51
|
Bowlt Blacklock K, Birand Z, Biasoli D, Fineberg E, Murphy S, Flack D, Bass J, Di Palma S, Blackwood L, McKay J, Whitbread T, Fox R, Eve T, Beaver S, Starkey M. Identification of molecular genetic contributants to canine cutaneous mast cell tumour metastasis by global gene expression analysis. PLoS One 2018; 13:e0208026. [PMID: 30566430 PMCID: PMC6300220 DOI: 10.1371/journal.pone.0208026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/10/2018] [Indexed: 12/18/2022] Open
Abstract
Cutaneous mast cell tumours are one of the most common canine cancers. Approximately 25% of the tumours metastasise. Activating c-kit mutations are present in about 20% of tumours, but metastases occur in the absence of mutations. Tumour metastasis is associated with significantly diminished survival in spite of adjuvant chemotherapy. Available prognostic tests do not reliably predict whether a tumour will metastasise. In this study we compared the global expression profiles of 20 primary cutaneous mast cell tumours that metastasised with those of 20 primary tumours that did not metastasise. The objective was to identify genes associated with mast cell tumour metastatic progression that may represent targets for therapeutic intervention and biomarkers for prediction of tumour metastasis. Canine Gene 1.1 ST Arrays were employed for genome-wide expression analysis of formalin-fixed, paraffin-embedded biopsies of mast cell tumours borne by dogs that either died due to confirmed mast cell tumour metastasis, or were still alive more than 1000 days post-surgery. Decreased gene expression in the metastasising tumours appears to be associated with a loss of cell polarity, reduced cell-cell and cell-ECM adhesion, and increased cell deformability and motility. Dysregulated gene expression may also promote extracellular matrix and base membrane degradation, suppression of cell cycle arrest and apoptosis, and angiogenesis. Down-regulation of gene expression in the metastasising tumours may be achieved at least in part by small nucleolar RNA-derived RNA and microRNA-effected gene silencing. Employing cross-validation, a linear discriminant analysis-based classifier featuring 19 genes that displayed two-fold differences in expression between metastasising and non-metastasising tumours was estimated to classify metastasising and non-metastasising tumours with accuracies of 90-100% and 70-100%, respectively. The differential expression of 9 of the discriminator genes was confirmed by quantitative reverse transcription-PCR.
Collapse
Affiliation(s)
| | - Zeynep Birand
- Animal Health Trust, Newmarket, Suffolk, United Kingdom
| | | | | | - Sue Murphy
- Animal Health Trust, Newmarket, Suffolk, United Kingdom
| | - Debs Flack
- Animal Health Trust, Newmarket, Suffolk, United Kingdom
| | - Joyce Bass
- Animal Health Trust, Newmarket, Suffolk, United Kingdom
| | | | - Laura Blackwood
- Institute of Veterinary Science, University of Liverpool, Neston, United Kingdom
| | - Jenny McKay
- IDEXX Laboratories, Ltd, Wetherby, United Kingdom
| | | | - Richard Fox
- Finn Pathologists, Harleston, United Kingdom
| | - Tom Eve
- Finn Pathologists, Harleston, United Kingdom
| | - Stuart Beaver
- Nationwide Laboratory Services, Poulton-le-Fylde, United Kingdom
| | - Mike Starkey
- Animal Health Trust, Newmarket, Suffolk, United Kingdom
| |
Collapse
|
52
|
Klinge CM. Non-Coding RNAs in Breast Cancer: Intracellular and Intercellular Communication. Noncoding RNA 2018; 4:E40. [PMID: 30545127 PMCID: PMC6316884 DOI: 10.3390/ncrna4040040] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 02/07/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are regulators of intracellular and intercellular signaling in breast cancer. ncRNAs modulate intracellular signaling to control diverse cellular processes, including levels and activity of estrogen receptor α (ERα), proliferation, invasion, migration, apoptosis, and stemness. In addition, ncRNAs can be packaged into exosomes to provide intercellular communication by the transmission of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) to cells locally or systemically. This review provides an overview of the biogenesis and roles of ncRNAs: small nucleolar RNA (snRNA), circular RNAs (circRNAs), PIWI-interacting RNAs (piRNAs), miRNAs, and lncRNAs in breast cancer. Since more is known about the miRNAs and lncRNAs that are expressed in breast tumors, their established targets as oncogenic drivers and tumor suppressors will be reviewed. The focus is on miRNAs and lncRNAs identified in breast tumors, since a number of ncRNAs identified in breast cancer cells are not dysregulated in breast tumors. The identity and putative function of selected lncRNAs increased: nuclear paraspeckle assembly transcript 1 (NEAT1), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), steroid receptor RNA activator 1 (SRA1), colon cancer associated transcript 2 (CCAT2), colorectal neoplasia differentially expressed (CRNDE), myocardial infarction associated transcript (MIAT), and long intergenic non-protein coding RNA, Regulator of Reprogramming (LINC-ROR); and decreased levels of maternally-expressed 3 (MEG3) in breast tumors have been observed as well. miRNAs and lncRNAs are considered targets of therapeutic intervention in breast cancer, but further work is needed to bring the promise of regulating their activities to clinical use.
Collapse
Affiliation(s)
- Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|
53
|
Chow RD, Chen S. Sno-derived RNAs are prevalent molecular markers of cancer immunity. Oncogene 2018; 37:6442-6462. [PMID: 30072739 PMCID: PMC6294694 DOI: 10.1038/s41388-018-0420-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/01/2018] [Accepted: 07/02/2018] [Indexed: 02/07/2023]
Abstract
Small nucleolar RNAs (snoRNAs) constitute a family of noncoding RNAs that are classically known as guide RNAs for processing and modification of ribosomal RNAs. Recently, it was discovered that snoRNAs can be further processed into sno-derived RNAs (sdRNAs), some of which are known to exhibit microRNA-like properties. SdRNAs have been implicated in human cancer; however, a systems-level sdRNA landscape in human cancers is lacking. Through integrative analysis of ~22 nt size-selected smRNA-seq datasets from 10,262 patient samples across 32 cancer types, we mapped a pan-cancer sdRNAome and interrogated its signatures in multiple clinically relevant features, particularly cancer immunity and clinical outcome. Aggregating sdRNA abundances by parental snoRNAs, these expression signatures alone are sufficient to distinguish patients with distinct cancer types. Interestingly, a large panel of sdRNAs are significantly correlated with features of the tumor-immune microenvironment, such as immunosuppressive markers, CD8+ T cell infiltration, cytolytic T cell activity, and tumor vasculature. A set of individual sdRNAs with tumor-immune signatures can also stratify patient survival. These findings implicate snoRNAs and their derivative sdRNAs as a class of prevalent noncoding molecular markers of human cancer immunity.
Collapse
Affiliation(s)
- Ryan D Chow
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University School of Medicine, West Haven, CT, USA
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University School of Medicine, West Haven, CT, USA.
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, USA.
- Biological and Biomedical Sciences Program, Yale University School of Medicine, New Haven, CT, USA.
- Immunobiology Program, Yale University School of Medicine, New Haven, CT, USA.
- Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
- Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
54
|
Li D, Qiao H, Qiu W, Xu X, Liu T, Jiang Q, Liu R, Jiao Z, Zhang K, Bi L, Chen R, Kan Y. Identification and functional characterization of intermediate-size non-coding RNAs in maize. BMC Genomics 2018; 19:730. [PMID: 30286715 PMCID: PMC6172812 DOI: 10.1186/s12864-018-5103-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/21/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The majority of eukaryote genomes can be actively transcribed into non-coding RNAs (ncRNAs), which are functionally important in development and evolution. In the study of maize, an important crop for both humans and animals, aside from microRNAs and long non-coding RNAs, few studies have been conducted on intermediate-size ncRNAs. RESULTS We constructed a homogenized cDNA library of 50-500 nt RNAs in the maize inbred line Chang 7-2. Sequencing revealed 169 ncRNAs, which contained 58 known and 111 novel ncRNAs (including 70 snoRNAs, 27 snRNAs, 13 unclassified ncRNAs and one tRNA). Forty of the novel ncRNAs were specific to the Panicoideae, and 24% of them are located on sense-strand of the 5' or 3' terminus of protein coding genes on chromosome. Target site analysis found that 22 snoRNAs can guide to 38 2'-O-methylation and pseudouridylation modification sites of ribosomal RNAs and small nuclear RNAs. Expression analysis showed that 43 ncRNAs exhibited significantly altered expression in different tissues or developmental stages of maize seedlings, eight ncRNAs had tissue-specific expression and five ncRNAs were strictly accumulated in the early stage of leaf development. Further analysis showed that 3 of the 5 stage-specific ncRNAs (Zm-3, Zm-18, and Zm-73) can be highly induced under drought and salt stress, while one snoRNA Zm-8 can be repressed under PEG-simulated drought condition. CONCLUSIONS We provided a genome-wide identification and functional analysis of ncRNAs with a size range of 50-500 nt in maize. 111 novel ncRNAs were cloned and 40 ncRNAs were determined to be specific to Panicoideae. 43 ncRNAs changed significantly during maize development, three ncRNAs can be strongly induced under drought and salt stress, suggesting their roles in maize stress response. This work set a foundation for further study of intermediate-size ncRNAs in maize.
Collapse
Affiliation(s)
- Dandan Li
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Huili Qiao
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Wujie Qiu
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Xin Xu
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Tiemei Liu
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Qianling Jiang
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Renyi Liu
- Center for Agroforestry Mega Data Science and FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhujin Jiao
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Kun Zhang
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Lijun Bi
- Bioinformatics Laboratory and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Runsheng Chen
- Bioinformatics Laboratory and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yunchao Kan
- China-UK-NYNU-RRes Joint Laboratory of insect biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China.
| |
Collapse
|
55
|
Abstract
The rates of ribosome production by a nucleolus and of protein biosynthesis by ribosomes are tightly correlated with the rate of cell growth and proliferation. All these processes must be matched and appropriately regulated to provide optimal cell functioning. Deregulation of certain factors, including oncogenes, controlling these processes, especially ribosome biosynthesis, can lead to cell transformation. Cancer cells are characterized by intense ribosome biosynthesis which is advantageous for their growth and proliferation. On the other hand, this feature can be engaged as an anticancer strategy. Numerous nucleolar factors such as nucleolar and ribosomal proteins as well as different RNAs, in addition to their role in ribosome biosynthesis, have other functions, including those associated with cancer biology. Some of them can contribute to cell transformation and cancer development. Others, under stress evoked by different factors which often hamper function of nucleoli and thus induce nucleolar/ribosomal stress, can participate in combating cancer cells. In this sense, intentional application of therapeutic agents affecting ribosome biosynthesis can cause either release of these molecules from nucleoli or their de novo biosynthesis to mediate the activation of pathways leading to elimination of harmful cells. This review underlines the role of a nucleolus not only as a ribosome constituting apparatus but also as a hub of both positive and negative control of cancer development. The article is mainly based on original papers concerning mechanisms in which the nucleolus is implicated directly or indirectly in processes associated with neoplasia.
Collapse
Affiliation(s)
- Dariusz Stępiński
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland.
| |
Collapse
|