51
|
Chung YW, Choi IY. Detection of abnormal extraocular muscles in small datasets of computed tomography images using a three-dimensional variational autoencoder. Sci Rep 2023; 13:1765. [PMID: 36720904 PMCID: PMC9889739 DOI: 10.1038/s41598-023-28082-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/12/2023] [Indexed: 02/02/2023] Open
Abstract
We sought to establish an unsupervised algorithm with a three-dimensional (3D) variational autoencoder model (VAE) for the detection of abnormal extraocular muscles in small datasets of orbital computed tomography (CT) images. 334 CT images of normal orbits and 96 of abnormal orbits diagnosed as thyroid eye disease were used for training and validation; 24 normal and 11 abnormal orbits were used for the test. A 3D VAE was developed and trained. All images were preprocessed to emphasize extraocular muscles and to suppress background noise (e.g., high signal intensity from bones). The optimal cut-off value was identified through receiver operating characteristic (ROC) curve analysis. The ability of the model to detect muscles of abnormal size was assessed by visualization. The model achieved a sensitivity of 79.2%, specificity of 72.7%, accuracy of 77.1%, F1-score of 0.667, and AUROC of 0.801. Abnormal CT images correctly identified by the model showed differences in the reconstruction of extraocular muscles. The proposed model showed potential to detect abnormalities in extraocular muscles using a small dataset, similar to the diagnostic approach used by physicians. Unsupervised learning could serve as an alternative detection method for medical imaging studies in which annotation is difficult or impossible to perform.
Collapse
Affiliation(s)
- Yeon Woong Chung
- Department of Ophthalmology and Visual Science, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Banpo Dae-Ro 222, Seoul, 06591, Republic of Korea
| | - In Young Choi
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Banpo Dae-Ro 222, Seoul, 06591, Republic of Korea.
| |
Collapse
|
52
|
Zheng Y, Bai C, Zhang K, Han Q, Guan Q, Liu Y, Zheng Z, Xia Y, Zhu P. Deep-learning based quantification model for hip bone marrow edema and synovitis in patients with spondyloarthritis based on magnetic resonance images. Front Physiol 2023; 14:1132214. [PMID: 36935744 PMCID: PMC10020192 DOI: 10.3389/fphys.2023.1132214] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Objectives: Hip inflammation is one of the most common complications in patients with spondyloarthritis (SpA). Herein, we employed use of a deep learning-based magnetic resonance imaging (MRI) evaluation model to identify irregular and multiple inflammatory lesions of the hip. Methods: All of the SpA patients were enrolled at the Xijing Hospital. The erythrocyte sediment rate (ESR), C-reactive protein (CRP), hip function Harris score, and disease activity were evaluated by clinicians. Manual MRI annotations including bone marrow edema (BME) and effusion/synovitis, and a hip MRI scoring system (HIMRISS) assessment was performed by experienced musculoskeletal radiologists. The segmentation accuracies of four deep learning models, including U-Net, UNet++, Attention-Unet, and HRNet, were compared using five-fold cross-validation. The clinical agreement of U-Net was evaluated with clinical symptoms and HIMRISS results. Results: A total of 1945 MRI slices of STIR/T2WI sequences were obtained from 195 SpA patients with hip involvement. After the five-fold cross-validation, U-Net achieved an average segmentation accuracy of 88.48% for the femoral head and 69.36% for inflammatory lesions, which are higher than those obtained by the other three models. The UNet-score, which was calculated based on the same MRI slices as HIMRISS, was significantly correlated with the HIMRISS scores and disease activity indexes (p values <0.05). Conclusion: This deep-learning based automatic MRI evaluation model could achieve similar quantification performance as an expert radiologist, and it has the potential to improve the accuracy and efficiency of clinical diagnosis for SpA patients with hip involvement.
Collapse
Affiliation(s)
- Yan Zheng
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- National Translational Science Center for Molecular Medicine, Xi’an, China
| | - Chao Bai
- National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, School of Computer Science and Engineering, Northwestern Polytechnical University, Xi’an, China
| | - Kui Zhang
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- National Translational Science Center for Molecular Medicine, Xi’an, China
| | - Qing Han
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- National Translational Science Center for Molecular Medicine, Xi’an, China
| | - Qingbiao Guan
- National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, School of Computer Science and Engineering, Northwestern Polytechnical University, Xi’an, China
| | - Ying Liu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhaohui Zheng
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- National Translational Science Center for Molecular Medicine, Xi’an, China
| | - Yong Xia
- National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, School of Computer Science and Engineering, Northwestern Polytechnical University, Xi’an, China
| | - Ping Zhu
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- National Translational Science Center for Molecular Medicine, Xi’an, China
- *Correspondence: Ping Zhu,
| |
Collapse
|
53
|
Artificial Intelligence (AI) in Breast Imaging: A Scientometric Umbrella Review. Diagnostics (Basel) 2022; 12:diagnostics12123111. [PMID: 36553119 PMCID: PMC9777253 DOI: 10.3390/diagnostics12123111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Artificial intelligence (AI), a rousing advancement disrupting a wide spectrum of applications with remarkable betterment, has continued to gain momentum over the past decades. Within breast imaging, AI, especially machine learning and deep learning, honed with unlimited cross-data/case referencing, has found great utility encompassing four facets: screening and detection, diagnosis, disease monitoring, and data management as a whole. Over the years, breast cancer has been the apex of the cancer cumulative risk ranking for women across the six continents, existing in variegated forms and offering a complicated context in medical decisions. Realizing the ever-increasing demand for quality healthcare, contemporary AI has been envisioned to make great strides in clinical data management and perception, with the capability to detect indeterminate significance, predict prognostication, and correlate available data into a meaningful clinical endpoint. Here, the authors captured the review works over the past decades, focusing on AI in breast imaging, and systematized the included works into one usable document, which is termed an umbrella review. The present study aims to provide a panoramic view of how AI is poised to enhance breast imaging procedures. Evidence-based scientometric analysis was performed in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guideline, resulting in 71 included review works. This study aims to synthesize, collate, and correlate the included review works, thereby identifying the patterns, trends, quality, and types of the included works, captured by the structured search strategy. The present study is intended to serve as a "one-stop center" synthesis and provide a holistic bird's eye view to readers, ranging from newcomers to existing researchers and relevant stakeholders, on the topic of interest.
Collapse
|
54
|
Ouyang B, Yang Q, Wang X, He H, Ma L, Yang Q, Zhou Z, Cai S, Chen Z, Wu Z, Zhong J, Cai C. Single-shot T 2 mapping via multi-echo-train multiple overlapping-echo detachment planar imaging and multitask deep learning. Med Phys 2022; 49:7095-7107. [PMID: 35765150 DOI: 10.1002/mp.15820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/02/2022] [Accepted: 06/13/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Quantitative magnetic resonance imaging provides robust biomarkers in clinics. Nevertheless, the lengthy scan time reduces imaging throughput and increases the susceptibility of imaging results to motion. In this context, a single-shot T2 mapping method based on multiple overlapping-echo detachment (MOLED) planar imaging was presented, but the relatively small echo time range limits its accuracy, especially in tissues with large T2 . PURPOSE In this work we proposed a novel single-shot method, Multi-Echo-Train Multiple OverLapping-Echo Detachment (METMOLED) planar imaging, to accommodate a large range of T2 quantification without additional measurements to rectify signal degeneration arisen from refocusing pulse imperfection. METHODS Multiple echo-train techniques were integrated into the MOLED sequence to capture larger TE information. Maps of T2 , B1 , and spin density were reconstructed synchronously from acquired METMOLED data via multitask deep learning. A typical U-Net was trained with 3000/600 synthetic data with geometric/brain patterns to learn the mapping relationship between METMOLED signals and quantitative maps. The refocusing pulse imperfection was settled through the inherent information of METMOLED data and auxiliary tasks. RESULTS Experimental results on the digital brain (structural similarity (SSIM) index = 0.975/0.991/0.988 for MOLED/METMOLED-2/METMOLED-3, hyphenated number denotes the number of echo-trains), physical phantom (the slope of linear fitting with reference T2 map = 1.047/1.017/1.006 for MOLED/METMOLED-2/METMOLED-3), and human brain (Pearson's correlation coefficient (PCC) = 0.9581/0.9760/0.9900 for MOLED/METMOLED-2/METMOLED-3) demonstrated that the METMOLED improved the quantitative accuracy and the tissue details in contrast to the MOLED. These improvements were more pronounced in tissues with large T2 and in application scenarios with high temporal resolution (PCC = 0.8692/0.9465/0.9743 for MOLED/METMOLED-2/METMOLED-3). Moreover, the METMOLED could rectify the signal deviations induced by the non-ideal slice profiles of refocusing pulses without additional measurements. A preliminary measurement also demonstrated that the METMOLED is highly repeatable (mean coefficient of variation (CV) = 1.65%). CONCLUSIONS METMOLED breaks the restriction of echo-train length to TE and implements unbiased T2 estimates in an extensive range. Furthermore, it corrects the effect of refocusing pulse inaccuracy without additional measurements or signal post-processing, thus retaining its single-shot characteristic. This technique would be beneficial for accurate T2 quantification.
Collapse
Affiliation(s)
- Binyu Ouyang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, Fujian, 361005, China
| | - Qizhi Yang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiaoyin Wang
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Hongjian He
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lingceng Ma
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, Fujian, 361005, China
| | - Qinqin Yang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, Fujian, 361005, China
| | - Zihan Zhou
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Shuhui Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhigang Wu
- MSC Clinical and Technical Solutions, Philips Healthcare, Shenzhen, Guangdong, 518005, China
| | - Jianhui Zhong
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China.,Department of Imaging Sciences, University of Rochester, Rochester, New York, 14642, USA
| | - Congbo Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
55
|
Li C, Li W, Liu C, Zheng H, Cai J, Wang S. Artificial intelligence in multi-parametric magnetic resonance imaging: A review. Med Phys 2022; 49:e1024-e1054. [PMID: 35980348 DOI: 10.1002/mp.15936] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/06/2022] Open
Abstract
Multi-parametric magnetic resonance imaging (mpMRI) is an indispensable tool in the clinical workflow for the diagnosis and treatment planning of various diseases. Machine learning-based artificial intelligence (AI) methods, especially those adopting the deep learning technique, have been extensively employed to perform mpMRI image classification, segmentation, registration, detection, reconstruction, and super-resolution. The current availability of increasing computational power and fast-improving AI algorithms have empowered numerous computer-based systems for applying mpMRI to disease diagnosis, imaging-guided radiotherapy, patient risk and overall survival time prediction, and the development of advanced quantitative imaging technology for magnetic resonance fingerprinting. However, the wide application of these developed systems in the clinic is still limited by a number of factors, including robustness, reliability, and interpretability. This survey aims to provide an overview for new researchers in the field as well as radiologists with the hope that they can understand the general concepts, main application scenarios, and remaining challenges of AI in mpMRI. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Cheng Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wen Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Chenyang Liu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Shanshan Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Peng Cheng Laboratory, Shenzhen, 518066, China.,Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, 510080, China
| |
Collapse
|
56
|
Co-Training Method Based on Semi-Decoupling Features for MOOC Learner Behavior Prediction. AXIOMS 2022. [DOI: 10.3390/axioms11050223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Facing the problem of massive unlabeled data and limited labeled samples, semi-supervised learning is favored, especially co-training. Standard co-training requires sufficiently redundant and conditionally independent dual views; however, in fact, few dual views exist that satisfy this condition. To solve this problem, we propose a co-training method based on semi-decoupling features, that is, semi-decoupling features based on a known single view and then constructing independent and redundant dual views: (1) take a small number of important features as shared features of the dual views according to the importance of the features; (2) separate the remaining features one by one or in small batches according to the correlation between the features to make “divergent” features of the dual views; (3) combine the shared features and the “divergent” features to construct dual views. In this paper, the experimental dataset was from the edX dataset jointly released by Harvard University and MIT; the evaluation metrics adopted F1, Precision, and Recall. The analysis methods included three experiments: multiple models, iterations, and hyperparameters. The experimental results show that the effect of this model on MOOC learner behavior prediction was better than the other models, and the best prediction result was obtained in iteration 2. These all verify the effectiveness and superiority of this algorithm and provide a scientific and feasible reference for the development of the future education industry.
Collapse
|
57
|
Kong J, Zheng J, Wu J, Wu S, Cai J, Diao X, Xie W, Chen X, Yu H, Huang L, Fang H, Fan X, Qin H, Li Y, Wu Z, Huang J, Lin T. Development of a radiomics model to diagnose pheochromocytoma preoperatively: a multicenter study with prospective validation. J Transl Med 2022; 20:31. [PMID: 35033104 PMCID: PMC8760711 DOI: 10.1186/s12967-022-03233-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/05/2022] [Indexed: 12/17/2022] Open
Abstract
Background Preoperative diagnosis of pheochromocytoma (PHEO) accurately impacts preoperative preparation and surgical outcome in PHEO patients. Highly reliable model to diagnose PHEO is lacking. We aimed to develop a magnetic resonance imaging (MRI)-based radiomic-clinical model to distinguish PHEO from adrenal lesions. Methods In total, 305 patients with 309 adrenal lesions were included and divided into different sets. The least absolute shrinkage and selection operator (LASSO) regression model was used for data dimension reduction, feature selection, and radiomics signature building. In addition, a nomogram incorporating the obtained radiomics signature and selected clinical predictors was developed by using multivariable logistic regression analysis. The performance of the radiomic-clinical model was assessed with respect to its discrimination, calibration, and clinical usefulness. Results Seven radiomics features were selected among the 1301 features obtained as they could differentiate PHEOs from other adrenal lesions in the training (area under the curve [AUC], 0.887), internal validation (AUC, 0.880), and external validation cohorts (AUC, 0.807). Predictors contained in the individualized prediction nomogram included the radiomics signature and symptom number (symptoms include headache, palpitation, and diaphoresis). The training set yielded an AUC of 0.893 for the nomogram, which was confirmed in the internal and external validation sets with AUCs of 0.906 and 0.844, respectively. Decision curve analyses indicated the nomogram was clinically useful. In addition, 25 patients with 25 lesions were recruited for prospective validation, which yielded an AUC of 0.917 for the nomogram. Conclusion We propose a radiomic-based nomogram incorporating clinically useful signatures as an easy-to-use, predictive and individualized tool for PHEO diagnosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03233-w.
Collapse
Affiliation(s)
- Jianqiu Kong
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Junjiong Zheng
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Jieying Wu
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Shaoxu Wu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Jinhua Cai
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Xiayao Diao
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Weibin Xie
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Xiong Chen
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Hao Yu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Lifang Huang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Hongpeng Fang
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Xinxiang Fan
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Haide Qin
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Yong Li
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Zhuo Wu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Jian Huang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China. .,State Key Laboratory of Oncology in South China, Guangzhou, 510120, Guangdong, People's Republic of China.
| | - Tianxin Lin
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, People's Republic of China. .,State Key Laboratory of Oncology in South China, Guangzhou, 510120, Guangdong, People's Republic of China.
| |
Collapse
|