51
|
Namani T, Snyder S, Eagan JM, Bevilacqua PC, Wesdemiotis C, Sahai N. Amino Acid Specific Nonenzymatic Montmorillonite‐Promoted RNA Polymerization. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202000060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Trishool Namani
- School of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325 USA
| | - Savannah Snyder
- Department of Chemistry The University of Akron Akron OH 44325 USA
| | - James M. Eagan
- School of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325 USA
| | - Philip C. Bevilacqua
- Department of Chemistry and Biochemistry Department of Microbiology and Molecular Biology Center for RNA Molecular Biology Pennsylvania State University University Park Pennsylvania PA 16802 USA
| | | | - Nita Sahai
- School of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325 USA
| |
Collapse
|
52
|
Abid AR, Reinhardt M, Boudjemia N, Pelimanni E, Milosavljević AR, Saak CM, Huttula M, Björneholm O, Patanen M. The effect of relative humidity on CaCl 2 nanoparticles studied by soft X-ray absorption spectroscopy. RSC Adv 2021; 11:2103-2111. [PMID: 35424180 PMCID: PMC8693708 DOI: 10.1039/d0ra08943e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/26/2020] [Indexed: 01/09/2023] Open
Abstract
Ca- and Cl-containing nanoparticles are common in atmosphere, originating for example from desert dust and sea water. The properties and effects on atmospheric processes of these aerosol particles depend on the relative humidity (RH) as they are often both hygroscopic and deliquescent. We present here a study of surface structure of free-flying CaCl2 nanoparticles (CaCl2-NPs) in the 100 nm size regime prepared at different humidity levels (RH: 11-85%). We also created mixed nanoparticles by aerosolizing a solution of CaCl2 and phenylalanine (Phe), which is a hydrophobic amino acid present in atmosphere. Information of hydration state of CaCl2-NPs and production of mixed CaCl2 + Phe nanoparticles was obtained using soft X-ray absorption spectroscopy (XAS) at Ca 2p, Cl 2p, C 1s, and O 1s edges. We also report Ca 2p and Cl 2p X-ray absorption spectra of an aqueous CaCl2 solution. The O 1s X-ray absorption spectra measured from hydrated CaCl2-NPs resemble liquid-like water spectrum, which is heavily influenced by the presence of ions. Core level spectra of Ca2+ and Cl- ions do not show a clear dependence of % RH, indicating that the first coordination shell remains similar in all measured hydrated CaCl2-NPs, but they differ from aqueous solution and solid CaCl2.
Collapse
Affiliation(s)
- Abdul Rahman Abid
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu P.O. Box 3000 90570 Oulu Finland +358 46 9691089
- Molecular and Condensed Matter Physics, Uppsala University Ångströmlaboratoriet 752 37 Uppsala Sweden
| | - Maximilian Reinhardt
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu P.O. Box 3000 90570 Oulu Finland +358 46 9691089
| | - Nacer Boudjemia
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu P.O. Box 3000 90570 Oulu Finland +358 46 9691089
| | - Eetu Pelimanni
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu P.O. Box 3000 90570 Oulu Finland +358 46 9691089
| | | | - Clara-Magdalena Saak
- Molecular and Condensed Matter Physics, Uppsala University Ångströmlaboratoriet 752 37 Uppsala Sweden
| | - Marko Huttula
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu P.O. Box 3000 90570 Oulu Finland +358 46 9691089
| | - Olle Björneholm
- Molecular and Condensed Matter Physics, Uppsala University Ångströmlaboratoriet 752 37 Uppsala Sweden
| | - Minna Patanen
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu P.O. Box 3000 90570 Oulu Finland +358 46 9691089
| |
Collapse
|
53
|
Jia TZ, Wang PH, Niwa T, Mamajanov I. Connecting primitive phase separation to biotechnology, synthetic biology, and engineering. J Biosci 2021; 46:79. [PMID: 34373367 PMCID: PMC8342986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
One aspect of the study of the origins of life focuses on how primitive chemistries assembled into the first cells on Earth and how these primitive cells evolved into modern cells. Membraneless droplets generated from liquid-liquid phase separation (LLPS) are one potential primitive cell-like compartment; current research in origins of life includes study of the structure, function, and evolution of such systems. However, the goal of primitive LLPS research is not simply curiosity or striving to understand one of life's biggest unanswered questions, but also the possibility to discover functions or structures useful for application in the modern day. Many applicational fields, including biotechnology, synthetic biology, and engineering, utilize similar phaseseparated structures to accomplish specific functions afforded by LLPS. Here, we briefly review LLPS applied to primitive compartment research and then present some examples of LLPS applied to biomolecule purification, drug delivery, artificial cell construction, waste and pollution management, and flavor encapsulation. Due to a significant focus on similar functions and structures, there appears to be much for origins of life researchers to learn from those working on LLPS in applicational fields, and vice versa, and we hope that such researchers can start meaningful cross-disciplinary collaborations in the future.
Collapse
Affiliation(s)
- Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, 152-8550 Japan
- Blue Marble Space Institute of Science, 1001 4th Ave., Suite 3201, Seattle, Washington 98154 USA
| | - Po-Hsiang Wang
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, 152-8550 Japan
- Graduate Institute of Environmental Engineering, National Central University, Zhongli Dist, 300 Zhongda Rd, Taoyuan City, 32001 Taiwan
| | - Tatsuya Niwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, 226-8503 Japan
| | - Irena Mamajanov
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, 152-8550 Japan
| |
Collapse
|
54
|
Fedorenko A, Grinberg M, Orevi T, Kashtan N. Survival of the enveloped bacteriophage Phi6 (a surrogate for SARS-CoV-2) in evaporated saliva microdroplets deposited on glass surfaces. Sci Rep 2020; 10:22419. [PMID: 33376251 PMCID: PMC7772334 DOI: 10.1038/s41598-020-79625-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
Survival of respiratory viral pathogens in expelled saliva microdroplets is central to their transmission, yet the factors that determine survival in such microdroplets are not well understood. Here we combine microscopy imaging with virus viability assays to study survival of three bacteriophages suggested as good models for respiratory pathogens: the enveloped Phi6 (a surrogate for SARS-CoV-2), and the non-enveloped PhiX174 and MS2. We measured virus viability in human saliva microdroplets, SM buffer, and water following deposition on glass surfaces at various relative humidities (RH). Saliva and water microdroplets dried out rapidly, within minutes, at all tested RH levels (23%, 43%, 57%, and 78%), while SM microdroplets remained hydrated at RH ≥ 57%. Generally, the survival of all three viruses in dry saliva microdroplets was significantly greater than those in SM buffer and water under all RH (except PhiX174 in water under 57% RH survived the best among 3 media). Thus, atmosphere RH and microdroplet hydration state are not sufficient to explain virus survival, indicating that the virus-suspended medium, and association with saliva components in particular, likely play a role in virus survival. Uncovering the exact properties and components that make saliva a favorable environment for the survival of viruses, in particular enveloped ones like Phi6, is thus of great importance for reducing transmission of viral respiratory pathogens including SARS-CoV-2.
Collapse
Affiliation(s)
- Aliza Fedorenko
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Maor Grinberg
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Tomer Orevi
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Nadav Kashtan
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 76100, Rehovot, Israel.
| |
Collapse
|
55
|
A Few Experimental Suggestions Using Minerals to Obtain Peptides with a High Concentration of L-Amino Acids and Protein Amino Acids. Symmetry (Basel) 2020. [DOI: 10.3390/sym12122046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The peptides/proteins of all living beings on our planet are mostly made up of 19 L-amino acids and glycine, an achiral amino acid. Arising from endogenous and exogenous sources, the seas of the prebiotic Earth could have contained a huge diversity of biomolecules (including amino acids), and precursors of biomolecules. Thus, how were these amino acids selected from the huge number of available amino acids and other molecules? What were the peptides of prebiotic Earth made up of? How were these peptides synthesized? Minerals have been considered for this task, since they can preconcentrate amino acids from dilute solutions, catalyze their polymerization, and even make the chiral selection of them. However, until now, this problem has only been studied in compartmentalized experiments. There are separate experiments showing that minerals preconcentrate amino acids by adsorption or catalyze their polymerization, or separate L-amino acids from D-amino acids. Based on the [GADV]-protein world hypothesis, as well as the relative abundance of amino acids on prebiotic Earth obtained by Zaia, several experiments are suggested. The main goal of these experiments is to show that using minerals it is possible, at least, to obtain peptides whose composition includes a high quantity of L-amino acids and protein amino acids (PAAs). These experiments should be performed using hydrothermal environments and wet/dry cycles. In addition, for hydrothermal environment experiments, it is very important to use one of the suggested artificial seawaters, and for wet/dry environments, it is important to perform the experiments in distilled water and diluted salt solutions. Finally, from these experiments, we suggest that, without an RNA world or even a pre genetic world, a small peptide set could emerge that better resembles modern proteins.
Collapse
|
56
|
Abstract
Thresholds are widespread in origin of life scenarios, from the emergence of chirality, to the appearance of vesicles, of autocatalysis, all the way up to Darwinian evolution. Here, we analyze the “error threshold,” which poses a condition for sustaining polymer replication, and generalize the threshold approach to other properties of prebiotic systems. Thresholds provide theoretical predictions, prescribe experimental tests, and integrate interdisciplinary knowledge. The coupling between systems and their environment determines how thresholds can be crossed, leading to different categories of prebiotic transitions. Articulating multiple thresholds reveals evolutionary properties in prebiotic scenarios. Overall, thresholds indicate how to assess, revise, and compare origin of life scenarios.
Collapse
Affiliation(s)
- Cyrille Jeancolas
- Laboratoire de Biochimie, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL University, ESPCI Paris, 10 rue Vauquelin, 75005 Paris, France.,Laboratoire d'Anthropologie Sociale, Collège de France, 52 rue du Cardinal Lemoine, 75005 Paris, France
| | - Christophe Malaterre
- Département de Philosophie and Centre de Recherche Interuniversitaire sur la Science et la Technologie (CIRST), Université du Québec à Montréal (UQAM), 455 boulevard René-Lévesque Est, Montréal, QC H3C 3P8, Canada
| | - Philippe Nghe
- Laboratoire de Biochimie, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL University, ESPCI Paris, 10 rue Vauquelin, 75005 Paris, France
| |
Collapse
|
57
|
Fares HM, Marras AE, Ting JM, Tirrell MV, Keating CD. Impact of wet-dry cycling on the phase behavior and compartmentalization properties of complex coacervates. Nat Commun 2020; 11:5423. [PMID: 33110067 PMCID: PMC7592044 DOI: 10.1038/s41467-020-19184-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/02/2020] [Indexed: 11/16/2022] Open
Abstract
Wet-dry cycling on the early Earth is thought to have facilitated production of molecular building blocks of life, but its impact on self-assembly and compartmentalization remains largely unexplored. Here, we investigate dehydration/rehydration of complex coacervates, which are membraneless compartments formed by phase separation of polyelectrolyte solutions. Solution compositions are identified for which tenfold water loss results in maintenance, disappearance, or appearance of coacervate droplets. Systems maintaining coacervates throughout the dehydration process are further evaluated to understand how their compartmentalization properties change with drying. Although added total RNA concentrations increase tenfold, RNA concentration within coacervates remains steady. Exterior RNA concentrations rise, and exchange rates for encapsulated versus free RNAs increase with dehydration. We explain these results in light of the phase diagram, with dehydration-driven ionic strength increase being particularly important in determining coacervate properties. This work shows that wet-dry cycling can alter the phase behavior and protocell-relevant functions of complex coacervates. Wet-dry cycling is thought to have enabled the production of molecular building blocks of life. Here, the authors investigate the impact of dehydration/rehydration on RNA-containing complex coacervates, which are membraneless compartments formed by phase separation of polyelectrolyte solutions.
Collapse
Affiliation(s)
- Hadi M Fares
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.,NASA Postdoctoral Program, Universities Space Research Association, Columbia, MD, 21046, USA
| | - Alexander E Marras
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.,Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Jeffrey M Ting
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.,Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA.,3M Company, 3M Center, Saint Paul, MN, 55144, USA
| | - Matthew V Tirrell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.,Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Christine D Keating
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
58
|
Liquid Crystal Peptide/DNA Coacervates in the Context of Prebiotic Molecular Evolution. CRYSTALS 2020. [DOI: 10.3390/cryst10110964] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Liquid–liquid phase separation (LLPS) phenomena are ubiquitous in biological systems, as various cellular LLPS structures control important biological processes. Due to their ease of in vitro assembly into membraneless compartments and their presence within modern cells, LLPS systems have been postulated to be one potential form that the first cells on Earth took on. Recently, liquid crystal (LC)-coacervate droplets assembled from aqueous solutions of short double-stranded DNA (s-dsDNA) and poly-L-lysine (PLL) have been reported. Such LC-coacervates conjugate the advantages of an associative LLPS with the relevant long-range ordering and fluidity properties typical of LC, which reflect and propagate the physico-chemical properties of their molecular constituents. Here, we investigate the structure, assembly, and function of DNA LC-coacervates in the context of prebiotic molecular evolution and the emergence of functional protocells on early Earth. We observe through polarization microscopy that LC-coacervate systems can be dynamically assembled and disassembled based on prebiotically available environmental factors including temperature, salinity, and dehydration/rehydration cycles. Based on these observations, we discuss how LC-coacervates can in principle provide selective pressures effecting and sustaining chemical evolution within partially ordered compartments. Finally, we speculate about the potential for LC-coacervates to perform various biologically relevant properties, such as segregation and concentration of biomolecules, catalysis, and scaffolding, potentially providing additional structural complexity, such as linearization of nucleic acids and peptides within the LC ordered matrix, that could have promoted more efficient polymerization. While there are still a number of remaining open questions regarding coacervates, as protocell models, including how modern biologies acquired such membraneless organelles, further elucidation of the structure and function of different LLPS systems in the context of origins of life and prebiotic chemistry could provide new insights for understanding new pathways of molecular evolution possibly leading to the emergence of the first cells on Earth.
Collapse
|
59
|
Chandru K, Jia TZ, Mamajanov I, Bapat N, Cleaves HJ. Prebiotic oligomerization and self-assembly of structurally diverse xenobiological monomers. Sci Rep 2020; 10:17560. [PMID: 33067516 PMCID: PMC7567815 DOI: 10.1038/s41598-020-74223-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Prebiotic chemists often study how modern biopolymers, e.g., peptides and nucleic acids, could have originated in the primitive environment, though most contemporary biomonomers don't spontaneously oligomerize under mild conditions without activation or catalysis. However, life may not have originated using the same monomeric components that it does presently. There may be numerous non-biological (or "xenobiological") monomer types that were prebiotically abundant and capable of facile oligomerization and self-assembly. Many modern biopolymers degrade abiotically preferentially via processes which produce thermodynamically stable ring structures, e.g. diketopiperazines in the case of proteins and 2', 3'-cyclic nucleotide monophosphates in the case of RNA. This weakness is overcome in modern biological systems by kinetic control, but this need not have been the case for primitive systems. We explored here the oligomerization of a structurally diverse set of prebiotically plausible xenobiological monomers, which can hydrolytically interconvert between cyclic and acyclic forms, alone or in the presence of glycine under moderate temperature drying conditions. These monomers included various lactones, lactams and a thiolactone, which varied markedly in their stability, propensity to oligomerize and apparent modes of initiation, and the oligomeric products of some of these formed self-organized microscopic structures which may be relevant to protocell formation.
Collapse
Affiliation(s)
- Kuhan Chandru
- Space Science Center (ANGKASA), Institute of Climate Change, Level 3, Research Complex, National University of Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technicka 5, 16628, Prague 6-Dejvice, Czech Republic.
| | - Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
- Blue Marble Space Institute for Science, 1001 4th Ave, Suite 3201, Seattle, WA, 98154, USA
| | - Irena Mamajanov
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Niraja Bapat
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, 411 008, India
| | - H James Cleaves
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
- Blue Marble Space Institute for Science, 1001 4th Ave, Suite 3201, Seattle, WA, 98154, USA
- Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ, 08540, USA
| |
Collapse
|
60
|
Chien CY, Yu SS. Ester-mediated peptide formation promoted by deep eutectic solvents: a facile pathway to proto-peptides. Chem Commun (Camb) 2020; 56:11949-11952. [PMID: 32929424 DOI: 10.1039/d0cc03319g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The ester-amide exchange reaction enables spontaneous formation of prebiotic proto-peptides under mild conditions. However, this reaction also leads to oligomers with a vast sequence diversity of ester and amide linkages. Here, we demonstrate using deep eutectic solvents as a universal strategy to regulate the reaction pathways and promote the formation of amino acid-enriched oligomers with peptide backbones.
Collapse
Affiliation(s)
- Chen-Yu Chien
- Department of Chemical Engineering, National Cheng Kung University, No. 1 University Road, Tainan City, 70101, Taiwan, Republic of China.
| | | |
Collapse
|
61
|
A Constructive Way to Think about Different Hydrothermal Environments for the Origins of Life. Life (Basel) 2020; 10:life10040036. [PMID: 32283673 PMCID: PMC7235985 DOI: 10.3390/life10040036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/27/2020] [Accepted: 04/04/2020] [Indexed: 11/22/2022] Open
Abstract
The question of where life originated has been contentious for a very long time. Scientists have invoked many environments to address this question. Often, we find ourselves beholden to a location, especially if we think life originated once and then evolved into the myriad forms we now know today. In this brief commentary, we wish to lay out the following understanding: hydrothermal environments are energetically robust locations for the origins and early evolution of life as we know it. Two environments typify hydrothermal conditions, hydrothermal fields on dry land and submarine hydrothermal vents. If life originated only once, then we must choose between these two environments; however, there is no reason to assume life emerged only once. We conclude with the idea that rather than having an “either or” mind set about the origin of life a “yes and” mind set might be a better paradigm with which to problem solve within this field. Finally, we shall discuss further research with regards to both environments.
Collapse
|
62
|
Damer B, Deamer D. The Hot Spring Hypothesis for an Origin of Life. ASTROBIOLOGY 2020; 20:429-452. [PMID: 31841362 PMCID: PMC7133448 DOI: 10.1089/ast.2019.2045] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 10/23/2019] [Indexed: 05/05/2023]
Abstract
We present a testable hypothesis related to an origin of life on land in which fluctuating volcanic hot spring pools play a central role. The hypothesis is based on experimental evidence that lipid-encapsulated polymers can be synthesized by cycles of hydration and dehydration to form protocells. Drawing on metaphors from the bootstrapping of a simple computer operating system, we show how protocells cycling through wet, dry, and moist phases will subject polymers to combinatorial selection and draw structural and catalytic functions out of initially random sequences, including structural stabilization, pore formation, and primitive metabolic activity. We propose that protocells aggregating into a hydrogel in the intermediate moist phase of wet-dry cycles represent a primitive progenote system. Progenote populations can undergo selection and distribution, construct niches in new environments, and enable a sharing network effect that can collectively evolve them into the first microbial communities. Laboratory and field experiments testing the first steps of the scenario are summarized. The scenario is then placed in a geological setting on the early Earth to suggest a plausible pathway from life's origin in chemically optimal freshwater hot spring pools to the emergence of microbial communities tolerant to more extreme conditions in dilute lakes and salty conditions in marine environments. A continuity is observed for biogenesis beginning with simple protocell aggregates, through the transitional form of the progenote, to robust microbial mats that leave the fossil imprints of stromatolites so representative in the rock record. A roadmap to future testing of the hypothesis is presented. We compare the oceanic vent with land-based pool scenarios for an origin of life and explore their implications for subsequent evolution to multicellular life such as plants. We conclude by utilizing the hypothesis to posit where life might also have emerged in habitats such as Mars or Saturn's icy moon Enceladus. "To postulate one fortuitously catalyzed reaction, perhaps catalyzed by a metal ion, might be reasonable, but to postulate a suite of them is to appeal to magic." -Leslie Orgel.
Collapse
Affiliation(s)
- Bruce Damer
- Department of Biomolecular Engineering, University of California, Santa Cruz, California
| | - David Deamer
- Department of Biomolecular Engineering, University of California, Santa Cruz, California
| |
Collapse
|
63
|
Frenkel-Pinter M, Samanta M, Ashkenasy G, Leman LJ. Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chem Rev 2020; 120:4707-4765. [PMID: 32101414 DOI: 10.1021/acs.chemrev.9b00664] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fundamental roles that peptides and proteins play in today's biology makes it almost indisputable that peptides were key players in the origin of life. Insofar as it is appropriate to extrapolate back from extant biology to the prebiotic world, one must acknowledge the critical importance that interconnected molecular networks, likely with peptides as key components, would have played in life's origin. In this review, we summarize chemical processes involving peptides that could have contributed to early chemical evolution, with an emphasis on molecular interactions between peptides and other classes of organic molecules. We first summarize mechanisms by which amino acids and similar building blocks could have been produced and elaborated into proto-peptides. Next, non-covalent interactions of peptides with other peptides as well as with nucleic acids, lipids, carbohydrates, metal ions, and aromatic molecules are discussed in relation to the possible roles of such interactions in chemical evolution of structure and function. Finally, we describe research involving structural alternatives to peptides and covalent adducts between amino acids/peptides and other classes of molecules. We propose that ample future breakthroughs in origin-of-life chemistry will stem from investigations of interconnected chemical systems in which synergistic interactions between different classes of molecules emerge.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mousumi Samanta
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Gonen Ashkenasy
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Luke J Leman
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
64
|
Toner JD, Catling DC. A carbonate-rich lake solution to the phosphate problem of the origin of life. Proc Natl Acad Sci U S A 2020; 117:883-888. [PMID: 31888981 PMCID: PMC6969521 DOI: 10.1073/pnas.1916109117] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Phosphate is central to the origin of life because it is a key component of nucleotides in genetic molecules, phospholipid cell membranes, and energy transfer molecules such as adenosine triphosphate. To incorporate phosphate into biomolecules, prebiotic experiments commonly use molar phosphate concentrations to overcome phosphate's poor reactivity with organics in water. However, phosphate is generally limited to micromolar levels in the environment because it precipitates with calcium as low-solubility apatite minerals. This disparity between laboratory conditions and environmental constraints is an enigma known as "the phosphate problem." Here we show that carbonate-rich lakes are a marked exception to phosphate-poor natural waters. In principle, modern carbonate-rich lakes could accumulate up to ∼0.1 molal phosphate under steady-state conditions of evaporation and stream inflow because calcium is sequestered into carbonate minerals. This prevents the loss of dissolved phosphate to apatite precipitation. Even higher phosphate concentrations (>1 molal) can form during evaporation in the absence of inflows. On the prebiotic Earth, carbonate-rich lakes were likely abundant and phosphate-rich relative to the present day because of the lack of microbial phosphate sinks and enhanced chemical weathering of phosphate minerals under relatively CO2-rich atmospheres. Furthermore, the prevailing CO2 conditions would have buffered phosphate-rich brines to moderate pH (pH 6.5 to 9). The accumulation of phosphate and other prebiotic reagents at concentration and pH levels relevant to experimental prebiotic syntheses of key biomolecules is a compelling reason to consider carbonate-rich lakes as plausible settings for the origin of life.
Collapse
Affiliation(s)
- Jonathan D Toner
- Department of Earth & Space Sciences, University of Washington, Seattle, WA 98195
| | - David C Catling
- Department of Earth & Space Sciences, University of Washington, Seattle, WA 98195
| |
Collapse
|
65
|
Danger G, d’Hendecourt LLS, Pascal R. On the conditions for mimicking natural selection in chemical systems. Nat Rev Chem 2020; 4:102-109. [PMID: 37128049 DOI: 10.1038/s41570-019-0155-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2019] [Indexed: 11/09/2022]
Abstract
The emergence of natural selection, requiring that reproducing entities present variations that may be inherited and passed on, was arguably the most important breakthrough in the self-organization of life. In this Perspective, the assumptions governing biological reproduction are confronted with physico-chemical principles that control the evolution of material systems. In biology, the reproduction of living organisms is never considered to be reversible, whereas microscopic reversibility is an essential principle in the physical description of matter. Here, we show that this discrepancy places constraints on the possibility of finding kinetic processes in the chemical world that are equivalent to natural selection in the biological one. Chemical replicators can behave in a similar fashion to living entities, provided that the reproduction cycle proceeds in a unidirectional way. For this to be the case, kinetic barriers must hinder the reverse process. The system must, thus, be held far from equilibrium and fed with a non-degraded (low-entropy) form of energy. The ensuing constraints must be factored in when proposing scenarios that account for the origin of life at the molecular level.
Collapse
|