de Química, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès 08193, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), UAB, Cerdanyola del Vallès 08193, Spain
| | - Widukind Moormann
- Otto Diels-Institute of Organic Chemistry, Christian Albrechts University Kiel, Kiel 24118, Germany
| | - Daniel Langbehn
- Otto Diels-Institute of Organic Chemistry, Christian Albrechts University Kiel, Kiel 24118, Germany
| | - David Egea
- Departament de Química, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès 08193, Spain
| | - José M. Lluch
- Departament de Química, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès 08193, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), UAB, Cerdanyola del Vallès 08193, Spain
| | - Rainer Herges
- Otto Diels-Institute of Organic Chemistry, Christian Albrechts University Kiel, Kiel 24118, Germany
| | - Ramon Alibés
- Departament de Química, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès 08193, Spain
| | - Félix Busqué
- Departament de Química, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès 08193, Spain
| | - Pau Gorostiza
- Institut de Bioenginyeria de Catalunya (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona 08036, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Zaragoza 50018, Spain
| | - Jordi Hernando
- Departament de Química, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès 08193, Spain
| |
Collapse
|
75
|
Riefolo F, Matera C, Garrido-Charles A, Gomila AMJ, Sortino R, Agnetta L, Claro E, Masgrau R, Holzgrabe U, Batlle M, Decker M, Guasch E, Gorostiza P. Optical Control of Cardiac Function with a Photoswitchable Muscarinic Agonist. J Am Chem Soc 2019; 141:7628-7636. [DOI: 10.1021/jacs.9b03505] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Fabio Riefolo
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Carrer de Baldiri Reixac 15-21, 08028 Barcelona, Spain
- Network Biomedical Research Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Carlo Matera
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Carrer de Baldiri Reixac 15-21, 08028 Barcelona, Spain
- Network Biomedical Research Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Aida Garrido-Charles
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Carrer de Baldiri Reixac 15-21, 08028 Barcelona, Spain
- Network Biomedical Research Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Alexandre M. J. Gomila
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Carrer de Baldiri Reixac 15-21, 08028 Barcelona, Spain
- Network Biomedical Research Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Rosalba Sortino
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Carrer de Baldiri Reixac 15-21, 08028 Barcelona, Spain
- Network Biomedical Research Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Luca Agnetta
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Enrique Claro
- Institut de Neurociències (INc), and Dept. Bioquímica i Biologia Molecular, Unitat de Bioquímica de Medicina, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
| | - Roser Masgrau
- Institut de Neurociències (INc), and Dept. Bioquímica i Biologia Molecular, Unitat de Bioquímica de Medicina, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
| | - Ulrike Holzgrabe
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Montserrat Batlle
- Cardiovascular Institute, Hospital Clinic, University of Barcelona (UB), IDIBAPS, 08036 Barcelona, Spain
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Eduard Guasch
- Cardiovascular Institute, Hospital Clinic, University of Barcelona (UB), IDIBAPS, 08036 Barcelona, Spain
- Network Biomedical Research Center in Cardiovascular Diseases (CIBER-CV), 28029 Madrid, Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Carrer de Baldiri Reixac 15-21, 08028 Barcelona, Spain
- Network Biomedical Research Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| |
Collapse
|