51
|
Herholt A, Galinski S, Geyer PE, Rossner MJ, Wehr MC. Multiparametric Assays for Accelerating Early Drug Discovery. Trends Pharmacol Sci 2020; 41:318-335. [PMID: 32223968 DOI: 10.1016/j.tips.2020.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
Drug discovery campaigns are hampered by substantial attrition rates largely due to a lack of efficacy and safety reasons associated with candidate drugs. This is true in particular for genetically complex diseases, where insufficient knowledge of the modulatory actions of candidate drugs on targets and entire target pathways further adds to the problem of attrition. To better profile compound actions on targets, potential off-targets, and disease-linked pathways, new innovative technologies need to be developed that can elucidate the complex cellular signaling networks in health and disease. Here, we discuss progress in genetically encoded multiparametric assays and mass spectrometry (MS)-based proteomics, which both represent promising toolkits to profile multifactorial actions of drug candidates in disease-relevant cellular systems to promote drug discovery and personalized medicine.
Collapse
Affiliation(s)
- Alexander Herholt
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany; Systasy Bioscience GmbH, Balanstr. 6, 81669, Munich, Germany
| | - Sabrina Galinski
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany; Systasy Bioscience GmbH, Balanstr. 6, 81669, Munich, Germany
| | - Philipp E Geyer
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Planegg, Germany; NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; OmicEra Diagnostics GmbH, Am Klopferspitz 19, 82152, Planegg, Germany
| | - Moritz J Rossner
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Michael C Wehr
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany; Systasy Bioscience GmbH, Balanstr. 6, 81669, Munich, Germany.
| |
Collapse
|
52
|
Wang Z, Gagliardi M, Mohamadi RM, Ahmed SU, Labib M, Zhang L, Popescu S, Zhou Y, Sargent EH, Keller GM, Kelley SO. Ultrasensitive and rapid quantification of rare tumorigenic stem cells in hPSC-derived cardiomyocyte populations. SCIENCE ADVANCES 2020; 6:eaay7629. [PMID: 32440533 PMCID: PMC7227422 DOI: 10.1126/sciadv.aay7629] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/20/2019] [Indexed: 05/08/2023]
Abstract
The ability to detect rare human pluripotent stem cells (hPSCs) in differentiated populations is critical for safeguarding the clinical translation of cell therapy, as these undifferentiated cells have the capacity to form teratomas in vivo. The detection of hPSCs must be performed using an approach compatible with traceable manufacturing of therapeutic cell products. Here, we report a novel microfluidic approach, stem cell quantitative cytometry (SCQC), for the quantification of rare hPSCs in hPSC-derived cardiomyocyte (CM) populations. This approach enables the ultrasensitive capture, profiling, and enumeration of trace levels of hPSCs labeled with magnetic nanoparticles in a low-cost, manufacturable microfluidic chip. We deploy SCQC to assess the tumorigenic risk of hPSC-derived CM populations in vivo. In addition, we isolate rare hPSCs from the differentiated populations using SCQC and characterize their pluripotency.
Collapse
Affiliation(s)
- Zongjie Wang
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Mark Gagliardi
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Reza M. Mohamadi
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Sharif U. Ahmed
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Mahmoud Labib
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Libing Zhang
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Sandra Popescu
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Yuxiao Zhou
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Edward H. Sargent
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Gordon M. Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Shana O. Kelley
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Corresponding author.
| |
Collapse
|
53
|
Varma R, Soleas JP, Waddell TK, Karoubi G, McGuigan AP. Current strategies and opportunities to manufacture cells for modeling human lungs. Adv Drug Deliv Rev 2020; 161-162:90-109. [PMID: 32835746 PMCID: PMC7442933 DOI: 10.1016/j.addr.2020.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/17/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Chronic lung diseases remain major healthcare burdens, for which the only curative treatment is lung transplantation. In vitro human models are promising platforms for identifying and testing novel compounds to potentially decrease this burden. Directed differentiation of pluripotent stem cells is an important strategy to generate lung cells to create such models. Current lung directed differentiation protocols are limited as they do not 1) recapitulate the diversity of respiratory epithelium, 2) generate consistent or sufficient cell numbers for drug discovery platforms, and 3) establish the histologic tissue-level organization critical for modeling lung function. In this review, we describe how lung development has formed the basis for directed differentiation protocols, and discuss the utility of available protocols for lung epithelial cell generation and drug development. We further highlight tissue engineering strategies for manipulating biophysical signals during directed differentiation such that future protocols can recapitulate both chemical and physical cues present during lung development.
Collapse
Affiliation(s)
- Ratna Varma
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada
| | - John P Soleas
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada
| | - Thomas K Waddell
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Golnaz Karoubi
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON M5S 3G8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | - Alison P McGuigan
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON M5S 3E5, Canada.
| |
Collapse
|