51
|
Giovannini T, Koch H. Energy-Based Molecular Orbital Localization in a Specific Spatial Region. J Chem Theory Comput 2021; 17:139-150. [PMID: 33337150 DOI: 10.1021/acs.jctc.0c00737] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We present a novel energy-based localization procedure able to localize molecular orbitals into predefined spatial regions. The method is defined in a multiscale framework based on the multilevel Hartree-Fock approach. In particular, the system is partitioned into active and inactive fragments. The localized molecular orbitals are obtained maximizing the repulsion between the two fragments. The method is applied to several cases including both conjugated and non-conjugated systems. Our multiscale approach is compared with reference values for both ground-state properties, such as dipole moments, and local excitation energies. The proposed approach is useful to extend the application range of high-level electron correlation methods. In fact, the reduced number of molecular orbitals can lead to a large reduction in the computational cost of correlated calculations.
Collapse
Affiliation(s)
- Tommaso Giovannini
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Henrik Koch
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
52
|
Kranz C, Wächtler M. Characterizing photocatalysts for water splitting: from atoms to bulk and from slow to ultrafast processes. Chem Soc Rev 2021; 50:1407-1437. [DOI: 10.1039/d0cs00526f] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This review provides a comprehensive overview on characterisation techniques for light-driven redox-catalysts highlighting spectroscopic, microscopic, electrochemical and spectroelectrochemical approaches.
Collapse
Affiliation(s)
- Christine Kranz
- Ulm University
- Institute of Analytical and Bioanalytical Chemistry
- 89081 Ulm
- Germany
| | - Maria Wächtler
- Leibniz Institute of Photonic Technology
- Department Functional Interfaces
- 07745 Jena
- Germany
- Friedrich Schiller University Jena
| |
Collapse
|
53
|
Goletto L, Giovannini T, Folkestad SD, Koch H. Combining multilevel Hartree–Fock and multilevel coupled cluster approaches with molecular mechanics: a study of electronic excitations in solutions. Phys Chem Chem Phys 2021; 23:4413-4425. [DOI: 10.1039/d0cp06359b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the coupling of different quantum-embedding approaches with a third molecular-mechanics layer, which can be either polarizable or non-polarizable.
Collapse
Affiliation(s)
- Linda Goletto
- Department of Chemistry
- Norwegian University of Science and Technology (NTNU)
- 7491 Trondheim
- Norway
| | - Tommaso Giovannini
- Department of Chemistry
- Norwegian University of Science and Technology (NTNU)
- 7491 Trondheim
- Norway
| | - Sarai D. Folkestad
- Department of Chemistry
- Norwegian University of Science and Technology (NTNU)
- 7491 Trondheim
- Norway
| | | |
Collapse
|
54
|
Chaillet M, Lengauer F, Adolphs J, Müh F, Fokas AS, Cole DJ, Chin AW, Renger T. Static Disorder in Excitation Energies of the Fenna-Matthews-Olson Protein: Structure-Based Theory Meets Experiment. J Phys Chem Lett 2020; 11:10306-10314. [PMID: 33227205 PMCID: PMC7751012 DOI: 10.1021/acs.jpclett.0c03123] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
Inhomogeneous broadening of optical lines of the Fenna-Matthews-Olson (FMO) light-harvesting protein is investigated by combining a Monte Carlo sampling of low-energy conformational substates of the protein with a quantum chemical/electrostatic calculation of local transition energies (site energies) of the pigments. The good agreement between the optical spectra calculated for the inhomogeneous ensemble and the experimental data demonstrates that electrostatics is the dominant contributor to static disorder in site energies. Rotamers of polar amino acid side chains are found to cause bimodal distribution functions of site energy shifts, which can be probed by hole burning and single-molecule spectroscopy. When summing over the large number of contributions, the resulting distribution functions of the site energies become Gaussians, and the correlations in site energy fluctuations at different sites practically average to zero. These results demonstrate that static disorder in the FMO protein is in the realm of the central limit theorem of statistics.
Collapse
Affiliation(s)
- Marten
L. Chaillet
- Bijvoet
Centre for Biomolecular Research, University
of Utrecht, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands
| | - Florian Lengauer
- Institute
of Theoretical Physics, Johannes Kepler
University Linz, Altenberger Str. 69, 4040 Linz, Austria
| | - Julian Adolphs
- Leibniz
Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Frank Müh
- Institute
of Theoretical Physics, Johannes Kepler
University Linz, Altenberger Str. 69, 4040 Linz, Austria
| | - Alexander S. Fokas
- TCM
Group, Cavendish Laboratory, 19 J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Daniel J. Cole
- School
of Natural and Environmental Sciences, Newcastle
University, Newcastle
upon Tyne NE1 7RU, United
Kingdom
| | - Alex W. Chin
- Centre
National de la Recherce Scientifique, Institute des Nanosciences de
Paris, Sorbonne Université, Paris, France
| | - Thomas Renger
- Institute
of Theoretical Physics, Johannes Kepler
University Linz, Altenberger Str. 69, 4040 Linz, Austria
| |
Collapse
|
55
|
Coccia E, Fregoni J, Guido CA, Marsili M, Pipolo S, Corni S. Hybrid theoretical models for molecular nanoplasmonics. J Chem Phys 2020; 153:200901. [PMID: 33261492 DOI: 10.1063/5.0027935] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The multidisciplinary nature of the research in molecular nanoplasmonics, i.e., the use of plasmonic nanostructures to enhance, control, or suppress properties of molecules interacting with light, led to contributions from different theory communities over the years, with the aim of understanding, interpreting, and predicting the physical and chemical phenomena occurring at molecular- and nano-scale in the presence of light. Multiscale hybrid techniques, using a different level of description for the molecule and the plasmonic nanosystems, permit a reliable representation of the atomistic details and of collective features, such as plasmons, in such complex systems. Here, we focus on a selected set of topics of current interest in molecular plasmonics (control of electronic excitations in light-harvesting systems, polaritonic chemistry, hot-carrier generation, and plasmon-enhanced catalysis). We discuss how their description may benefit from a hybrid modeling approach and what are the main challenges for the application of such models. In doing so, we also provide an introduction to such models and to the selected topics, as well as general discussions on their theoretical descriptions.
Collapse
Affiliation(s)
- E Coccia
- Dipartimento di Scienze Chimiche e Farmaceutiche, Universit di Trieste, via L. Giorgieri 1, 34127 Trieste, Italy
| | - J Fregoni
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Universit di Modena e Reggio Emilia, via Campi 213/A, 41125 Modena, Italy
| | - C A Guido
- Dipartimento di Scienze Chimiche, Universit di Padova, via F. Marzolo 1, 35131 Padova, Italy
| | - M Marsili
- Dipartimento di Scienze Chimiche, Universit di Padova, via F. Marzolo 1, 35131 Padova, Italy
| | - S Pipolo
- Université de Lille, CNRS, Centrale Lille, ENSCL, Université d'Artois UMR 8181-UCCS Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - S Corni
- Istituto Nanoscienze-CNR, via Campi 213/A, 41125 Modena, Italy
| |
Collapse
|
56
|
Dall'Osto G, Gil G, Pipolo S, Corni S. Real-time dynamics of plasmonic resonances in nanoparticles described by a boundary element method with generic dielectric function. J Chem Phys 2020; 153:184114. [PMID: 33187410 DOI: 10.1063/5.0022329] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Investigating nanoplasmonics in an explicit time-dependent perspective is a natural choice when light pulses are used and may also reveal aspects that are hidden in a frequency-based picture. In the past, we proposed a method time domain-boundary element method (TD-BEM) to simulate the time dependent polarization of nanoparticles based on a boundary element method that is particularly suitable to interface with a quantum atomistic description of nearby molecules. So far, however, metal dielectric functions in TD-BEM have been modeled through analytic expressions, such as those of Debye and Drude-Lorentz, which cannot account for multiple electronic resonances. Our approach allows us to include in the TD-BEM framework also the description of metals with complicate dielectric function profiles in the frequency domain. Particularly, among all metals, gold is a challenging case due to the presence of many transition frequencies. We applied our methods to different metals (gold, silver, and the less commonly investigated rhodium) and different shaped nanoparticles (spheres, ellipsoids, and cubes), the approach has been tested comparing TD-BEM and frequency domain BEM absorption spectra, and it has been used to investigate the time-dependent field acting locally close to nanoparticle vertices.
Collapse
Affiliation(s)
- Giulia Dall'Osto
- Department of Chemical Sciences, University of Padova, via Marzolo 1, Padova, Italy
| | - Gabriel Gil
- Department of Chemical Sciences, University of Padova, via Marzolo 1, Padova, Italy
| | - Silvio Pipolo
- Université de Lille, CNRS, Centrale Lille, ENSCL, Université d'Artois UMR 8181 Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Stefano Corni
- Department of Chemical Sciences, University of Padova, via Marzolo 1, Padova, Italy
| |
Collapse
|
57
|
Kriete B, Bondarenko AS, Alessandri R, Patmanidis I, Krasnikov VV, Jansen TLC, Marrink SJ, Knoester J, Pshenichnikov MS. Molecular versus Excitonic Disorder in Individual Artificial Light-Harvesting Systems. J Am Chem Soc 2020; 142:18073-18085. [PMID: 32985187 PMCID: PMC7582617 DOI: 10.1021/jacs.0c07392] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Indexed: 11/28/2022]
Abstract
Natural light-harvesting antennae employ a dense array of chromophores to optimize energy transport via the formation of delocalized excited states (excitons), which are critically sensitive to spatio-energetic variations of the molecular structure. Identifying the origin and impact of such variations is highly desirable for understanding and predicting functional properties yet hard to achieve due to averaging of many overlapping responses from individual systems. Here, we overcome this problem by measuring the heterogeneity of synthetic analogues of natural antennae-self-assembled molecular nanotubes-by two complementary approaches: single-nanotube photoluminescence spectroscopy and ultrafast 2D correlation. We demonstrate remarkable homogeneity of the nanotube ensemble and reveal that ultrafast (∼50 fs) modulation of the exciton frequencies governs spectral broadening. Using multiscale exciton modeling, we show that the dominance of homogeneous broadening at the exciton level results from exchange narrowing of strong static disorder found for individual molecules within the nanotube. The detailed characterization of static and dynamic disorder at the exciton as well as the molecular level presented here opens new avenues in analyzing and predicting dynamic exciton properties, such as excitation energy transport.
Collapse
Affiliation(s)
- Björn Kriete
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Anna S. Bondarenko
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Riccardo Alessandri
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Ilias Patmanidis
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Victor V. Krasnikov
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Thomas L. C. Jansen
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Siewert J. Marrink
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Jasper Knoester
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Maxim S. Pshenichnikov
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
58
|
Bondarenko AS, Patmanidis I, Alessandri R, Souza PCT, Jansen TLC, de Vries AH, Marrink SJ, Knoester J. Multiscale modeling of molecular structure and optical properties of complex supramolecular aggregates. Chem Sci 2020; 11:11514-11524. [PMID: 34094396 PMCID: PMC8162738 DOI: 10.1039/d0sc03110k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Supramolecular aggregates of synthetic dye molecules offer great perspectives to prepare biomimetic functional materials for light-harvesting and energy transport. The design is complicated by the fact that structure–property relationships are hard to establish, because the molecular packing results from a delicate balance of interactions and the excitonic properties that dictate the optics and excited state dynamics, in turn sensitively depend on this packing. Here we show how an iterative multiscale approach combining molecular dynamics and quantum mechanical exciton modeling can be used to obtain accurate insight into the packing of thousands of cyanine dye molecules in a complex double-walled tubular aggregate in close interaction with its solvent environment. Our approach allows us to answer open questions not only on the structure of these prototypical aggregates, but also about their molecular-scale structural and energetic heterogeneity, as well as on the microscopic origin of their photophysical properties. This opens the route to accurate predictions of energy transport and other functional properties. Multiscale modeling resolves the molecular structure of a synthetic light-harvesting complex, unraveling the microscopic origin of its photophysical properties.![]()
Collapse
Affiliation(s)
- Anna S Bondarenko
- University of Groningen, Zernike Institute for Advanced Materials Groningen The Netherlands
| | - Ilias Patmanidis
- University of Groningen, Zernike Institute for Advanced Materials Groningen The Netherlands .,University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute Groningen The Netherlands
| | - Riccardo Alessandri
- University of Groningen, Zernike Institute for Advanced Materials Groningen The Netherlands .,University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute Groningen The Netherlands
| | - Paulo C T Souza
- University of Groningen, Zernike Institute for Advanced Materials Groningen The Netherlands .,University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute Groningen The Netherlands
| | - Thomas L C Jansen
- University of Groningen, Zernike Institute for Advanced Materials Groningen The Netherlands
| | - Alex H de Vries
- University of Groningen, Zernike Institute for Advanced Materials Groningen The Netherlands .,University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute Groningen The Netherlands
| | - Siewert J Marrink
- University of Groningen, Zernike Institute for Advanced Materials Groningen The Netherlands .,University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute Groningen The Netherlands
| | - Jasper Knoester
- University of Groningen, Zernike Institute for Advanced Materials Groningen The Netherlands
| |
Collapse
|
59
|
Giovannini T, Egidi F, Cappelli C. Molecular spectroscopy of aqueous solutions: a theoretical perspective. Chem Soc Rev 2020; 49:5664-5677. [PMID: 32744278 DOI: 10.1039/c9cs00464e] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Computational spectroscopy is an invaluable tool to both accurately reproduce the spectra of molecular systems and provide a rationalization for the underlying physics. However, the inherent difficulty to accurately model systems in aqueous solutions, owing to water's high polarity and ability to form hydrogen bonds, has severely hampered the development of the field. In this tutorial review we present a technique developed and tested in recent years based on a fully atomistic and polarizable classical modeling of water coupled with a quantum mechanical description of the solute. Thanks to its unparalleled accuracy and versatility, this method can change the perspective of computational and experimental chemists alike.
Collapse
Affiliation(s)
| | - Franco Egidi
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy.
| | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy.
| |
Collapse
|
60
|
Marcheselli J, Chateau D, Lerouge F, Baldeck P, Andraud C, Parola S, Baroni S, Corni S, Garavelli M, Rivalta I. Simulating Plasmon Resonances of Gold Nanoparticles with Bipyramidal Shapes by Boundary Element Methods. J Chem Theory Comput 2020; 16:3807-3815. [PMID: 32379444 PMCID: PMC7584360 DOI: 10.1021/acs.jctc.0c00269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
Computational
modeling and accurate simulations of localized surface
plasmon resonance (LSPR) absorption properties are reported for gold
nanobipyramids (GNBs), a class of metal nanoparticle that features
highly tunable, geometry-dependent optical properties. GNB bicone
models with spherical tips performed best in reproducing experimental
LSPR spectra while the comparison with other geometrical models provided
a fundamental understanding of base shapes and tip effects on the
optical properties of GNBs. Our results demonstrated the importance
of averaging all geometrical parameters determined from transmission
electron microscopy images to build representative models of GNBs.
By assessing the performances of LSPR absorption spectra simulations
based on a quasi-static approximation, we provided an applicability
range of this approach as a function of the nanoparticle size, paving
the way to the theoretical study of the coupling between molecular
electron densities and metal nanoparticles in GNB-based nanohybrid
systems, with potential applications in the design of nanomaterials
for bioimaging, optics and photocatalysis.
Collapse
Affiliation(s)
- Jacopo Marcheselli
- SISSA-Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy
| | - Denis Chateau
- Laboratoire de Chimie UMR 5182, CNRS, Université Lyon 1, Univ Lyon, Ens de Lyon, F-69342 Lyon, France
| | - Frederic Lerouge
- Laboratoire de Chimie UMR 5182, CNRS, Université Lyon 1, Univ Lyon, Ens de Lyon, F-69342 Lyon, France
| | - Patrice Baldeck
- Laboratoire de Chimie UMR 5182, CNRS, Université Lyon 1, Univ Lyon, Ens de Lyon, F-69342 Lyon, France
| | - Chantal Andraud
- Laboratoire de Chimie UMR 5182, CNRS, Université Lyon 1, Univ Lyon, Ens de Lyon, F-69342 Lyon, France
| | - Stephane Parola
- Laboratoire de Chimie UMR 5182, CNRS, Université Lyon 1, Univ Lyon, Ens de Lyon, F-69342 Lyon, France
| | - Stefano Baroni
- SISSA-Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy
| | - Stefano Corni
- Dipartimento di Scienze Chimiche, Università di Padova, 35131 Padova, Italy.,Istituto di Nanoscienze, Consiglio Nazionale delle Ricerche CNR-NANO, 41125 Modena, Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale "Toso Montanari", Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Ivan Rivalta
- Laboratoire de Chimie UMR 5182, CNRS, Université Lyon 1, Univ Lyon, Ens de Lyon, F-69342 Lyon, France.,Dipartimento di Chimica Industriale "Toso Montanari", Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| |
Collapse
|
61
|
Guido CA, Rosa M, Cammi R, Corni S. An open quantum system theory for polarizable continuum models. J Chem Phys 2020; 152:174114. [DOI: 10.1063/5.0003523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Ciro A. Guido
- Dipartimento di Scienze Chimiche, Università di Padova, Padova, Italy
| | - Marta Rosa
- Dipartimento di Scienze Chimiche, Università di Padova, Padova, Italy
| | - Roberto Cammi
- Dipartimento di Chimica, Scienze della Vita e Sostenibilità Ambientale, Università di Parma, Parma, Italy
| | - Stefano Corni
- Dipartimento di Scienze Chimiche, Università di Padova, Padova, Italy
- CNR Istituto Nanoscienze, Modena, Italy
| |
Collapse
|
62
|
Bonatti L, Gil G, Giovannini T, Corni S, Cappelli C. Plasmonic Resonances of Metal Nanoparticles: Atomistic vs. Continuum Approaches. Front Chem 2020; 8:340. [PMID: 32457870 PMCID: PMC7221199 DOI: 10.3389/fchem.2020.00340] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/01/2020] [Indexed: 11/13/2022] Open
Abstract
The fully atomistic model, ωFQ, based on textbook concepts (Drude theory, electrostatics, quantum tunneling) and recently developed by some of the present authors in Nanoscale, 11, 6004-6015 is applied to the calculation of the optical properties of complex Na, Ag, and Au nanostructures. In ωFQ, each atom of the nanostructures is endowed with an electric charge that can vary according to the external electric field. The electric conductivity between nearest atoms is modeled by adopting the Drude model, which is reformulated in terms of electric charges. Quantum tunneling effects are considered by letting the dielectric response of the system arise from atom-atom conductivity. ωFQ is challenged to reproduce the optical response of metal nanoparticles of different sizes and shapes, and its performance is compared with continuum Boundary Element Method (BEM) calculations.
Collapse
Affiliation(s)
- Luca Bonatti
- Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa, Italy
| | - Gabriel Gil
- Institute of Cybernetics, Mathematics and Physics (ICIMAF), La Habana, Cuba
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Tommaso Giovannini
- Department of Chemistry, Norwegian University of Science and Technology, Trondheim, Norway
| | - Stefano Corni
- Department of Chemical Sciences, University of Padova, Padova, Italy
- Institute of Nanoscience, National Research Council (CNR), Modena, Italy
| | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa, Italy
| |
Collapse
|
63
|
Zhang B, Liang W. The vibronic absorption spectra and exciton dynamics of plasmon-exciton hybrid systems in the regimes ranged from Fano antiresonance to Rabi-like splitting. J Chem Phys 2020; 152:014102. [DOI: 10.1063/1.5128848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Bin Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| | - WanZhen Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| |
Collapse
|
64
|
Dohn AO, Jónsson EÖ, Jónsson H. Polarizable Embedding with a Transferable H 2O Potential Function II: Application to (H 2O) n Clusters and Liquid Water. J Chem Theory Comput 2019; 15:6578-6587. [PMID: 31692344 DOI: 10.1021/acs.jctc.9b00778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The incorporation of polarization in multiscale quantum-mechanics/molecular-mechanics (QM/MM) simulations is important for a variety of applications, for example, charge-transfer reactions. A recently developed formalism based on a density functional theory description of the QM region and a potential energy function for H2O molecules that includes quadrupole as well as dipole polarizability of the MM region is used to simulate liquid water and water clusters. Analysis of the energy, atomic forces, MM polarization, and structure is presented. A quantitative assessment of the QM/MM-MM/MM interaction energy differences of all possible QM/MM configurations of (H2O)n clusters shows that the interquartile range of the distributions of the QM/MM binding energies is never more than 20 meV/molecule higher or lower than the binding energies produced with either of the single-model results. Comparing these interaction energy differences with the QM/MM induction differences show that they are not systematically caused by the induced MM moments of our polarizable embedding scheme. Optimized hexamer geometries as well as the liquid water structure are shown to be improved in comparison with results obtained using point-charge based embedding models neglecting polarization.
Collapse
Affiliation(s)
- Asmus Ougaard Dohn
- Science Institute and Faculty of Physical Sciences , University of Iceland , Reykjavík 107 , Iceland
| | - Elvar Örn Jónsson
- Science Institute and Faculty of Physical Sciences , University of Iceland , Reykjavík 107 , Iceland
| | - Hannes Jónsson
- Science Institute and Faculty of Physical Sciences , University of Iceland , Reykjavík 107 , Iceland
| |
Collapse
|
65
|
Giovannini T, Riso RR, Ambrosetti M, Puglisi A, Cappelli C. Electronic transitions for a fully polarizable QM/MM approach based on fluctuating charges and fluctuating dipoles: Linear and corrected linear response regimes. J Chem Phys 2019; 151:174104. [PMID: 31703497 DOI: 10.1063/1.5121396] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The fully polarizable Quantum Mechanics/Molecular Mechanics (QM/MM) approach based on fluctuating charges and fluctuating dipoles, named QM/FQFμ [T. Giovannini et al., J. Chem. Theory Comput. 15, 2233 (2019)], is extended to the calculation of vertical excitation energies of solvated molecular systems. Excitation energies are defined within two different solvation regimes, i.e., linear response (LR), where the response of the MM portion is adjusted to the QM transition density, and corrected-Linear Response (cLR) in which the MM response is adjusted to the relaxed QM density, thus being able to account for charge equilibration in the excited state. The model, which is specified in terms of three physical parameters (electronegativity, chemical hardness, and polarizability) is applied to vacuo-to-water solvatochromic shifts of aqueous solutions of para-nitroaniline, pyridine, and pyrimidine. The results show a good agreement with their experimental counterparts, thus highlighting the potentialities of this approach.
Collapse
Affiliation(s)
- Tommaso Giovannini
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | | | | | | | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
66
|
Scheurer M, Reinholdt P, Kjellgren ER, Haugaard Olsen JM, Dreuw A, Kongsted J. CPPE: An Open-Source C++ and Python Library for Polarizable Embedding. J Chem Theory Comput 2019; 15:6154-6163. [PMID: 31580670 DOI: 10.1021/acs.jctc.9b00758] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We present a modular open-source library for polarizable embedding (PE) named CPPE. The library is implemented in C++, and it additionally provides a Python interface for rapid prototyping and experimentation in a high-level scripting language. Our library integrates seamlessly with existing quantum chemical program packages through an intuitive and minimal interface. Until now, CPPE has been interfaced to three packages, Q-Chem, Psi4, and PySCF. Furthermore, we show CPPE in action using all three program packages for a computational spectroscopy application. With CPPE, host program interfaces only require minor programming effort, paving the way for new combined methodologies and broader availability of the PE model.
Collapse
Affiliation(s)
- Maximilian Scheurer
- Interdisciplinary Center for Scientific Computing , Heidelberg University , D-69120 Heidelberg , Germany.,Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Erik Rosendahl Kjellgren
- Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Jógvan Magnus Haugaard Olsen
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry , UiT the Arctic University of Norway , N-9037 Tromsø , Norway
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing , Heidelberg University , D-69120 Heidelberg , Germany
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| |
Collapse
|
67
|
Cupellini L, Bondanza M, Nottoli M, Mennucci B. Successes & challenges in the atomistic modeling of light-harvesting and its photoregulation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1861:148049. [PMID: 31386831 DOI: 10.1016/j.bbabio.2019.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022]
Abstract
Light-harvesting is a crucial step of photosynthesis. Its mechanisms and related energetics have been revealed by a combination of experimental investigations and theoretical modeling. The success of theoretical modeling is largely due to the application of atomistic descriptions combining quantum chemistry, classical models and molecular dynamics techniques. Besides the important achievements obtained so far, a complete and quantitative understanding of how the many different light-harvesting complexes exploit their structural specificity is still missing. Moreover, many questions remain unanswered regarding the mechanisms through which light-harvesting is regulated in response to variable light conditions. Here we show that, in both fields, a major role will be played once more by atomistic descriptions, possibly generalized to tackle the numerous time and space scales on which the regulation takes place: going from the ultrafast electronic excitation of the multichromophoric aggregate, through the subsequent conformational changes in the embedding protein, up to the interaction between proteins.
Collapse
Affiliation(s)
- Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Mattia Bondanza
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Michele Nottoli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy.
| |
Collapse
|
68
|
Coccia E, Corni S. Role of coherence in the plasmonic control of molecular absorption. J Chem Phys 2019; 151:044703. [PMID: 31370514 DOI: 10.1063/1.5109378] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The interpretation of nanoplasmonic effects on molecular properties, such as metal-enhanced absorption or fluorescence, typically assumes a fully coherent picture (in the quantum-mechanical sense) of the phenomena. Yet, there may be conditions where the coherent picture breaks down, and the decoherence effect should be accounted for. Using a state-of-the-art multiscale model approach able to include environment-induced dephasing, here we show that metal nanoparticle effects on the light absorption by a nearby molecule is strongly affected (even qualitatively, i.e., suppression vs enhancement) by molecular electronic decoherence. The present work shows that decoherence can be thought of as a further design element of molecular nanoplasmonic systems.
Collapse
Affiliation(s)
- Emanuele Coccia
- Department of Chemical Sciences, University of Padova, via Marzolo 1, Padova, Italy
| | - Stefano Corni
- Department of Chemical Sciences, University of Padova, via Marzolo 1, Padova, Italy
| |
Collapse
|