51
|
Galbraith JD, Kortschak RD, Suh A, Adelson DL. Genome Stability Is in the Eye of the Beholder: CR1 Retrotransposon Activity Varies Significantly across Avian Diversity. Genome Biol Evol 2021; 13:6433158. [PMID: 34894225 PMCID: PMC8665684 DOI: 10.1093/gbe/evab259] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2021] [Indexed: 12/20/2022] Open
Abstract
Since the sequencing of the zebra finch genome it has become clear that avian genomes, while largely stable in terms of chromosome number and gene synteny, are more dynamic at an intrachromosomal level. A multitude of intrachromosomal rearrangements and significant variation in transposable element (TE) content have been noted across the avian tree. TEs are a source of genome plasticity, because their high similarity enables chromosomal rearrangements through nonallelic homologous recombination, and they have potential for exaptation as regulatory and coding sequences. Previous studies have investigated the activity of the dominant TE in birds, chicken repeat 1 (CR1) retrotransposons, either focusing on their expansion within single orders, or comparing passerines with nonpasserines. Here, we comprehensively investigate and compare the activity of CR1 expansion across orders of birds, finding levels of CR1 activity vary significantly both between and within orders. We describe high levels of TE expansion in genera which have speciated in the last 10 Myr including kiwis, geese, and Amazon parrots; low levels of TE expansion in songbirds across their diversification, and near inactivity of TEs in the cassowary and emu for millions of years. CR1s have remained active over long periods of time across most orders of neognaths, with activity at any one time dominated by one or two families of CR1s. Our findings of higher TE activity in species-rich clades and dominant families of TEs within lineages mirror past findings in mammals and indicate that genome evolution in amniotes relies on universal TE-driven processes.
Collapse
Affiliation(s)
- James D Galbraith
- School of Biological Sciences, The University of Adelaide, South Australia, Australia
| | | | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom.,Department of Organismal Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, Sweden
| | - David L Adelson
- School of Biological Sciences, The University of Adelaide, South Australia, Australia
| |
Collapse
|
52
|
Xu X, Wang BS, Yu H. Intraspecies Genomic Divergence of a Fig Wasp Species Is Due to Geographical Barrier and Adaptation. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.764828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Understanding how intraspecies divergence results in speciation has great importance for our knowledge of evolutionary biology. Here we applied population genomics approaches to a fig wasp species (Valisia javana complex sp 1) to reveal its intraspecies differentiation and the underlying evolutionary dynamics. With re-sequencing data, we prove the Hainan Island population (DA) of sp1 genetically differ from the continental ones, then reveal the differed divergence pattern. DA has reduced SNP diversity but a higher proportion of population-specific structural variations (SVs), implying a restricted gene exchange. Based on SNPs, 32 differentiated islands containing 204 genes were detected, along with 1,532 population-specific SVs of DA overlapping 4,141 genes. The gene ontology (GO) enrichment analysis performed on differentiated islands linked to three significant GO terms on a basic metabolism process, with most of the genes failing to enrich. In contrast, population-specific SVs contributed more to the adaptation than the SNPs by linking to 59 terms that are crucial for wasp speciation, such as host reorganization and development regulation. In addition, the generalized dissimilarity modeling confirms the importance of environment difference on the genetic divergence within sp1. Hence, we assume the genetic divergence between DA and the continent due to not only the strait as a geographic barrier, but also adaptation. We reconstruct the demographic history within sp1. DA shares a similar population history with the nearby continental population, suggesting an incomplete divergence. Summarily, our results reveal how geographic barriers and adaptation both influence the genetic divergence at population-level, thereby increasing our knowledge on the potential speciation of non-model organisms.
Collapse
|
53
|
Bravo GA, Schmitt CJ, Edwards SV. What Have We Learned from the First 500 Avian Genomes? ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-012121-085928] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The increased capacity of DNA sequencing has significantly advanced our understanding of the phylogeny of birds and the proximate and ultimate mechanisms molding their genomic diversity. In less than a decade, the number of available avian reference genomes has increased to over 500—approximately 5% of bird diversity—placing birds in a privileged position to advance the fields of phylogenomics and comparative, functional, and population genomics. Whole-genome sequence data, as well as indels and rare genomic changes, are further resolving the avian tree of life. The accumulation of bird genomes, increasingly with long-read sequence data, greatly improves the resolution of genomic features such as germline-restricted chromosomes and the W chromosome, and is facilitating the comparative integration of genotypes and phenotypes. Community-based initiatives such as the Bird 10,000 Genomes Project and Vertebrate Genome Project are playing a fundamental role in amplifying and coalescing a vibrant international program in avian comparative genomics.
Collapse
Affiliation(s)
- Gustavo A. Bravo
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA;, ,
| | - C. Jonathan Schmitt
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA;, ,
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA;, ,
| |
Collapse
|
54
|
Metzler D, Knief U, Peñalba JV, Wolf JBW. Assortative mating and epistatic mating-trait architecture induce complex movement of the crow hybrid zone. Evolution 2021; 75:3154-3174. [PMID: 34694633 DOI: 10.1111/evo.14386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/06/2021] [Indexed: 12/20/2022]
Abstract
Hybrid zones provide a window into the evolutionary processes governing species divergence. Yet, the contribution of mate choice to the temporal and spatial stability of hybrid zones remains poorly explored. Here, we investigate the effects of assortative mating on hybrid-zone dynamics by means of a mathematical model parameterized with phenotype and genotype data from the hybrid zone between all-black carrion and gray-coated hooded crows. In the best-fit model, narrow clines of the two mating-trait loci were maintained by a moderate degree of assortative mating inducing pre- and postzygotic isolation via positive frequency-dependent selection. Epistasis between the two loci induced hybrid-zone movement in favor of alleles conveying dark plumage followed by a shift in the opposite direction favoring gray-coated phenotypes ∼ 1 200 generations after secondary contact. Unlinked neutral loci diffused near-unimpeded across the zone. These results were generally robust to the choice of matching rule (self-referencing or parental imprinting) and effects of genetic drift. Overall, this study illustrates under which conditions assortative mating can maintain steep clines in mating-trait loci without generalizing to genome-wide reproductive isolation. It further emphasizes the importance of the genetic mating-trait architecture for spatio-temporal hybrid-zone dynamics.
Collapse
Affiliation(s)
- Dirk Metzler
- Faculty of Biology, Division of Evolutionary Biology, LMU Munich, Munich, 80539, Germany
| | - Ulrich Knief
- Faculty of Biology, Division of Evolutionary Biology, LMU Munich, Munich, 80539, Germany
| | - Joshua V Peñalba
- Faculty of Biology, Division of Evolutionary Biology, LMU Munich, Munich, 80539, Germany
| | - Jochen B W Wolf
- Faculty of Biology, Division of Evolutionary Biology, LMU Munich, Munich, 80539, Germany
| |
Collapse
|
55
|
Peart CR, Williams C, Pophaly SD, Neely BA, Gulland FMD, Adams DJ, Ng BL, Cheng W, Goebel ME, Fedrigo O, Haase B, Mountcastle J, Fungtammasan A, Formenti G, Collins J, Wood J, Sims Y, Torrance J, Tracey A, Howe K, Rhie A, Hoffman JI, Johnson J, Jarvis ED, Breen M, Wolf JBW. Hi-C scaffolded short- and long-read genome assemblies of the California sea lion are broadly consistent for syntenic inference across 45 million years of evolution. Mol Ecol Resour 2021; 21:2455-2470. [PMID: 34097816 PMCID: PMC9732816 DOI: 10.1111/1755-0998.13443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/06/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022]
Abstract
With the advent of chromatin-interaction maps, chromosome-level genome assemblies have become a reality for a wide range of organisms. Scaffolding quality is, however, difficult to judge. To explore this gap, we generated multiple chromosome-scale genome assemblies of an emerging wild animal model for carcinogenesis, the California sea lion (Zalophus californianus). Short-read assemblies were scaffolded with two independent chromatin interaction mapping data sets (Hi-C and Chicago), and long-read assemblies with three data types (Hi-C, optical maps and 10X linked reads) following the "Vertebrate Genomes Project (VGP)" pipeline. In both approaches, 18 major scaffolds recovered the karyotype (2n = 36), with scaffold N50s of 138 and 147 Mb, respectively. Synteny relationships at the chromosome level with other pinniped genomes (2n = 32-36), ferret (2n = 34), red panda (2n = 36) and domestic dog (2n = 78) were consistent across approaches and recovered known fissions and fusions. Comparative chromosome painting and multicolour chromosome tiling with a panel of 264 genome-integrated single-locus canine bacterial artificial chromosome probes provided independent evaluation of genome organization. Broad-scale discrepancies between the approaches were observed within chromosomes, most commonly in translocations centred around centromeres and telomeres, which were better resolved in the VGP assembly. Genomic and cytological approaches agreed on near-perfect synteny of the X chromosome, and in combination allowed detailed investigation of autosomal rearrangements between dog and sea lion. This study presents high-quality genomes of an emerging cancer model and highlights that even highly fragmented short-read assemblies scaffolded with Hi-C can yield reliable chromosome-level scaffolds suitable for comparative genomic analyses.
Collapse
Affiliation(s)
- Claire R. Peart
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Munchen, Germany
| | - Christina Williams
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Saurabh D. Pophaly
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Munchen, Germany
- Max Planck institute for Plant Breeding Research, Cologne, Germany
| | - Benjamin A. Neely
- National Institute of Standards and Technology, NIST Charleston, Charleston, South Carolina, USA
| | - Frances M. D. Gulland
- Karen Dryer Wildlife Health Center, University of California Davis, Davis, California, USA
| | - David J. Adams
- Cytometry Core Facility, Wellcome Sanger Institute, Cambridge, UK
| | - Bee Ling Ng
- Cytometry Core Facility, Wellcome Sanger Institute, Cambridge, UK
| | - William Cheng
- Cytometry Core Facility, Wellcome Sanger Institute, Cambridge, UK
| | - Michael E. Goebel
- Institute of Marine Science, University of California Santa Cruz, Santa Cruz, California, USA
| | - Olivier Fedrigo
- Vertebrate Genome Lab, The Rockefeller University, New York City, New York, USA
| | - Bettina Haase
- Vertebrate Genome Lab, The Rockefeller University, New York City, New York, USA
| | | | | | - Giulio Formenti
- Vertebrate Genome Lab, The Rockefeller University, New York City, New York, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York City, New York, USA
| | - Joanna Collins
- Tree of Life Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Jonathan Wood
- Tree of Life Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Ying Sims
- Tree of Life Programme, Wellcome Sanger Institute, Cambridge, UK
| | - James Torrance
- Tree of Life Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Alan Tracey
- Tree of Life Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Kerstin Howe
- Tree of Life Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Joseph I. Hoffman
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
- British Antarctic Survey, Cambridge, UK
| | - Jeremy Johnson
- Broad Institute of Harvard and Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| | - Erich D. Jarvis
- Vertebrate Genome Lab, The Rockefeller University, New York City, New York, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Jochen B. W. Wolf
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Munchen, Germany
| |
Collapse
|
56
|
Mahmoud M, Doddapaneni H, Timp W, Sedlazeck FJ. PRINCESS: comprehensive detection of haplotype resolved SNVs, SVs, and methylation. Genome Biol 2021; 22:268. [PMID: 34521442 PMCID: PMC8442460 DOI: 10.1186/s13059-021-02486-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022] Open
Abstract
Long-read sequencing has been shown to have advantages in structural variation (SV) detection and methylation calling. Many studies focus either on SV, methylation, or phasing of SNV; however, only the combination of variants provides a comprehensive insight into the sample and thus enables novel findings in biology or medicine. PRINCESS is a structured workflow that takes raw sequence reads and generates a fully phased SNV, SV, and methylation call set within a few hours. PRINCESS achieves high accuracy and long phasing even on low coverage datasets and can resolve repetitive, complex medical relevant genes that often escape detection. PRINCESS is publicly available at https://github.com/MeHelmy/princess under the MIT license.
Collapse
Affiliation(s)
- Medhat Mahmoud
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| | | | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
57
|
Peona V, Palacios-Gimenez OM, Blommaert J, Liu J, Haryoko T, Jønsson KA, Irestedt M, Zhou Q, Jern P, Suh A. The avian W chromosome is a refugium for endogenous retroviruses with likely effects on female-biased mutational load and genetic incompatibilities. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200186. [PMID: 34304594 PMCID: PMC8310711 DOI: 10.1098/rstb.2020.0186] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2020] [Indexed: 12/17/2022] Open
Abstract
It is a broadly observed pattern that the non-recombining regions of sex-limited chromosomes (Y and W) accumulate more repeats than the rest of the genome, even in species like birds with a low genome-wide repeat content. Here, we show that in birds with highly heteromorphic sex chromosomes, the W chromosome has a transposable element (TE) density of greater than 55% compared to the genome-wide density of less than 10%, and contains over half of all full-length (thus potentially active) endogenous retroviruses (ERVs) of the entire genome. Using RNA-seq and protein mass spectrometry data, we were able to detect signatures of female-specific ERV expression. We hypothesize that the avian W chromosome acts as a refugium for active ERVs, probably leading to female-biased mutational load that may influence female physiology similar to the 'toxic-Y' effect in Drosophila males. Furthermore, Haldane's rule predicts that the heterogametic sex has reduced fertility in hybrids. We propose that the excess of W-linked active ERVs over the rest of the genome may be an additional explanatory variable for Haldane's rule, with consequences for genetic incompatibilities between species through TE/repressor mismatches in hybrids. Together, our results suggest that the sequence content of female-specific W chromosomes can have effects far beyond sex determination and gene dosage. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
Collapse
Affiliation(s)
- Valentina Peona
- Department of Organismal Biology—Systematic Biology, Uppsala University, Uppsala, Sweden
| | | | - Julie Blommaert
- Department of Organismal Biology—Systematic Biology, Uppsala University, Uppsala, Sweden
| | - Jing Liu
- MOE Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou, People's Republic of China
- Department of Neuroscience and Development, University of Vienna, Vienna, Austria
| | - Tri Haryoko
- Museum Zoologicum Bogoriense, Research Centre for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Knud A. Jønsson
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Martin Irestedt
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou, People's Republic of China
- Department of Neuroscience and Development, University of Vienna, Vienna, Austria
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, People's Republic of China
| | - Patric Jern
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Alexander Suh
- Department of Organismal Biology—Systematic Biology, Uppsala University, Uppsala, Sweden
- School of Biological Sciences—Organisms and the Environment, University of East Anglia, Norwich, UK
| |
Collapse
|
58
|
Abstract
Long-read sequencing technologies have now reached a level of accuracy and yield that allows their application to variant detection at a scale of tens to thousands of samples. Concomitant with the development of new computational tools, the first population-scale studies involving long-read sequencing have emerged over the past 2 years and, given the continuous advancement of the field, many more are likely to follow. In this Review, we survey recent developments in population-scale long-read sequencing, highlight potential challenges of a scaled-up approach and provide guidance regarding experimental design. We provide an overview of current long-read sequencing platforms, variant calling methodologies and approaches for de novo assemblies and reference-based mapping approaches. Furthermore, we summarize strategies for variant validation, genotyping and predicting functional impact and emphasize challenges remaining in achieving long-read sequencing at a population scale.
Collapse
Affiliation(s)
- Wouter De Coster
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Applied and Translational Neurogenomics Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
59
|
Wold J, Koepfli KP, Galla SJ, Eccles D, Hogg CJ, Le Lec MF, Guhlin J, Santure AW, Steeves TE. Expanding the conservation genomics toolbox: Incorporating structural variants to enhance genomic studies for species of conservation concern. Mol Ecol 2021; 30:5949-5965. [PMID: 34424587 PMCID: PMC9290615 DOI: 10.1111/mec.16141] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/28/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022]
Abstract
Structural variants (SVs) are large rearrangements (>50 bp) within the genome that impact gene function and the content and structure of chromosomes. As a result, SVs are a significant source of functional genomic variation, that is, variation at genomic regions underpinning phenotype differences, that can have large effects on individual and population fitness. While there are increasing opportunities to investigate functional genomic variation in threatened species via single nucleotide polymorphism (SNP) data sets, SVs remain understudied despite their potential influence on fitness traits of conservation interest. In this future-focused Opinion, we contend that characterizing SVs offers the conservation genomics community an exciting opportunity to complement SNP-based approaches to enhance species recovery. We also leverage the existing literature-predominantly in human health, agriculture and ecoevolutionary biology-to identify approaches for readily characterizing SVs and consider how integrating these into the conservation genomics toolbox may transform the way we manage some of the world's most threatened species.
Collapse
Affiliation(s)
- Jana Wold
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Klaus-Peter Koepfli
- Smithsonian-Mason School of Conservation, Front Royal, Virginia, USA.,Centre for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA.,Computer Technologies Laboratory, ITMO University, Saint Petersburg, Russia
| | - Stephanie J Galla
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Department of Biological Sciences, Boise State University, Boise, Idaho, USA
| | - David Eccles
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Marissa F Le Lec
- Department of Biochemistry, University of Otago, Dunedin, Otago, New Zealand
| | - Joseph Guhlin
- Department of Biochemistry, University of Otago, Dunedin, Otago, New Zealand.,Genomics Aotearoa, Dunedin, Otago, New Zealand
| | - Anna W Santure
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Tammy E Steeves
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
60
|
How Important Are Structural Variants for Speciation? Genes (Basel) 2021; 12:genes12071084. [PMID: 34356100 PMCID: PMC8305853 DOI: 10.3390/genes12071084] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/04/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
Understanding the genetic basis of reproductive isolation is a central issue in the study of speciation. Structural variants (SVs); that is, structural changes in DNA, including inversions, translocations, insertions, deletions, and duplications, are common in a broad range of organisms and have been hypothesized to play a central role in speciation. Recent advances in molecular and statistical methods have identified structural variants, especially inversions, underlying ecologically important traits; thus, suggesting these mutations contribute to adaptation. However, the contribution of structural variants to reproductive isolation between species—and the underlying mechanism by which structural variants most often contribute to speciation—remain unclear. Here, we review (i) different mechanisms by which structural variants can generate or maintain reproductive isolation; (ii) patterns expected with these different mechanisms; and (iii) relevant empirical examples of each. We also summarize the available sequencing and bioinformatic methods to detect structural variants. Lastly, we suggest empirical approaches and new research directions to help obtain a more complete assessment of the role of structural variants in speciation.
Collapse
|
61
|
DeWoody JA, Harder AM, Mathur S, Willoughby JR. The long-standing significance of genetic diversity in conservation. Mol Ecol 2021; 30:4147-4154. [PMID: 34191374 DOI: 10.1111/mec.16051] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/20/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022]
Abstract
Since allozymes were first used to assess genetic diversity in the 1960s and 1970s, biologists have attempted to characterize gene pools and conserve the diversity observed in domestic crops, livestock, zoos and (more recently) natural populations. Recently, some authors have claimed that the importance of genetic diversity in conservation biology has been greatly overstated. Here, we argue that a voluminous literature indicates otherwise. We address four main points made by detractors of genetic diversity's role in conservation by using published literature to firmly establish that genetic diversity is intimately tied to evolutionary fitness, and that the associated demographic consequences are of paramount importance to many conservation efforts. We think that responsible management in the Anthropocene should, whenever possible, include the conservation of ecosystems, communities, populations and individuals, and their underlying genetic diversity.
Collapse
Affiliation(s)
- J Andrew DeWoody
- Department of Forestry and Natural Resources, Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Avril M Harder
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, Alabama, USA
| | - Samarth Mathur
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio, USA
| | - Janna R Willoughby
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
62
|
Tigano A, Jacobs A, Wilder AP, Nand A, Zhan Y, Dekker J, Therkildsen NO. Chromosome-Level Assembly of the Atlantic Silverside Genome Reveals Extreme Levels of Sequence Diversity and Structural Genetic Variation. Genome Biol Evol 2021; 13:evab098. [PMID: 33964136 PMCID: PMC8214408 DOI: 10.1093/gbe/evab098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/21/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
The levels and distribution of standing genetic variation in a genome can provide a wealth of insights about the adaptive potential, demographic history, and genome structure of a population or species. As structural variants are increasingly associated with traits important for adaptation and speciation, investigating both sequence and structural variation is essential for wholly tapping this potential. Using a combination of shotgun sequencing, 10x Genomics linked reads and proximity-ligation data (Chicago and Hi-C), we produced and annotated a chromosome-level genome assembly for the Atlantic silverside (Menidia menidia)-an established ecological model for studying the phenotypic effects of natural and artificial selection-and examined patterns of genomic variation across two individuals sampled from different populations with divergent local adaptations. Levels of diversity varied substantially across each chromosome, consistently being highly elevated near the ends (presumably near telomeric regions) and dipping to near zero around putative centromeres. Overall, our estimate of the genome-wide average heterozygosity in the Atlantic silverside is among the highest reported for a fish, or any vertebrate (1.32-1.76% depending on inference method and sample). Furthermore, we also found extreme levels of structural variation, affecting ∼23% of the total genome sequence, including multiple large inversions (> 1 Mb and up to 12.6 Mb) associated with previously identified haploblocks showing strong differentiation between locally adapted populations. These extreme levels of standing genetic variation are likely associated with large effective population sizes and may help explain the remarkable adaptive divergence among populations of the Atlantic silverside.
Collapse
Affiliation(s)
- Anna Tigano
- Department of Natural Resources, Cornell University, Ithaca, New York, USA
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Arne Jacobs
- Department of Natural Resources, Cornell University, Ithaca, New York, USA
| | - Aryn P Wilder
- Department of Natural Resources, Cornell University, Ithaca, New York, USA
- Conservation Genetics, San Diego Zoo Global, Escondido, California, USA
| | - Ankita Nand
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ye Zhan
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Job Dekker
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | | |
Collapse
|
63
|
Berdan EL, Blanckaert A, Slotte T, Suh A, Westram AM, Fragata I. Unboxing mutations: Connecting mutation types with evolutionary consequences. Mol Ecol 2021; 30:2710-2723. [PMID: 33955064 DOI: 10.1111/mec.15936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/30/2021] [Accepted: 04/20/2021] [Indexed: 01/09/2023]
Abstract
A key step in understanding the genetic basis of different evolutionary outcomes (e.g., adaptation) is to determine the roles played by different mutation types (e.g., SNPs, translocations and inversions). To do this we must simultaneously consider different mutation types in an evolutionary framework. Here, we propose a research framework that directly utilizes the most important characteristics of mutations, their population genetic effects, to determine their relative evolutionary significance in a given scenario. We review known population genetic effects of different mutation types and show how these may be connected to different evolutionary outcomes. We provide examples of how to implement this framework and pinpoint areas where more data, theory and synthesis are needed. Linking experimental and theoretical approaches to examine different mutation types simultaneously is a critical step towards understanding their evolutionary significance.
Collapse
Affiliation(s)
- Emma L Berdan
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | | | - Tanja Slotte
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Alexander Suh
- School of Biological Sciences - Organisms and the Environment, University of East Anglia, Norwich, UK.,Department of Organismal Biology - Systematic Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anja M Westram
- IST Austria, Klosterneuburg, Austria.,Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Inês Fragata
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
64
|
Gorkovskiy A, Verstrepen KJ. The Role of Structural Variation in Adaptation and Evolution of Yeast and Other Fungi. Genes (Basel) 2021; 12:699. [PMID: 34066718 PMCID: PMC8150848 DOI: 10.3390/genes12050699] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/12/2023] Open
Abstract
Mutations in DNA can be limited to one or a few nucleotides, or encompass larger deletions, insertions, duplications, inversions and translocations that span long stretches of DNA or even full chromosomes. These so-called structural variations (SVs) can alter the gene copy number, modify open reading frames, change regulatory sequences or chromatin structure and thus result in major phenotypic changes. As some of the best-known examples of SV are linked to severe genetic disorders, this type of mutation has traditionally been regarded as negative and of little importance for adaptive evolution. However, the advent of genomic technologies uncovered the ubiquity of SVs even in healthy organisms. Moreover, experimental evolution studies suggest that SV is an important driver of evolution and adaptation to new environments. Here, we provide an overview of the causes and consequences of SV and their role in adaptation, with specific emphasis on fungi since these have proven to be excellent models to study SV.
Collapse
Affiliation(s)
- Anton Gorkovskiy
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium;
- Laboratory for Systems Biology, VIB—KU Leuven Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Kevin J. Verstrepen
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium;
- Laboratory for Systems Biology, VIB—KU Leuven Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| |
Collapse
|
65
|
Robert A, Peona V, Ottenburghs J. Digest: Population genomics reveals convergence toward melanism in different island populations. Evolution 2021; 75:1582-1584. [PMID: 33905142 DOI: 10.1111/evo.14242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/19/2021] [Indexed: 11/28/2022]
Abstract
Distinct traits between mainland and island populations provide an excellent opportunity to study the evolution and genetic basis of these traits. In this issue, Walsh et al. unraveled the evolution of black plumage color that arose independently in two island populations of the white-winged fairywren. They also described the first steps in understanding the genetic underpinnings of this trait.
Collapse
Affiliation(s)
- Aloïs Robert
- Department of Ecology and Evolutionary Biology, Environmental Science, Center (ESC), Yale University, New Haven, Connecticut, 06511
| | - Valentina Peona
- Department of Ecology and Genetics-Evolutionary Biology, Science for Life Laboratories, Uppsala University, Uppsala, Sweden.,Department of Organismal Biology-Systematic Biology, Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Jente Ottenburghs
- Department of Ecology and Genetics-Evolutionary Biology, Science for Life Laboratories, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory, Karolinska Institute, Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
| |
Collapse
|
66
|
Cui F, Taier G, Li M, Dai X, Hang N, Zhang X, Wang X, Wang K. The genome of the warm-season turfgrass African bermudagrass (Cynodon transvaalensis). HORTICULTURE RESEARCH 2021; 8:93. [PMID: 33931599 PMCID: PMC8087826 DOI: 10.1038/s41438-021-00519-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/02/2021] [Accepted: 02/06/2021] [Indexed: 05/03/2023]
Abstract
Cynodon species can be used for multiple purposes and have high economic and ecological significance. However, the genetic basis of the favorable agronomic traits of Cynodon species is poorly understood, partially due to the limited availability of genomic resources. In this study, we report a chromosome-scale genome assembly of a diploid Cynodon species, C. transvaalensis, obtained by combining Illumina and Nanopore sequencing, BioNano, and Hi-C. The assembly contains 282 scaffolds (~423.42 Mb, N50 = 5.37 Mb), which cover ~93.2% of the estimated genome of C. transvaalensis (~454.4 Mb). Furthermore, 90.48% of the scaffolds (~383.08 Mb) were anchored to nine pseudomolecules, of which the largest was 60.78 Mb in length. Evolutionary analysis along with transcriptome comparison provided a preliminary genomic basis for the adaptation of this species to tropical and/or subtropical climates, typically with dry summers. The genomic resources generated in this study will not only facilitate evolutionary studies of the Chloridoideae subfamily, in particular, the Cynodonteae tribe, but also facilitate functional genomic research and genetic breeding in Cynodon species for new leading turfgrass cultivars in the future.
Collapse
Affiliation(s)
- Fengchao Cui
- Department of Turfgrass Science and Engineering, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Geli Taier
- Department of Turfgrass Science and Engineering, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Manli Li
- Department of Breeding and Seed Science, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiaoxia Dai
- Department of Turfgrass Science and Engineering, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Nan Hang
- Department of Turfgrass Science and Engineering, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xunzhong Zhang
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Xiangfeng Wang
- National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100913, China.
| | - Kehua Wang
- Department of Turfgrass Science and Engineering, College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
67
|
Modak TH, Literman R, Puritz JB, Johnson KM, Roberts EM, Proestou D, Guo X, Gomez-Chiarri M, Schwartz RS. Extensive genome-wide duplications in the eastern oyster ( Crassostrea virginica). Philos Trans R Soc Lond B Biol Sci 2021; 376:20200164. [PMID: 33813893 DOI: 10.1098/rstb.2020.0164] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Genomic structural variation is an important source of genetic and phenotypic diversity, playing a critical role in evolution. The recent availability of a high-quality reference genome for the eastern oyster, Crassostrea virginica, and whole-genome sequence data of samples from across the species range in the USA, provides an opportunity to explore structural variation across the genome of this species. Our analysis shows significantly greater individual-level duplications of regions across the genome than that of most model vertebrate species. Duplications are widespread across all ten chromosomes with variation in frequency per chromosome. The eastern oyster shows a large interindividual variation in duplications as well as particular chromosomal regions with a higher density of duplications. A high percentage of duplications seen in C. virginica lie completely within genes and exons, suggesting the potential for impacts on gene function. These results support the hypothesis that structural changes may play a significant role in standing genetic variation in C. virginica, and potentially have a role in their adaptive and evolutionary success. Altogether, these results suggest that copy number variation plays an important role in the genomic variation of C. virginica. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.
Collapse
Affiliation(s)
- Tejashree H Modak
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI 02881, USA
| | - Robert Literman
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI 02881, USA
| | - Jonathan B Puritz
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI 02881, USA
| | - Kevin M Johnson
- Center for Coastal Marine Sciences, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, CA 93407, USA.,Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.,California Sea Grant, University of California San Diego, La Jolla, CA 92093-0232, USA
| | - Erin M Roberts
- Department of Fisheries, Animal and Veterinary Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI 02881, USA
| | - Dina Proestou
- USDA Agricultural Research Service, National Cold Water Marine Aquaculture Center, 469 CBLS, 120 Flagg Road, Kingston, RI 02881, USA
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, 6959 Miller Avenue, Port Norris, NJ 08349, USA
| | - Marta Gomez-Chiarri
- Department of Fisheries, Animal and Veterinary Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI 02881, USA
| | - Rachel S Schwartz
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI 02881, USA
| |
Collapse
|
68
|
Blom MPK. Opportunities and challenges for high-quality biodiversity tissue archives in the age of long-read sequencing. Mol Ecol 2021; 30:5935-5948. [PMID: 33786900 DOI: 10.1111/mec.15909] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/06/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022]
Abstract
The technological ability to characterize genetic variation at a genome-wide scale provides an unprecedented opportunity to study the genetic underpinnings and evolutionary mechanisms that promote and sustain biodiversity. The transition from short- to long-read sequencing is particularly promising and allows a more holistic view on any changes in genetic diversity across time and space. Long-read sequencing has tremendous potential but sequencing success strongly depends on the long-range integrity of DNA molecules and therefore on the availability of high-quality tissue samples. With the scope of genomic experiments expanding and wild populations simultaneously disappearing at an unprecedented rate, access to high-quality samples may soon be a major concern for many projects. The need for high-quality biodiversity tissue archives is therefore urgent but sampling and preserving high-quality samples is not a trivial exercise. In this review, I will briefly outline how long-read sequencing can benefit the study of molecular ecology, how this will substantially increase the demand for high-quality tissues and why it is challenging to preserve DNA integrity. I will then provide an overview of preservation approaches and end with a call for support to acknowledge the efforts needed to assemble high-quality tissue archives. In doing so, I hope to simultaneously motivate field biologists to expand sampling practices and molecular biologists to develop (cost) efficient guidelines for the sampling and long-term storage of tissues. A concerted, interdisciplinary, effort is needed to catalogue the genetic variation underlying contemporary biodiversity and will eventually provide a critical resource for future studies.
Collapse
Affiliation(s)
- Mozes P K Blom
- Leibniz Institut für Evolutions- und Biodiversitätsforschung, Museum für Naturkunde, Berlin, Germany
| |
Collapse
|
69
|
Peona V, Blom MPK, Xu L, Burri R, Sullivan S, Bunikis I, Liachko I, Haryoko T, Jønsson KA, Zhou Q, Irestedt M, Suh A. Identifying the causes and consequences of assembly gaps using a multiplatform genome assembly of a bird-of-paradise. Mol Ecol Resour 2021; 21:263-286. [PMID: 32937018 PMCID: PMC7757076 DOI: 10.1111/1755-0998.13252] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 01/09/2023]
Abstract
Genome assemblies are currently being produced at an impressive rate by consortia and individual laboratories. The low costs and increasing efficiency of sequencing technologies now enable assembling genomes at unprecedented quality and contiguity. However, the difficulty in assembling repeat-rich and GC-rich regions (genomic "dark matter") limits insights into the evolution of genome structure and regulatory networks. Here, we compare the efficiency of currently available sequencing technologies (short/linked/long reads and proximity ligation maps) and combinations thereof in assembling genomic dark matter. By adopting different de novo assembly strategies, we compare individual draft assemblies to a curated multiplatform reference assembly and identify the genomic features that cause gaps within each assembly. We show that a multiplatform assembly implementing long-read, linked-read and proximity sequencing technologies performs best at recovering transposable elements, multicopy MHC genes, GC-rich microchromosomes and the repeat-rich W chromosome. Telomere-to-telomere assemblies are not a reality yet for most organisms, but by leveraging technology choice it is now possible to minimize genome assembly gaps for downstream analysis. We provide a roadmap to tailor sequencing projects for optimized completeness of both the coding and noncoding parts of nonmodel genomes.
Collapse
Affiliation(s)
- Valentina Peona
- Department of Ecology and Genetics—Evolutionary BiologyScience for Life LaboratoriesUppsala UniversityUppsalaSweden
- Department of Organismal Biology—Systematic BiologyScience for Life LaboratoriesUppsala UniversityUppsalaSweden
| | - Mozes P. K. Blom
- Department of Bioinformatics and GeneticsSwedish Museum of Natural HistoryStockholmSweden
- Museum für NaturkundeLeibniz Institut für Evolutions‐ und BiodiversitätsforschungBerlinGermany
| | - Luohao Xu
- Department of Neurosciences and Developmental BiologyUniversity of ViennaViennaAustria
| | - Reto Burri
- Department of Population EcologyInstitute of Ecology and EvolutionFriedrich‐Schiller‐University JenaJenaGermany
| | | | - Ignas Bunikis
- Department of Immunology, Genetics and PathologyScience for Life LaboratoryUppsala Genome CenterUppsala UniversityUppsalaSweden
| | | | - Tri Haryoko
- Research Centre for BiologyMuseum Zoologicum BogorienseIndonesian Institute of Sciences (LIPI)CibinongIndonesia
| | - Knud A. Jønsson
- Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
| | - Qi Zhou
- Department of Neurosciences and Developmental BiologyUniversity of ViennaViennaAustria
- MOE Laboratory of Biosystems Homeostasis & ProtectionLife Sciences InstituteZhejiang UniversityHangzhouChina
- Center for Reproductive MedicineThe 2nd Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Martin Irestedt
- Department of Bioinformatics and GeneticsSwedish Museum of Natural HistoryStockholmSweden
| | - Alexander Suh
- Department of Ecology and Genetics—Evolutionary BiologyScience for Life LaboratoriesUppsala UniversityUppsalaSweden
- Department of Organismal Biology—Systematic BiologyScience for Life LaboratoriesUppsala UniversityUppsalaSweden
- School of Biological Sciences—Organisms and the EnvironmentUniversity of East AngliaNorwichUK
| |
Collapse
|
70
|
Tigano A. A population genomics approach to uncover the CNVs, and their evolutionary significance, hidden in reduced-representation sequencing data sets. Mol Ecol 2020; 29:4749-4753. [PMID: 32997366 DOI: 10.1111/mec.15665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/11/2020] [Indexed: 12/01/2022]
Abstract
The importance of structural variation in adaptation and speciation is becoming increasingly evident in the literature. Among SVs, copy number variants (CNVs) are known to affect phenotypes through changes in gene expression and can potentially reduce recombination between alleles with different copy numbers. However, little is known about their abundance, distribution and frequency in natural populations. In a "From the Cover" article in this issue of Molecular Ecology, Dorant et al. (2020) present a new cost-effective approach to genotype copy number variants (CNVs) from large reduced-representation sequencing (RRS) data sets in nonmodel organisms, and thus to analyse sequence and structural variation jointly. They show that in American lobsters (Homarus americanus), CNVs exhibit strong population structure and several significant associations with annual variance in sea surface temperature, while SNPs fail to uncover any population structure or genotype-environment associations. Their results clearly illustrate that structural variants like CNVs can potentially store important information on differentiation and adaptive differences that cannot be retrieved from the analysis of sequence variation alone. To better understand the factors affecting the evolution of CNVs and their role in adaptation and speciation, we need to compare and synthesize data from a wide variety of species with different demographic histories and genome structure. The approach developed by Dorant et al. (2020) now allows to gain crucial knowledge on CNVs in a cost-effective way, even in species with limited genomic resources.
Collapse
Affiliation(s)
- Anna Tigano
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA.,Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH, USA
| |
Collapse
|