51
|
Dhanasekar NN, Thiyagarajan D, Bhatia D. DNA origami in the quest for membrane piercing. Chem Asian J 2022; 17:e202200591. [PMID: 35947734 DOI: 10.1002/asia.202200591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/07/2022] [Indexed: 11/09/2022]
Abstract
The tool kit for label-free single-molecule sensing, nucleic acid sequencing (DNA, RNA and protein) and other biotechnological applications has been significantly broadened due to the wide range of available nanopore-based technologies. Currently, various sources of nanopores, including biological, fabricated solid-state, hybrid and recently de novo chemically synthesized ion-like channels have put in use for rapid single-molecule sensing of biomolecules and other diagnostic applications. At length scales of hundreds of nanometers, DNA nanotechnology, particularly DNA origami-based devices, enables the assembly of complex and dynamic 3-dimensional nanostructures, including nanopores with precise control over the size/shape. DNA origami technology has enabled to construct nanopores by DNA alone or hybrid architects with solid-state nanopore devices or nanocapillaries. In this review, we briefly discuss the nanopore technique that uses DNA nanotechnology to construct such individual pores in lipid-based systems or coupled with other solid-state devices, nanocapillaries for enhanced biosensing function. We summarize various DNA-based design nanopores and explore the sensing properties of such DNA channels. Apart from DNA origami channels we also pointed the design principles of RNA nanopores for peptide sensing applications.
Collapse
Affiliation(s)
- Naresh Niranjan Dhanasekar
- Johns Hopkins University, Chemical and Biomolecular Engineering, 3400 North Charles Street, 21218, Baltimore, UNITED STATES
| | - Durairaj Thiyagarajan
- Helmholtz-Zentrum fur Infektionsforschung GmbH, Pharmacy and Infections, 66123, Saarbrücken, GERMANY
| | - Dhiraj Bhatia
- Indian Institute of Technology Gandhinagar, Biological Engineering, 382355, Gandhi Nagar, INDIA
| |
Collapse
|
52
|
Douaki A, Garoli D, Inam AKMS, Angeli MAC, Cantarella G, Rocchia W, Wang J, Petti L, Lugli P. Smart Approach for the Design of Highly Selective Aptamer-Based Biosensors. BIOSENSORS 2022; 12:bios12080574. [PMID: 36004970 PMCID: PMC9405846 DOI: 10.3390/bios12080574] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
Aptamers are chemically synthesized single-stranded DNA or RNA oligonucleotides widely used nowadays in sensors and nanoscale devices as highly sensitive biorecognition elements. With proper design, aptamers are able to bind to a specific target molecule with high selectivity. To date, the systematic evolution of ligands by exponential enrichment (SELEX) process is employed to isolate aptamers. Nevertheless, this method requires complex and time-consuming procedures. In silico methods comprising machine learning models have been recently proposed to reduce the time and cost of aptamer design. In this work, we present a new in silico approach allowing the generation of highly sensitive and selective RNA aptamers towards a specific target, here represented by ammonium dissolved in water. By using machine learning and bioinformatics tools, a rational design of aptamers is demonstrated. This “smart” SELEX method is experimentally proved by choosing the best five aptamer candidates obtained from the design process and applying them as functional elements in an electrochemical sensor to detect, as the target molecule, ammonium at different concentrations. We observed that the use of five different aptamers leads to a significant difference in the sensor’s response. This can be explained by considering the aptamers’ conformational change due to their interaction with the target molecule. We studied these conformational changes using a molecular dynamics simulation and suggested a possible explanation of the experimental observations. Finally, electrochemical measurements exposing the same sensors to different molecules were used to confirm the high selectivity of the designed aptamers. The proposed in silico SELEX approach can potentially reduce the cost and the time needed to identify the aptamers and potentially be applied to any target molecule.
Collapse
Affiliation(s)
- Ali Douaki
- Faculty of Science and Technology, Libera Università di Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (A.K.M.S.I.); (M.A.C.A.); (G.C.); (L.P.)
- Correspondence: (A.D.); (P.L.)
| | - Denis Garoli
- Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genova, Italy;
| | - A. K. M. Sarwar Inam
- Faculty of Science and Technology, Libera Università di Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (A.K.M.S.I.); (M.A.C.A.); (G.C.); (L.P.)
| | - Martina Aurora Costa Angeli
- Faculty of Science and Technology, Libera Università di Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (A.K.M.S.I.); (M.A.C.A.); (G.C.); (L.P.)
| | - Giuseppe Cantarella
- Faculty of Science and Technology, Libera Università di Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (A.K.M.S.I.); (M.A.C.A.); (G.C.); (L.P.)
| | - Walter Rocchia
- CONCEPT Lab, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152 Genova, Italy;
| | - Jiahai Wang
- School of Mechanical and Electrical Engineering, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China;
| | - Luisa Petti
- Faculty of Science and Technology, Libera Università di Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (A.K.M.S.I.); (M.A.C.A.); (G.C.); (L.P.)
| | - Paolo Lugli
- Faculty of Science and Technology, Libera Università di Bolzano, Piazza Università 1, 39100 Bolzano, Italy; (A.K.M.S.I.); (M.A.C.A.); (G.C.); (L.P.)
- Correspondence: (A.D.); (P.L.)
| |
Collapse
|
53
|
Park JA, Amri C, Kwon Y, Lee JH, Lee T. Recent Advances in DNA Nanotechnology for Plasmonic Biosensor Construction. BIOSENSORS 2022; 12:bios12060418. [PMID: 35735565 PMCID: PMC9220935 DOI: 10.3390/bios12060418] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
Since 2010, DNA nanotechnology has advanced rapidly, helping overcome limitations in the use of DNA solely as genetic material. DNA nanotechnology has thus helped develop a new method for the construction of biosensors. Among bioprobe materials for biosensors, nucleic acids have shown several advantages. First, it has a complementary sequence for hybridizing the target gene. Second, DNA has various functionalities, such as DNAzymes, DNA junctions or aptamers, because of its unique folded structures with specific sequences. Third, functional groups, such as thiols, amines, or other fluorophores, can easily be introduced into DNA at the 5′ or 3′ end. Finally, DNA can easily be tailored by making junctions or origami structures; these unique structures extend the DNA arm and create a multi-functional bioprobe. Meanwhile, nanomaterials have also been used to advance plasmonic biosensor technologies. Nanomaterials provide various biosensing platforms with high sensitivity and selectivity. Several plasmonic biosensor types have been fabricated, such as surface plasmons, and Raman-based or metal-enhanced biosensors. Introducing DNA nanotechnology to plasmonic biosensors has brought in sight new horizons in the fields of biosensors and nanobiotechnology. This review discusses the recent progress of DNA nanotechnology-based plasmonic biosensors.
Collapse
Affiliation(s)
- Jeong Ah Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (J.A.P.); (Y.K.)
| | - Chaima Amri
- Department of Convergence Medical Sciences, School of Medicine, Pusan National University, Yangsan 50612, Korea;
| | - Yein Kwon
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (J.A.P.); (Y.K.)
| | - Jin-Ho Lee
- Department of Convergence Medical Sciences, School of Medicine, Pusan National University, Yangsan 50612, Korea;
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Korea
- Correspondence: (J.-H.L.); (T.L.); Tel.: +82-51-510-8547 (J.-H.L.); +82-2-940-5771 (T.L.)
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (J.A.P.); (Y.K.)
- Correspondence: (J.-H.L.); (T.L.); Tel.: +82-51-510-8547 (J.-H.L.); +82-2-940-5771 (T.L.)
| |
Collapse
|
54
|
Wu Y, Gooding JJ. The application of single molecule nanopore sensing for quantitative analysis. Chem Soc Rev 2022; 51:3862-3885. [PMID: 35506519 DOI: 10.1039/d1cs00988e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nanopore-based sensors typically work by monitoring transient pulses in conductance via current-time traces as molecules translocate through the nanopore. The unique property of being able to monitor single molecules gives nanopore sensors the potential as quantitative sensors based on the counting of single molecules. This review provides an overview of the concepts and fabrication of nanopore sensors as well as nanopore sensing with a view toward using nanopore sensors for quantitative analysis. We first introduce the classification of nanopores and highlight their applications in molecular identification with some pioneering studies. The review then shifts focus to recent strategies to extend nanopore sensors to devices that can rapidly and accurately quantify the amount of an analyte of interest. Finally, future prospects are provided and briefly discussed. The aim of this review is to aid in understanding recent advances, challenges, and prospects for nanopore sensors for quantitative analysis.
Collapse
Affiliation(s)
- Yanfang Wu
- School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - J Justin Gooding
- School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
55
|
Hu W, Chang Y, Huang J, Chai Y, Yuan R. Tetrahedral DNA Nanostructure with Multiple Target-Recognition Domains for Ultrasensitive Electrochemical Detection of Mucin 1. Anal Chem 2022; 94:6860-6865. [PMID: 35477261 DOI: 10.1021/acs.analchem.2c00864] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this work, a tetrahedral DNA nanostructure (TDN) designed with multiple biomolecular recognition domains (m-TDN) was assembled to construct an ultrasensitive electrochemical biosensor for the quantitative detection of tumor-associated mucin 1 (MUC-1) protein. This new nanostructure not only effectively increased the capture efficiency of target proteins compared to the traditional TDN with a single recognition domain but also enhanced the sensitivity of the constructed electrochemical biosensors. Once the target MUC-1 was captured by the protein aptamers, the ferrocene-marked DNA strands as electrochemical signal probes at the vertices of m-TDN would be released away from the electrode surface, causing significant reduction of the electrochemical signal, thereby enhancing significantly the detection sensitivity. As a result, this well-designed biosensor achieved ultrasensitive detection of the biomolecule at a linear range from 1 fg mL-1 to 1 ng mL-1, with the limit of detection down to 0.31 fg mL-1. This strategy provides a new approach to enhance the detection sensitivity for the diagnosis of diseases.
Collapse
Affiliation(s)
- Wenxi Hu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yuanyuan Chang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Junqing Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
56
|
Li F, Luo Y, Xi G, Fu J, Tu J. Single-Molecule Analysis of DNA structures using nanopore sensors. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
57
|
Xie ZP, Liu SM, Zhai YM. Study on the Self-assembly and Signal Amplification Ability of Nucleic Acid Nanostructure with the Nanopipette. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
58
|
Wu J, Liang L, Zhang M, Zhu R, Wang Z, Yin Y, Yin B, Weng T, Fang S, Xie W, Wang L, Wang D. Single-Molecule Identification of the Conformations of Human C-Reactive Protein and Its Aptamer Complex with Solid-State Nanopores. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12077-12088. [PMID: 35234028 DOI: 10.1021/acsami.2c00453] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Human C-reactive protein (CRP) is an established inflammatory biomarker and was proved to be potentially relevant to disease pathology and cancer progression. A large body of methodologies have been reported for CRP analysis, including electrochemical/optical biosensors, aptamer, or antibody-based detection. Although the detection limit is rather low until pg/uL, most of which are time-consuming and relatively expensive, and few of them provided CRP single-molecule information. This work demonstrated the nanopore-based approach for the characterization of CRP conformation under versatile conditions. With an optimized pore of 14 nm in diameter, we achieved the detection limit as low as 0.3 ng/μL, voltage polarity significantly influences the electro-osmotic force and CRP translocation behavior, and the pentameric conformation of CRP may dissociate into pro-inflammatory CRP isoforms and monomeric CRP at bias potential above 300 mV. CRP tends to translocate through nanopores faster along with the increase in pH values, due to more surface charge on both CRP and pore inner wall and stronger electro-osmotic force. The CRP could specifically bind with its aptamer of different concentrations to form complexes, and the complexes exhibited distinguishable nanopore translocation behavior compared with CRP alone. The variation of the molar ratio of aptamer significantly influences the orientation of CRP translocation. The plasma test under physiological conditions displayed the ability of the nanopore system on the CRP identification with a concentration of 3 ng/μL.
Collapse
Affiliation(s)
- Ji Wu
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, P. R. China
| | - Liyuan Liang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, P. R. China
| | - Mingkun Zhang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, P. R. China
| | - Rui Zhu
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, P. R. China
| | - Zhong Wang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, P. R. China
| | - Yajie Yin
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, P. R. China
| | - Bohua Yin
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, P. R. China
| | - Ting Weng
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, P. R. China
| | - Shaoxi Fang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, P. R. China
| | - Wanyi Xie
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, P. R. China
| | - Liang Wang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, P. R. China
| | - Deqiang Wang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
- Chongqing School, University of Chinese Academy of Science, Chongqing 400714, P. R. China
| |
Collapse
|
59
|
Ding T, Yang J, Wang J, Pan V, Lu Z, Ke Y, Zhang C. Shaped DNA origami carrier nanopore translocation influenced by aptamer based surface modification. Biosens Bioelectron 2022; 195:113658. [PMID: 34706323 DOI: 10.1016/j.bios.2021.113658] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 01/19/2023]
Abstract
DNA origami is widely used as a translocation carrier to assist solid-state nanopore analysis, e.g., soft linear origami carrier and special-shaped origami structures. In the linear origami carriers based nanopore sensing, molecular modifications induced tiny structural and charge changes, can result in significant variations on translocation signals to facilitating single-molecule sensing. However, an understanding on the influences of surface modifications on special-shaped DNA origami structures during solid-state (SS) nanopores translocation is still far elusive. Herein, we reported a surface modification strategy using aptamer/target-binding to influence the translocation of the shaped origami ribbon carrier through SS-nanopore. Our measurements indicate that the translocation signal variations can respond to ATP/aptamer binding on the carrier surface, even to the surface modifications induced by spatial distributions and enzyme catalysis. Meanwhile, the results also suggest a possibility to identify small spatial and electronic changes on DNA origami by using SS-nanopore. We envision that the surface aptamer-binding influenced origami translocation strategy could find more applications in origami carrier assisted SS-nanopore sensing and detection.
Collapse
Affiliation(s)
- Taoli Ding
- Key Lab of High Confidence Software Technologies, Department of Computer Science and Technology, School of Electronics Engineering and Computer Science, Peking University, Beijing, 100871, China
| | - Jing Yang
- School of Control and Computer Engineering, North China Electric Power University, Beijing, 102206, China
| | - Juan Wang
- School of Control and Computer Engineering, North China Electric Power University, Beijing, 102206, China; Bio-evidence Sciences Academy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Victor Pan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Zuhong Lu
- The State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China, 211189.
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Emory University School of Medicine, Atlanta, GA 30322, United States; Department of Chemistry, Emory University, Atlanta, GA 30322, United States.
| | - Cheng Zhang
- Key Lab of High Confidence Software Technologies, Department of Computer Science and Technology, School of Electronics Engineering and Computer Science, Peking University, Beijing, 100871, China.
| |
Collapse
|
60
|
Green CM, Mathur D, Susumu K, Oh E, Medintz IL, Díaz SA. Polyhistidine-Tag-Enabled Conjugation of Quantum Dots and Enzymes to DNA Nanostructures. Methods Mol Biol 2022; 2525:61-91. [PMID: 35836061 DOI: 10.1007/978-1-0716-2473-9_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
DNA nanostructures self-assemble into almost any arbitrary architecture, and when combined with their capability to precisely position and orient dyes, nanoparticles, and biological moieties, the technology reaches its potential. We present a simple yet multifaceted conjugation strategy based on metal coordination by a multi-histidine peptide tag (Histag). The versatility of the Histag as a means to conjugate to DNA nanostructures is shown by using Histags to capture semiconductor quantum dots (QDs) with numerical and positional precision onto a DNA origami breadboard. Additionally, Histag-expressing enzymes, such as the bioluminescent luciferase, can also be captured to the DNA origami breadboard with similar precision. DNA nanostructure conjugation of the QDs or luciferase is confirmed through imaging and/or energy transfer to organic dyes integrated into the DNA nanostructure.
Collapse
Affiliation(s)
- Christopher M Green
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory Code 6900, Washington, DC, USA
- National Research Council, Washington, DC, USA
| | - Divita Mathur
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory Code 6900, Washington, DC, USA
- College of Science, George Mason University, Fairfax, VA, USA
| | - Kimihiro Susumu
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, DC, USA
- Jacobs Corporation, Hanover, MD, USA
| | - Eunkeu Oh
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, DC, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory Code 6900, Washington, DC, USA
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory Code 6900, Washington, DC, USA.
| |
Collapse
|
61
|
Kong L, Kou B, Zhang X, Wang D, Yuan Y, Zhuo Y, Chai Y, Yuan R. A core-brush 3D DNA nanostructure: the next generation of DNA nanomachine for ultrasensitive sensing and imaging of intracellular microRNA with rapid kinetics. Chem Sci 2021; 12:15953-15959. [PMID: 35024119 PMCID: PMC8672733 DOI: 10.1039/d1sc04571g] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
A highly loaded and integrated core–brush three-dimensional (3D) DNA nanostructure is constructed by programmatically assembling a locked DNA walking arm (DA) and hairpin substrate (HS) into a repetitive array along a well-designed DNA track generated by rolling circle amplification (RCA) and is applied as a 3D DNA nanomachine for rapid and sensitive intracellular microRNA (miRNA) imaging and sensing. Impressively, the homogeneous distribution of the DA and HS at a ratio of 1 : 3 on the DNA track provides a specific walking range for the DA to avoid invalid and random self-walking and notably improve the executive ability of the core–brush 3D DNA nanomachine, which easily solves the major technical challenges of traditional Au-based 3D DNA nanomachines: low loading capacity and low executive efficiency. As a proof of concept, the interaction of miRNA with the 3D DNA nanomachine could initiate the autonomous and progressive operation of the DA to cleave the HS for ultrasensitive ECL detection of target miRNA-21 with a detection limit as low as 3.57 aM and rapid imaging in living cells within 15 min. Therefore, the proposed core–brush 3D DNA nanomachine could not only provide convincing evidence for sensitive detection and rapid visual imaging of biomarkers with tiny change, but also assist researchers in investigating the formation mechanism of tumors, improving their recovery rates and reducing correlative complications. This strategy might enrich the method to design a new generation of 3D DNA nanomachine and promote the development of clinical diagnosis, targeted therapy and prognosis monitoring. This study designed a highly loaded and integrated core–brush 3D DNA nanomachine for miRNA imaging and sensing, which easily solves the major technical challenges of traditional Au-based 3D nanomachines: low loading capacity and low executive efficiency.![]()
Collapse
Affiliation(s)
- Lingqi Kong
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 PR China
| | - Beibei Kou
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 PR China
| | - Xiaolong Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 PR China
| | - Ding Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 PR China
| | - Yali Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 PR China
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 PR China
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 PR China
| |
Collapse
|
62
|
Yang S, Liu W, Zhang Y, Wang R. Bottom-Up Fabrication of Large-Scale Gold Nanorod Arrays by Surface Diffusion-Mediated DNA Origami Assembly. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50516-50523. [PMID: 34637259 DOI: 10.1021/acsami.1c13173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Self-assembly of anisotropic metal nanoparticles serves as an effective bottom-up route for the nanofabrication of novel artifacts. However, there still are many challenges to rationally manipulate anisotropic particles due to the size and geometric restrictions. To avoid the aggregation and mishybridization from DNA sticky-end-guided assembly in buffer solution, in this work, we utilized a cation-controlled surface diffusion strategy to the spatial arrangement of gold nanorods (AuNRs) into 1D and 2D arrays by using DNA origami tiles as binding frames on the solid-liquid interface through π-π stacking interactions. To facilitate the further manipulation of those patterns, a novel pattern transfer method was introduced to transfer the arrays of AuNRs from a liquid to a dry ambient environment with high yield and minor structural damage. The results demonstrated a successful strategy of DNA origami-assisted, large-scale assembly of AuNRs for constructing complex superstructures with potential applications in the nanofabrication of plasmonic and electronic devices.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Wenyan Liu
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- Center for Research in Energy and Environment, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Yuwei Zhang
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Risheng Wang
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
63
|
Fogg JM, Judge AK, Stricker E, Chan HL, Zechiedrich L. Supercoiling and looping promote DNA base accessibility and coordination among distant sites. Nat Commun 2021; 12:5683. [PMID: 34584096 PMCID: PMC8478907 DOI: 10.1038/s41467-021-25936-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/30/2021] [Indexed: 11/29/2022] Open
Abstract
DNA in cells is supercoiled and constrained into loops and this supercoiling and looping influence every aspect of DNA activity. We show here that negative supercoiling transmits mechanical stress along the DNA backbone to disrupt base pairing at specific distant sites. Cooperativity among distant sites localizes certain sequences to superhelical apices. Base pair disruption allows sharp bending at superhelical apices, which facilitates DNA writhing to relieve torsional strain. The coupling of these processes may help prevent extensive denaturation associated with genomic instability. Our results provide a model for how DNA can form short loops, which are required for many essential processes, and how cells may use DNA loops to position nicks to facilitate repair. Furthermore, our results reveal a complex interplay between site-specific disruptions to base pairing and the 3-D conformation of DNA, which influences how genomes are stored, replicated, transcribed, repaired, and many other aspects of DNA activity.
Collapse
Affiliation(s)
- Jonathan M Fogg
- Department of Molecular Virology and Microbiology, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Houston, TX, USA
- Department of Pharmacology and Chemical Biology, Houston, TX, USA
| | - Allison K Judge
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Houston, TX, USA
| | - Erik Stricker
- Department of Molecular Virology and Microbiology, Houston, TX, USA
| | - Hilda L Chan
- Graduate Program in Immunology and Microbiology, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Lynn Zechiedrich
- Department of Molecular Virology and Microbiology, Houston, TX, USA.
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Houston, TX, USA.
- Department of Pharmacology and Chemical Biology, Houston, TX, USA.
- Graduate Program in Immunology and Microbiology, Houston, TX, USA.
| |
Collapse
|
64
|
Single antibody detection in a DNA origami nanoantenna. iScience 2021; 24:103072. [PMID: 34568793 PMCID: PMC8449233 DOI: 10.1016/j.isci.2021.103072] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/26/2021] [Accepted: 08/27/2021] [Indexed: 12/24/2022] Open
Abstract
DNA nanotechnology offers new biosensing approaches by templating different sensor and transducer components. Here, we combine DNA origami nanoantennas with label-free antibody detection by incorporating a nanoswitch in the plasmonic hotspot of the nanoantenna. The nanoswitch contains two antigens that are displaced by antibody binding, thereby eliciting a fluorescent signal. Single-antibody detection is demonstrated with a DNA origami integrated anti-digoxigenin antibody nanoswitch. In combination with the nanoantenna, the signal generated by the antibody is additionally amplified. This allows the detection of single antibodies on a portable smartphone microscope. Overall, fluorescence-enhanced antibody detection in DNA origami nanoantennas shows that fluorescence-enhanced biosensing can be expanded beyond the scope of the nucleic acids realm. Single-antibody detection with nanoswitch sensor incorporated in DNA origami structures Fluorescence-enhanced single antibody detection in DNA origami nanoantennas Detection of single antibodies on a portable smartphone microscope
Collapse
|
65
|
He L, Tessier DR, Briggs K, Tsangaris M, Charron M, McConnell EM, Lomovtsev D, Tabard-Cossa V. Digital immunoassay for biomarker concentration quantification using solid-state nanopores. Nat Commun 2021; 12:5348. [PMID: 34504071 PMCID: PMC8429538 DOI: 10.1038/s41467-021-25566-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 08/12/2021] [Indexed: 12/05/2022] Open
Abstract
Single-molecule counting is the most accurate and precise method for determining the concentration of a biomarker in solution and is leading to the emergence of digital diagnostic platforms enabling precision medicine. In principle, solid-state nanopores—fully electronic sensors with single-molecule sensitivity—are well suited to the task. Here we present a digital immunoassay scheme capable of reliably quantifying the concentration of a target protein in complex biofluids that overcomes specificity, sensitivity, and consistency challenges associated with the use of solid-state nanopores for protein sensing. This is achieved by employing easily-identifiable DNA nanostructures as proxies for the presence (“1”) or absence (“0”) of the target protein captured via a magnetic bead-based sandwich immunoassay. As a proof-of-concept, we demonstrate quantification of the concentration of thyroid-stimulating hormone from human serum samples down to the high femtomolar range. Further optimization to the method will push sensitivity and dynamic range, allowing for development of precision diagnostic tools compatible with point-of-care format. The concentration of a biomarker in solution can be determined by counting single molecules. Here the authors report a digital immunoassay scheme with solid-state nanopore readout to quantify a target protein and use this to measure thyroid-stimulating hormone from human serum.
Collapse
Affiliation(s)
- Liqun He
- Department of Physics, University of Ottawa, Ottawa, Canada
| | | | - Kyle Briggs
- Department of Physics, University of Ottawa, Ottawa, Canada
| | | | - Martin Charron
- Department of Physics, University of Ottawa, Ottawa, Canada
| | | | | | | |
Collapse
|
66
|
Guo R, Li M, Zuo X. DNA Framework-Mediated Geometric Renormalization of Gold Nanoparticles on a Two-Dimensional Fluidic Membrane Interface. Chempluschem 2021; 86:1472-1475. [PMID: 34520133 DOI: 10.1002/cplu.202100344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/02/2021] [Indexed: 01/03/2023]
Abstract
The precise arrangement of single entity is a crucial objective of nanoscience and holds great promise in various fields such as biology and material science. In this work, we develop a "DNA framework-mediated geometric renormalization" (DFMGR) strategy to reassemble gold nanoparticles into specific geometric shapes on a 2-dimensional (2D) fluidic membrane interface. Cholesterol-modified AuNPs are randomly anchored on the supported lipid bilayer (SLB) via the cholesterol-lipid interaction. We demonstrate that AuNPs are laterally mobile on SLB and could be further rearranged into a specific geometric shape by DNA framework containing algebraically topological DNA arms. Using scanning electron microscope (SEM) imaging approach, simple geometric shapes, such as points assembled by monomers, line segments assembled by dimers, triangles assembled by trimers are visually presented. Interestingly, we found that the statistic angle (58.77°) and side length (12.21 nm) of triangles obtained from SEM images were both agreed well with the theoretical angle of 60° and side length of 12.58 nm. And the relative error of the angle calculated was as low as 0.33 %. These results indicated that the DFMGR strategy showed precise regulation ability for the AuNPs renormalization. We believe that DNA framework-mediated geometric renormalization strategy would be a powerful means for regulating ligand-receptor interactions in biosystems and for nanoparticle assembling in material science.
Collapse
Affiliation(s)
- Ruiyan Guo
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Min Li
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University
| |
Collapse
|
67
|
Shen L, Wang P, Ke Y. DNA Nanotechnology-Based Biosensors and Therapeutics. Adv Healthc Mater 2021; 10:e2002205. [PMID: 34085411 DOI: 10.1002/adhm.202002205] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/19/2021] [Indexed: 12/19/2022]
Abstract
Over the past few decades, DNA nanotechnology engenders a vast variety of programmable nanostructures utilizing Watson-Crick base pairing. Due to their precise engineering, unprecedented programmability, and intrinsic biocompatibility, DNA nanostructures cannot only interact with small molecules, nucleic acids, proteins, viruses, and cancer cells, but also can serve as nanocarriers to deliver different therapeutic agents. Such addressability innate to DNA nanostructures enables their use in various fields of biomedical applications such as biosensors and cancer therapy. This review is begun with a brief introduction of the development of DNA nanotechnology, followed by a summary of recent applications of DNA nanostructures in biosensors and therapeutics. Finally, challenges and opportunities for practical applications of DNA nanotechnology are discussed.
Collapse
Affiliation(s)
- Luyao Shen
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30322 USA
- Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Pengfei Wang
- Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30322 USA
| |
Collapse
|
68
|
Wu Y, Darland DC, Zhao JX. Nanozymes-Hitting the Biosensing "Target". SENSORS (BASEL, SWITZERLAND) 2021; 21:5201. [PMID: 34372441 PMCID: PMC8348677 DOI: 10.3390/s21155201] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022]
Abstract
Nanozymes are a class of artificial enzymes that have dimensions in the nanometer range and can be composed of simple metal and metal oxide nanoparticles, metal nanoclusters, dots (both quantum and carbon), nanotubes, nanowires, or multiple metal-organic frameworks (MOFs). They exhibit excellent catalytic activities with low cost, high operational robustness, and a stable shelf-life. More importantly, they are amenable to modifications that can change their surface structures and increase the range of their applications. There are three main classes of nanozymes including the peroxidase-like, the oxidase-like, and the antioxidant nanozymes. Each of these classes catalyzes a specific group of reactions. With the development of nanoscience and nanotechnology, the variety of applications for nanozymes in diverse fields has expanded dramatically, with the most popular applications in biosensing. Nanozyme-based novel biosensors have been designed to detect ions, small molecules, nucleic acids, proteins, and cancer cells. The current review focuses on the catalytic mechanism of nanozymes, their application in biosensing, and the identification of future directions for the field.
Collapse
Affiliation(s)
- Yingfen Wu
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA;
| | - Diane C. Darland
- Department of Biology, University of North Dakota, Grand Forks, ND 58202, USA
| | - Julia Xiaojun Zhao
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA;
| |
Collapse
|
69
|
Fu S, Zhang T, Jiang H, Xu Y, Chen J, Zhang L, Su X. DNA nanotechnology enhanced single-molecule biosensing and imaging. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116267] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
70
|
Zhao H, Ma J, Zuo X, Li F. Electrochemical Analysis for Multiscale Single Entities on the Confined Interface
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Haipei Zhao
- School of Chemistry and Chemical Engineering, and Institute of Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Jinliang Ma
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Xiaolei Zuo
- School of Chemistry and Chemical Engineering, and Institute of Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Fan Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| |
Collapse
|
71
|
Yang H, Saqib M, Hao R. Single-Entity Detection With TEM-Fabricated Nanopores. Front Chem 2021; 9:664820. [PMID: 34026729 PMCID: PMC8138203 DOI: 10.3389/fchem.2021.664820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/13/2021] [Indexed: 12/04/2022] Open
Abstract
Nanopore-based single-entity detection shows immense potential in sensing and sequencing technologies. Solid-state nanopores permit unprecedented detail while preserving mechanical robustness, reusability, adjustable pore size, and stability in different physical and chemical environments. The transmission electron microscope (TEM) has evolved into a powerful tool for fabricating and characterizing nanometer-sized pores within a solid-state ultrathin membrane. By detecting differences in the ionic current signals due to single-entity translocation through the nanopore, solid-state nanopores can enable gene sequencing and single molecule/nanoparticle detection with high sensitivity, improved acquisition speed, and low cost. Here we briefly discuss the recent progress in the modification and characterization of TEM-fabricated nanopores. Moreover, we highlight some key applications of these nanopores in nucleic acids, protein, and nanoparticle detection. Additionally, we discuss the future of computer simulations in DNA and protein sequencing strategies. We also attempt to identify the challenges and discuss the future development of nanopore-detection technology aiming to promote the next-generation sequencing technology.
Collapse
Affiliation(s)
| | | | - Rui Hao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
72
|
Bellassai N, D'Agata R, Spoto G. Novel nucleic acid origami structures and conventional molecular beacon-based platforms: a comparison in biosensing applications. Anal Bioanal Chem 2021; 413:6063-6077. [PMID: 33825006 PMCID: PMC8440263 DOI: 10.1007/s00216-021-03309-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/05/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022]
Abstract
Nucleic acid nanotechnology designs and develops synthetic nucleic acid strands to fabricate nanosized functional systems. Structural properties and the conformational polymorphism of nucleic acid sequences are inherent characteristics that make nucleic acid nanostructures attractive systems in biosensing. This review critically discusses recent advances in biosensing derived from molecular beacon and DNA origami structures. Molecular beacons belong to a conventional class of nucleic acid structures used in biosensing, whereas DNA origami nanostructures are fabricated by fully exploiting possibilities offered by nucleic acid nanotechnology. We present nucleic acid scaffolds divided into conventional hairpin molecular beacons and DNA origami, and discuss some relevant examples by focusing on peculiar aspects exploited in biosensing applications. We also critically evaluate analytical uses of the synthetic nucleic acid structures in biosensing to point out similarities and differences between traditional hairpin nucleic acid sequences and DNA origami.
Collapse
Affiliation(s)
- Noemi Bellassai
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Roberta D'Agata
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Giuseppe Spoto
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
- Consorzio Interuniversitario "Istituto Nazionale Biostrutture e Biosistemi", c/o Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
| |
Collapse
|
73
|
Abstract
Nanopores hold great potential for the analysis of complex biological molecules at the single-entity level. One particularly interesting macromolecular machine is the ribosome, responsible for translating mRNAs into proteins. In this study, we use a solid-state nanopore to fingerprint 80S ribosomes and polysomes from a human neuronal cell line andDrosophila melanogaster cultured cells and ovaries. Specifically, we show that the peak amplitude and dwell time characteristics of 80S ribosomes are distinct from polysomes and can be used to discriminate ribosomes from polysomes in mixed samples. Moreover, we are able to distinguish large polysomes, containing more than seven ribosomes, from those containing two to three ribosomes, and demonstrate a correlation between polysome size and peak amplitude. This study highlights the application of solid-state nanopores as a rapid analytical tool for the detection and characterization of ribosomal complexes.
Collapse
Affiliation(s)
- Mukhil Raveendran
- School of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K
| | - Anna Rose Leach
- School of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K
| | - Tayah Hopes
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
- LeedsOmics, University of Leeds, Leeds LS2 9JT, U.K
| | - Julie L. Aspden
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
- LeedsOmics, University of Leeds, Leeds LS2 9JT, U.K
| | - Paolo Actis
- School of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K
- LeedsOmics, University of Leeds, Leeds LS2 9JT, U.K
- Bragg Centre for Materials Research, Leeds LS2 9JT, U.K
| |
Collapse
|